DIAG-NRE: A Neural Pattern Diagnosis Framework for Distantly Supervised Neural Relation Extraction

Shun Zheng¹ & Xu Han² & Yankai Lin² & Peilin Yu³ & Lu Chen¹ Ling Huang 1,4 & Zhiyuan Liu 2 & Wei Xu 1

- ¹ Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- ² Department of Computer Science and Technology, Tsinghua University, Beijing, China
- ³ Department of Computer Sciences, University of Wisconsin-Madison, Madison, USA
- ⁴ AHI Fintech Inc., Beijing, China

{zhengs14,hanxu17,linyk14,lchen17}@mails.tsinghua.edu.cn; peilin@cs.wisc.edu;

linghuang@fintec.ai; {liuzy, weixu}@tsinghua.edu.cn;

Code **Paper**

Motivation

Distant supervision (DS) [3] can generate training data for relation extraction automatically, but it may also introduce intolerable labeling noises, as Figure 1 shows.

Knowledge Base

Although the weak label fusion (WLF) paradigm [4] can leverage both DS and pattern-based labeling to produce denoised training labels, it requires human experts to write relation-specific patterns, which is both a high-skill and labor-intensive task.

Head Entity	ead Entity Relation				Dervision	λIJ	
Letizia Moratti	Milan	Birthplace		٧)	(DS)		
	Training D	ata for "Rirthala	oo" Pol	lation			
Training Data for "Birthplace" Relation							
	Sentence	DS Label	Ground Truth	Error Type			
Marjorie_Kellog	g was born in <i>Sai</i>	0	1	FN			
Mayor <i>Letizia_M</i>	1	0	FP				

Distant

Based on DS and WLF, we propose DIAG-NRE for distantly supervised neural relation extraction

Figure 1: Two types of error labels, false negatives (FN) and false positives (FP), caused by DS.

(NRE), which includes the following advantages:

- denoising noise labels with reduced human skill requirements by generating patterns automatically;
- enabling quick generalization to new relation types by only requiring a few human annotations;
- interpreting which patterns NRE models have learned;
- interpreting from what kinds of noises the target relation type suffers.

DIAG-NRE

As Figure 2 shows, DIAG-NRE contains two key stages: pattern extraction and pattern refinement.

Figure 2: An overview of DIAG-NRE.

Pattern Extraction. We build an agent to distill relation-specific patterns from pretrained NRE models by reinforcement learning (RL), where the reward design encourages to erase irrelevant tokens and preserve the raw target prediction simultaneously.

Pattern-induction Example										
Entities	PER				CITY					
Tokens	Joachim_Fest	was	born	in	Berlin					
Actions	0	1	0	0	0	1				
Pattern	ENTITY1:PER PAD{1,3} born in ENTITY2:CITY									

Figure 3: The RL-based pattern-extraction workflow and a typical pattern-induction example, where we induce a pattern for the Birthplace relation via a series of actions (0: retaining, 1: erasing).

Pattern Refinement. We build a pattern hierarchy to remove redundant ones and ask human experts to annotate a certain number of actively selected instances, which are matched by those most representative patterns. Based on human annotations, we can refine previously induced patterns and get high-quality ones for the WLF stage.

Figure 4: The human-in-the-loop pattern refinement workflow.

Experiments

To clearly show different noise behaviors for various relation types, we

- create an independent binary classification task for each relation type;
- measure the quality of different weak training labels by the testing performance of NRE models trained on them;
- utilize human-annotated labels for testing. Based on the above setup, we compare DIAG-NRE with three baselines:
- DS, the vanilla distant supervision strategy;
- Gold Label Mix [2], mixing DS-generated noise labels with high-quality human labels;
- *RLRE* [1], a latest algorithm that automatically

adjust DS-generated labels by RL.

Table 1: Dataset statistics.

|Peo./Place_Lived | $20.9\mathbf{k}$ | $3.8\mathbf{k}$

TID | Relation Abbreviation | Train | Test

5.3k 186

4.9k | 180

5.3k 20

44.6k 263

7.5k 84

6.7k 230

3.1**k** 16

1.9**k** 19

107k | 1.8k

15.3k 458

5.7k 1.3k

4.9k

5.6k

 R_0 | Bus./Company

 R_2 Loc./Capital

 R_3 | Loc./Contains

 R_5 | Loc./Neighbor.

 R_6 | Peo./National.

 R_8 | Peo./Birthplace

 R_9 | Peo./Deathplace

 R_9^u | Peo./Deathplace

Peo./National.

Peo./Birthplace

Peo./Place_Lived

Loc./Country

 $R_1 \mid \text{Loc./Admin._Div.}$

Specifically, we compare them on 14 relation types

of two public datasets, NYT and UW, whose statistics are summarized in Table 1.

Main Results

From Table 2, we can observe that DIAG-NRE achieves considerable improvements in most cases.

