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Abstract

Generative latent-variable models are important for natural
language processing due to their capability of providing com-
pact representations of data. As conventional maximum like-
lihood estimation (MLE) is prone to focus on explaining ir-
relevant but common correlations in data, we apply maxi-
mum reconstruction estimation (MRE) to learning generative
latent-variable models alternatively, which aims to find model
parameters that maximize the probability of reconstructing
the observed data. We develop tractable algorithms to directly
learn hidden Markov models and IBM translation models us-
ing the MRE criterion, without the need to introduce a sepa-
rate reconstruction model to facilitate efficient inference. Ex-
periments on unsupervised part-of-speech induction and un-
supervised word alignment show that our approach enables
generative latent-variable models to better discover intended
correlations in data and outperforms maximum likelihood es-
timators significantly.

Introduction
The need to learn latent structures from unlabeled data arises
in many different problems in natural language processing
(NLP), including part-of-speech (POS) induction (Merialdo
1994; Johnson 2007), word alignment (Brown et al. 1993;
Vogel, Ney, and Tillmann 1996), syntactic parsing (Klein
and Manning 2004; Smith and Eisner 2005), and seman-
tic parsing (Poon and Domingos 2009). Generative latent-
variable models such as hidden Markov models (HMMs)
and latent-variable probabilistic context-free grammars (L-
PCFGs) have been widely used for unsupervised structured
prediction due to their capability of providing compact rep-
resentations of data.

Maximum likelihood estimation (MLE) is the standard
criterion for training generative latent-variable models: max-
imizing the likelihood of observed data by marginalizing
over latent variables, typically via the Expectation Maxi-
mization (EM) algorithm. However, recent studies have re-
vealed that MLE suffers from a significant problem: it may
guide the model to focus on explaining irrelevant but com-
mon correlations in the data (Ganchev et al. 2010). For ex-
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ample, in unsupervised POS induction, estimating tag prob-
abilities are often prone to be disrupted by high-frequency
words such as “,” and “is” (see Table 3).

In this work, we introduce maximum reconstruction esti-
mation (MRE) (Hinton, Osindero, and Teh 2006; Vincent et
al. 2008; Bengio 2009; Vincent et al. 2010; Socher et al.
2011; Ammar, Dyer, and Smith 2014; Alain et al. 2015)
for learning generative latent-variable models. The basic
idea is to circumvent irrelevant but common correlations by
maximizing the probability of reconstructing observed data.
The new objective is based on an encoding-reconstruction
framework: first generating a latent structure conditioned on
the observed data (encoding) and then re-generating the ob-
servation based on the latent structure (reconstruction). Our
approach has the following advantages:

1. Direct learning of model parameters. As we are only in-
terested in learning the parameters of data distribution
(i.e., P (x;θ)), it is challenging to define the reconstruc-
tion distribution (i.e., P (x|x;θ)) using data distribution
parameters (i.e., θ) due to the intricate dependencies be-
tween sub-structures in generative latent-variable mod-
els. While previous work has to maintain separate sets
of model parameters for encoding and reconstruction to
facilitate efficient inference (Ammar, Dyer, and Smith
2014), our approach is capable of directly learning in-
tended model parameters.

2. Tractable inference. Our approach keeps the same
tractability of learning generative latent-variable models
as its MLE counterpart. In this work, we apply MRE
to learning two classic generative latent-variable models
(i.e., HMMs and IBM translation models) and design ef-
ficient dynamic programming algorithms to calculate ex-
pectations exactly.

We evaluate our approach on unsupervised POS induc-
tion and unsupervised word alignment. Experiments show
that MRE enables generative latent-variable models to bet-
ter discover intended correlations in data and thus leads to
significant improvements over MLE.



Maximum Reconstruction Estimation
Let x be an observation, z be a latent structure, and P (x;θ)
be a generative latent-variable model parameterized by θ:

P (x;θ) =
∑
z

P (x, z;θ) (1)

Given a set of training examplesD = {x(s)}Ss=1, the stan-
dard maximum likelihood estimation (MLE) criterion aims
to find a set of parameters that maximizes the log-likelihood
of the training data:

θ∗MLE = argmax
θ

{
S∑

s=1

logP (x(s);θ)

}
(2)

After learning model parameters, the Viterbi test-time
predictions can be calculated as follows:

z∗MLE = argmax
z

{
P (x, z;θ)

}
(3)

Although MLE has been widely used in learning latent
variable models, Ganchev et al. (2010) indicate that it may
guide the model to focus on explaining irrelevant but com-
mon (rather than intended) correlations in data.

Alternatively, we are interested in modeling the probabil-
ity of reconstructing observations via latent structures:

P (x̂|x;θ) =
∑
z

P (z|x;θ)︸ ︷︷ ︸
encoding

P (x̂|x, z;θ)︸ ︷︷ ︸
reconstruction

(4)

= Ez|x;θ

[
P (x̂|x, z;θ)

]
(5)

where P (z|x;θ) is an encoding sub-model that generates a
latent structure z given the observation x and P (x̂|x, z;θ) is
a reconstruction sub-model that reconstructs the observation
x̂ given the just generated latent structure z as well as the
observation itself. Often, we ignore the dependency on the
observation itself and simply write the reconstruction sub-
model as P (x̂|z;θ). Note that unlike Ammar et al. (2014),
we require that both the encoding and reconstruction sub-
models share the original model parameters to be learned.
This forces training algorithms to focus on learning intended
models.

As a result, maximum reconstruction estimation (Hinton,
Osindero, and Teh 2006; Vincent et al. 2008; Bengio 2009;
Vincent et al. 2010; Socher et al. 2011; Ammar, Dyer, and
Smith 2014; Alain et al. 2015) aims to find a set of param-
eters that maximize the product of reconstruction probabili-
ties of the training data:

θ∗MRE = argmax
θ

{
S∑

s=1

logP (x̂(s)|x(s);θ)

}
(6)

We use the exponentiated gradient algorithm (Kivinen
and Warmuth 1997) with adaptive learning rate (Bagos, Li-
akopoulos, and Hamodrakas 2004) for estimating model pa-
rameters. The decision rule for computing Viterbi test-time
predictions is given by

z∗MRE = argmax
z

{
P (x̂|z;θ)P (z|x;θ)

}
(7)

We aim to reconstruct x in the following sections which
indicates x̂ = x. For simplicity, we do not differentiate x̂
and x explicitly, and donate x̂ as x.

NNP VBD DT NN NN

Obama made a speech yesterdayobservation

latent structure

Figure 1: Part-of-speech induction. Given an observed En-
glish sentence, the task is to induce the latent sequence of
part-of-speech tags.

Applications to
Generative Latent-Variable Models

We apply the maximum reconstruction criterion to train-
ing two classical generative latent-variable models: hidden
Markov models for unsupervised POS induction (Section
3.1) and IBM translation models for unsupervised word
alignment (Section 3.2).

Hidden Markov Models for Unsupervised POS
Induction
Hidden Markov models (HMMs) are a widely used statis-
tical tool for modeling latent sequential structures. Figure 1
shows an example of unsupervised part-of-speech induction.
Given a natural language sentence “Obama made a speech
yesterday”, HMMs can be used to infer the latent sequence
of part-of-speech tags “NNP VBD DT NN NN”.

More formally, let x = x1, . . . ,xn, . . . ,xN be an ob-
served natural language sentence with N words and z =
z1, . . . , zn, . . . , zN be the corresponding sequence of part-
of-speech tags. We use x and z to denote a single word and
tag, respectively. The HMM for unsupervised POS induction
is given by

P (x;θ) =
∑
z

p(z1)p(x1|z1)
N∏

n=2

p(zn|zn−1)p(xn|zn) (8)

where p(z) is initial probability, p(z′|z) is transition prob-
ability, and p(x|z) is emission probability. These parame-
ters are required to be normalized:

∑
z p(z) = 1, ∀z :∑

z′ p(z′|z) = 1, and ∀z :
∑

x p(x|z) = 1.