TID		DS		Gold	Labe	el Mix		RLRE	C			DIA	G-NRE	
TID	P.	R.	F1	P.	R.	F1	P.	R.	F1	P.	R.	F1	Inc-DS	Inc-Best
R_0	95.1	41.5	57.8	95.7	40.8	57.2	97.7	32.4	48.6	95.7	42.8	59.1	+1.4	+1.4
R_1	91.9	9.1	16.4	90.2	11.7	20.2	92.6	4.2	8.0	94.5	44.8	60.7	+44.3	+40.4
R_2	37.0	83.0	50.8	40.0	85.0	54.0	64.8	68.0	66.1	42.4	85.0	56.0	+5.2	-10.1
R_3	87.5	79.2	83.2	87.1	80.2	83.5	87.5	79.2	83.2	87.0	79.8	83.2	+0.0	-0.3
R_4	95.3	50.1	64.7	94.1	49.0	63.9	98.2	47.9	64.0	94.5	57.5	71.5	+6.7	+6.7
R_5	82.7	29.1	42.9	84.7	29.5	43.6	82.7	29.1	42.9	84.5	37.5	51.8	+8.9	+8.3
R_6	82.0	83.8	82.8	81.6	84.0	82.7	82.0	83.8	82.8	81.5	83.3	82.3	-0.5	-0.5
R_7	82.3	22.3	35.1	82.0	22.6	35.4	83.5	21.8	34.5	82.0	25.6	39.0	+3.8	+3.6
R_8	66.2	32.5	39.8	70.5	47.5	55.8	66.2	32.5	39.8	73.4	61.3	65.5	+25.7	+9.7
R_9	85.4	73.7	77.9	85.9	80.0	81.5	85.4	73.7	77.9	89.0	87.4	87.1	+9.2	+5.6
Avg.	80.5	50.4	55.1	81.2	53.0	57.8	84.1	47.3	54.8	82.5	60.5	65.6	+10.5	+6.5
R_6^u	35.9	75.7	48.7	35.8	75.0	48.5	36.0	75.3	48.7	36.2	74.5	48.7	+0.0	-0.0
R_7^u	57.8	18.5	28.0	59.3	19.1	28.8	57.8	18.5	28.0	56.3	23.5	33.1	+5.1	+4.3
R_8^u	37.3	64.0	46.9	40.0	64.9	49.1	37.3	64.0	46.9	48.1	71.9	57.5	+10.6	+8.3
R_9^u	77.1	71.3	74.0	77.5	70.3	73.5	77.1	71.3	74.0	80.7	71.1	75.4	+1.5	+1.5
Avg.	52.0	57.4	49.4	53.1	57.3	50.0	52.0	57.3	49.4	55.3	60.2	53.7	+4.3	+3.5

Table 2: Main experimental results

Case Studies

To intuitively explain how DIAG-NRE works, we show some typical cases in Table 3.

- For FN error labels, positive patterns can help to remedy the incompleteness of the knowledge base and encourage the learning of valuable patterns.
- For FP error labels, negative patterns can prevent the model from remembering such relationirrelevant but frequently occurred patterns.

TID	Patterns & Matched Examples	DS	RLRE	Ours
R_1	Pos: in ENTITY2:CITY PAD{1,3} ENTITY1:COUNTRY # DS/#P: 382 / 207 Example: He will, however, perform this month in <i>Rotterdam</i> , the <i>Netherlands</i> , and Prague.	72	None	0.81
R_8	Pos Entity1: PER PAD{1,3} born PAD{1,3} Entity2: City #DS/#P: Example: Marjorie_Kellogg was born in Santa_Barbara. Neg: mayor Entity1: PER PAD{1,3} Entity2: City #DS/#P: 21/62	44 / 3	82 0	1.0
	Example: Mayor Letizia_Moratti of Milan disdainfully dismissed it .	1	1	0.0
R_9^u	Pos: ENTITY1: PER died PAD{4,9} ENTITY2: CITY #DS/#P: 66 / 108 Example: Dahm died Thursday at an assisted living center in Huntsville Neg: ENTITY1: PER PAD{4,9} rally PAD{1,3} ENTITY2: CITY #DS/#	0 P: 40	0 0 / 87	1.0
	Example: Bhutto vowed to hold a rally in Rawalpindi on Friday	1	1	0.0

Table 3: We show five cases with positive (Pos) or negative (Neg) patterns, the number of DS-generated positive labels over the number of pattern-matched instances (#DS/#P), one pattern-matched example, and associated training labels produced by various methods.

Conclusion & Future Work

In summary, DIAG-NRE introduces a novel strategy to efficiently utilize human efforts for DS-based NRE. Therefore, it will be interesting to extend DIAG-NRE to other DS-related applications, such as event extraction and question answering.

References

- [1] Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xiaoyan Zhu. Reinforcement learning for relation classification from noisy data. In AAAI, 2018.
- [2] Angli Liu, Stephen Soderland, Jonathan Bragg, Christopher H Lin, Xiao Ling, and Daniel S Weld. Effective crowd annotation for relation extraction. In NAACL-HLT, 2016.
- [3] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extraction without labeled data. In ACL, 2009.
- [4] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data programming: creating large training sets, quickly. In NIPS, 2016.