Maximum Likelihood Estimation The partial derivatives
of logP (x;θ) with respect to model parameters are

∂ logP (x;θ)

∂p(z)
=

1

p(z)
Ez|x;θ

[
δ(z1, z)

]
(9)

∂ logP (x;θ)

∂p(z′|z)

=
1

p(z′|z)
Ez|x;θ

[
N∑

n=2

δ(zn−1, z)δ(zn, z
′)

]
(10)

∂ logP (x;θ)

∂p(x|z)

=
1

p(x|z)
Ez|x;θ

[
N∑

n=1

δ(xn, x)δ(zn, z)

]
(11)



Clearly, maximum likelihood estimators focus on calcu-
lating event expectations (e.g., the expected count of the
event that the first tag z1 happens to be z). These expecta-
tions can be exactly and efficiently calculated using dynamic
programming algorithms.

Maximum Reconstruction Estimation The reconstruc-
tion probability for HMMs can be written as

P (x|x;θ) =
∑
z

P (z|x;θ)P (x|z;θ) (12)

Note that P (x|z;θ) =
∏N

n=1 p(xn|zn) is readily defined
in HMMs. Since the posterior probability P (z|x;θ) is not
straightforward to calculate, we resort to the Bayes theorem
instead:

P (z|x;θ) = P (z;θ)P (x|z;θ)
P (x;θ)

(13)

where P (z;θ) = p(z1)
∏N

n=2 p(zn|zn−1).
Therefore, Eq. (12) can be re-written as

P (x|x;θ) =
∑

z P (z;θ)P (x|z;θ)2

P (x;θ)
(14)

Note that all terms in the right-hand side of Eq. (14) are dif-
ferentiable with respect to model parameters now. This is
critical for directly learning data distribution parameters us-
ing the MRE criterion.

The partial derivatives of logP (x|x;θ) with respect to
model parameters are

∂ logP (x|x;θ)
∂p(z)

=
1

p(z)

(
EQ

[
δ(z1, z)

]
− Ez|x;θ

[
δ(z1, z)

])
(15)

∂ logP (x|x;θ)
∂p(z′|z)

=
1

p(z′|z)

(
EQ

[ N∑
n=2

δ(zn−1, z)δ(zn, z
′)
]
−

Ez|x;θ

[ N∑
n=2

δ(zn−1, z)δ(zn, z
′)
])

(16)

∂ logP (x|x;θ)
∂p(x|z)

=
1

p(x|z)

(
EQ

[ N∑
n=1

2δ(xn, x)δ(zn, z)
]
−

Ez|x;θ

[ N∑
n=1

δ(xn, x)δ(zn, z)
])

(17)

where the distribution Q is defined as

Q(x, z;θ) =
P (z;θ)P (x|z;θ)2∑
z′ P (z′;θ)P (x|z′;θ)2

(18)

Obama made a speech yesterday

observation aobama zuotian fabiao le yanjiang

side information

latent structure

Figure 2: Word alignment. Given a (romanized) Chinese
sentence and an English sentence, the task is to identify the
latent correspondence between Chinese and English words.

While MLE calculates the expected count of an event
with respect to the posterior distribution, MRE calculates
the difference between the expected count with respect to
the Q distribution and that with respect to the posterior
distribution. Since the difference can be negative, we use
the exponentiated gradient algorithm (Kivinen and Warmuth
1997) with adaptive learning rate (Bagos, Liakopoulos, and
Hamodrakas 2004) for estimating model parameters. The
expectations with respect to Q can also be exactly and ef-
ficiently calculated using dynamic programming algorithms
(see Appendix A).

IBM Translation Models for Unsupervised Word
Alignment
IBM translation models (Brown et al. 1993) provide a prin-
cipled mechanism for translating between natural languages.
The latent structure in IBM models is word alignment, which
identifies the correspondence between words in two lan-
guages. For example, Figure 2 shows a (romanized) Chi-
nese sentence “aobama zuotian fabiao le yanjiang” and an
English sentence “Obama made a speech yesterday”. IBM
models can be used to compute the latent correspondence
between Chinese and English words. Note that we follow
Ammar, Dyer, and Smith (2014) to treat the Chinese sen-
tence as observation and the English sentence as side infor-
mation.

More formally, let x = x1, . . . ,xn, . . . ,xN be a
foreign language sentence with N words and y =
y1, . . . ,ym, . . . ,yM be an English sentence with M words.
As Brown et al. (1993) restrict that each foreign word is
aligned to exactly one English word, an alignment is defined
as z = z1, . . . , zn, . . . , zN , where zn ∈ {0, 1, . . . ,M}. For
example, zn = m denotes that xn connects to ym. Note that
y0 is an empty cept. For example, in Figure 2, the Chinese
word “le” is aligned to an empty cept (i.e., unaligned graph-
ically).

In this work, we focus on IBM Model 2:

P (x|y;θ) =
∑
z

P (x, z|y;θ) (19)

=
∑
z

ε

N∏
n=1

p(zn|n,M,N)p(xn|yzn) (20)

where p(x|y) is translation probability, p(m′|n′,M ′, N ′)
is alignment probability, and ε is a small fixed number



for the length sub-model. These parameters are required to
be normalized: ∀y :

∑
x p(x|y) = 1 and ∀n′,M ′, N ′ :∑

m′ p(m′|n′,M ′, N ′) = 1.

Maximum Likelihood Estimation The partial derivatives
of logP (x|y) with respect to model parameters are
∂ logP (x|y;θ)

∂p(x|y)
=

1

p(x|y)
Ez|x,y;θ

[
N∑

n=1

δ(xn, x)δ(yzn , y)

]
(21)

∂ logP (x|y;θ)
∂p(m′|n′,M ′, N ′)

=

δ(M ′,M)δ(N ′, N)

p(m′|n′,M ′, N ′)
Ez|x,y;θ

[
N∑

n=1

δ(zn,m
′)δ(n, n′)

]
(22)

Please refer to (Brown et al. 1993) for details about cal-
culating the expectations.

Maximum Reconstruction Estimation Although both x
and y are observed, we are only interested in reconstructing
x because of the goal of machine translation: translating y
to x. The reconstruction probability is defined as

P (x|x,y;θ) =
∑
z

P (z|x,y;θ)P (x|z,y;θ) (23)

=

∑
z P (x, z|y;θ)P (x|z,y;θ)

P (x|y;θ)
(24)

where the probability of re-generating x given y and z is
given by

P (x|z,y;θ) =
N∏

n=1

p(xn|yzn
) (25)

Note that all terms in Eq. (24) are differentiable with respect
to model parameters.

The partial derivatives of logP (x|x,y;θ) with respect to
model parameters are

∂ logP (x|x,y;θ)
∂p(x|y)

=
1

p(x|y)

(
EQ

[ N∑
n=1

2δ(xn, x)δ(yzn , y)
]
−

Ez|x,y;θ

[ N∑
n=1

δ(xn, x)δ(yzn
, y)
])

(26)

∂ logP (x|x,y;θ)
∂p(m′|n′,M ′, N ′)

=
δ(M ′,M)δ(N ′, N)

p(m′|n′,M ′, N ′)
×(

EQ

[ N∑
n=1

δ(zn,m
′)δ(n, n′)

]
−

Ez|x,y;θ

[ N∑
n=1

δ(zn,m
′)δ(n, n′)

])
(27)

# state MLE MRE
accuracy VI accuracy VI

10 0.4054 3.0575 0.3881 2.9322
20 0.4804 3.1119 0.5203 2.8879
30 0.5341 3.0835 0.5653 2.8199
40 0.5817 3.1780 0.6191 2.9255
50 0.6108 3.2087 0.6739 2.7522

Table 1: Comparison of MLE and MRE on HMMs for un-
supervised part-of-speech induction. The evaluation metrics
are many-to-one accuracy (accuracy) and variation of infor-
mation (VI).

where the distribution Q is defined as

Q(x,y, z;θ) =
P (x, z|y;θ)P (x|z,y;θ)∑
z′ P (x, z′|y;θ)P (x|z′,y;θ)

(28)

Note that Eq. (28) is equivalent to

Q(x,y, z;θ) =
P (z|y;θ)P (x|z,y;θ)2∑
z′ P (z′|y;θ)P (x|z′,y;θ)2

(29)

The expectations with respect to Q can also be exactly
and efficiently calculated (see Appendix B).

Experiments
We evaluated our approach on two unsupervised NLP tasks:
part-of-speech induction and word alignment.

Evaluation on Part-of-Speech Induction
Setting We split the English Penn Treebank into two parts:
46K sentences for training and test and 1K sentences for
optimizing hyper-parameters of the exponentiated gradient
(EG) algorithm with adaptive learning rate. Each word is
manually labeled with a gold-standard part-of-speech tag.
We used two evaluation metrics: many-to-1 accuracy (John-
son 2007) and variation of information (VI) (Beal 2003).
The EM algorithm for maximum likelihood estimation runs
for 100 iterations and the EG algorithm with adaptive learn-
ing rate runs for 50 iterations with initialization of a basic
HMM (Ammar, Dyer, and Smith 2014). The number of hid-
den states in HMMs is set to 50, which is close to the size of
the POS tag set.

Comparison with MLE Table 1 shows the comparison
of MLE and MRE. With the increase of the number of
hidden states, the expressiveness of HMMs generally im-
proves accordingly. We find that MRE outperforms MLE
for 50-state HMMs in terms of both many-to-one accuracy
and VI, suggesting that our approach is capable of guiding
the HMMs to use latent structures to find intended correla-
tions in the data. The differences are statistically significant
(p < 0.01). On average, the reconstruction probability of
training examples using model parameters learned by MLE
(i.e., P (x|x; θ̂MLE)) is e−105. In contrast, the average recon-
struction probability by MRE (i.e., P (x|x; θ̂MRE)) is e−84.

Table 2 gives the results on training corpora with various
sizes. Generally, the accuracy improves with the increase of



# sent. MLE MRE
accuracy VI accuracy VI

10,000 0.5087 3.3471 0.5825 2.9018
20,000 0.5390 3.2387 0.5874 2.9217
30,000 0.5556 3.0764 0.6000 2.7904
40,000 0.5800 3.0117 0.6112 2.7403

Table 2: Effect of training corpus size.

MLE MRE
, 0.2077 said 0.4632

said 0.1514 says 0.0773
is 0.0371 reported 0.0326

says 0.0312 officials 0.0198
say 0.0307 announced 0.0195

: 0.0237 unit 0.0158
’s 0.0203 noted 0.0119

think 0.0169 gained 0.0106
added 0.0129 told 0.0102
was 0.0129 court 0.0101

Table 3: Example emission probabilities for the POS tag
“VBD” (verb past tense).

# state CRF Autoencoders MRE
accuracy VI accuracy VI

10 0.4059 2.7145 0.3881 2.9322
20 0.4657 2.7462 0.5203 2.8879
30 0.5479 2.9585 0.5653 2.8199
40 0.5377 3.1048 0.6191 2.9255
50 0.5662 2.8450 0.6739 2.7522

Table 4: Comparison between CRF Autoencoders and MRE
on unsupervised part-of-speech induction.

training corpus size for both MLE and MRE. The case for
VI is similar. We find that our approach outperforms MLE
consistently.

Table 3 shows example emission probabilities (e.g.,
p(x|z)) for the POS tag “VBD” (verb past tense). We fol-
low Johnson (2007) to deterministically map hidden states
to POS tags based on co-occurrence. As shown in Table 3,
we find that MLE is prone to learn common but irrelevant
correlations in the data (e.g., frequent words such as “,”, “:”,
and “is”). In contrast, MRE is capable of identifying “said”,
“reported”, “announced”, “noted”, “gained”, and “told” cor-
rectly, suggesting that MRE enables HMMs to better dis-
cover intended correlations in the data.

Comparison with CRF Autoencoders We also com-
pare our approach with CRF Autoencoders (Ammar, Dyer,
and Smith 2014), which also builds on an encoding-
reconstruction framework but allows for incorporating fea-
tures. A surprising finding is that CRF Autoencoders
achieves the highest accuracy with 50 states but obtains the
lowest VI with 10 states. Our approach achieves the best
accuracy and VI both with 50 states. While our approach
slightly lags behind CRF Autoencoders in terms of VI, the
improvements in terms of accuracy are statistically signifi-

criterion model C→ E E→ C

MLE Model 1 43.07 45.89
Model 2 40.28 42.38

MRE Model 1 41.90 45.39
Model 2 38.33 41.73

Table 5: Comparison between MLE and MRE on IBM trans-
lation models for unsupervised word alignment. The evalu-
ation metric is alignment error rate (AER).

MLE MRE
article 0.4932 article 0.5428

the 0.1924 articles 0.0995
says 0.0586 says 0.0624

points 0.0293 published 0.0497
an 0.0263 points 0.0349

Table 6: Example translation probabilities of the Chinese
word “wenzhang”.

cant (p < 0.01).

Evaluation on Word Alignment

Setting We used the FBIS corpus as the training corpus,
which contains 240K Chinese-English parallel sentences
with 6.9M Chinese words and 8.9M English words. We
used the TsinghuaAligner development and test sets (Liu
and Sun 2015), which both contain 450 sentence pairs with
gold-standard annotations. The evaluation metric is align-
ment error rate (AER) (Och and Ney 2003). Both MLE
and MRE use the following training scheme: 5 iterations for
IBM Model 1 and 5 iterations for IBM Model 2. As IBM
Model 1 is a simplified version of IBM Model 2, the param-
eters of Model 1 at iteration 5 are used to initialize Model 2.
We distinguish between two translation directions: Chinese-
to-English (C→ E) and English-to-Chinese (E→ C).

Comparison with MLE Table 5 shows the comparison
between MLE and MRE. We find that MRE outperforms
MLE for both translation directions. All the differences are
statistically significant (p < 0.01).

Table 6 shows example translation probabilities (i.e.,
p(x|y)) of the Chinese word “wenzhang” (i.e., “article”). We
find that MLE tends to identify frequent words such as “the”
and “an” as candidate translations while MRE finds more
relevant candidate translations. This finding further confirms
that MRE is more robust to common but irrelevant correla-
tions.

Comparison with CRF Autoencoders On the same
dataset, CRF Autoencoders achieve much lower AERs:
32.54 for C → E and 29.81 for E → C, respectively.
The reason is that CRF Autoencoders are a discriminative
latent-variable model capable of including more expressive
IBM Model 4 as features. In contrast, our approach focuses
on providing better training criterion for generative latent-



variable models such as IBM Model 2. 1 The training time
for CRF Autoencoders is about 15 days while it only takes
our approach 4 hours. Our generative models can also serve
as central features in CRF autoencoders.

Conclusion
We have presented maximum reconstruction estimation for
training generative latent-variable models such as hidden
Markov models and IBM translation models. In the future,
we plan to apply our approach to more generative latent-
variable models such as probabilistic context-free grammars
and explore the possibility of developing new training algo-
rithms that minimize reconstruction errors.

Calculating Expectations for MRE Training of
Hidden Markov Models

The expectations with respect to Q can also be exactly and effi-
ciently calculated using dynamic programming algorithms. For ex-
ample, consider the following expectation:

EQ

 N∑
n=2

δ(zn−1, z)δ(zn, z
′)


=

∑
z P (z;θ)P (x|z;θ)2

∑N
n=2 δ(zn−1, z)δ(zn, z

′)∑
z P (z;θ)P (x|z;θ)2 (30)

=

Ez;θ

[
P (x|z;θ)2

∑N
n=2 δ(zn−1, z)δ(zn, z

′)

]
Ez;θ

[
P (x|z;θ)2

] (31)

We re-define the forward probability αn(z) as

αn(z)

=

{
p(z)p(x1|z)2 if n = 1∑

z′ αn−1(z
′)p(z|z′)p(xn|z)2 otherwise

(32)

and the backward probability βn(z) as

βn(z)

=

{
1 if n = N∑

z′ p(z|z
′)p(xn+1|z′)2βn+1(z

′) otherwise

(33)

Therefore, the expectation in the denominator of Eq. (31) can be
re-written as

Ez;θ

[
P (x|z;θ)2

]

=
∑
z

p(z1)

N∏
n=2

p(zn|zn−1)

 N∏
n=1

p(xn|zn)

2

(34)

=
∑
z

αN (z) (35)

1Note that it is possible to apply our approach to IBM Model 4.
We leave this for future work.

and the expectation in the numerator of Eq. (31) can be re-written
as

Ez;θ

P (x|z;θ)2
N∑

n=2

δ(zn−1, z)δ(zn, z
′)


=
∑
z

p(z1)

N∏
n=2

p(zn|zn−1)

( N∏
n=1

p(xn|yn)

)2

×

N∑
n=2

δ(zn−1, z)δ(zn, z
′) (36)

=

N∑
n′=2

∑
z

p(z1)

N∏
n=2

p(zn|zn−1)

( N∏
n=1

p(xn|zn)
)2

×

δ(zn′−1, z)δ(zn′ , z′) (37)

=

N∑
n=2

αn−1(z)p(z
′|z)p(xn|z′)βn(z′) (38)

Similarly, other expectations with respect to the Q distribution
can also be calculated using forward and backward probabilities.

Calculating Expectations for MRE Training of
IBM Model 2

The expectations with respect to Q can also be exactly and effi-
ciently calculated. Consider the following expectation:

EQ

 N∑
n=1

δ(xn, x)δ(yzn , y)


=

∑
z P (x, z|y;θ)P (x|z,y;θ)

∑N
n=1 δ(xn, x)δ(yzn , y)∑

z P (x, z|y;θ)P (x|z,y;θ)
(39)

The denominator of Eq. (39) can be calculated as∑
z

P (x, z|y;θ)P (x|z,y;θ)

=
∑
z

ε

N∏
n=1

p(zn|n,M,N)p(xn|yzn)
2 (40)

= ε

N∏
n=1

M∑
z=0

p(z|n,M,N)p(xn|yz)
2 (41)

The numerator of Eq. (39) can be efficiently calculated as∑
z

P (x, z|y;θ)P (x|z,y;θ)
N∑

n=1

δ(xn, x)δ(yzn , y)

=
∑
z

ε

N∏
n=1

p(zn|n,M,N)p(xn|yzn)
2 ×

N∑
n=1

δ(xn, x)δ(yzn , y) (42)

=

N∑
n′=1

δ(xn′ , x)ε

N∏
n=1

M∑
z=0

p(z|n,M,N)p(xn|yz)
2 ×(

δ(n, n′)δ(yz, y) + 1− δ(n, n′)
)

(43)

Other expectations with respect to theQ distribution can also be
calculated similarly.
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