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Abstract

Pattern-based labeling methods have achieved
promising results in alleviating the inevitable
labeling noises of distantly supervised neu-
ral relation extraction. However, these meth-
ods require significant expert labor to write
relation-specific patterns, which makes them
too sophisticated to generalize quickly. To
ease the labor-intensive workload of pattern
writing and enable the quick generalization to
new relation types, we propose a neural pat-
tern diagnosis framework, DIAG-NRE, that
can automatically summarize and refine high-
quality relational patterns from noise data with
human experts in the loop. To demonstrate
the effectiveness of DIAG-NRE, we apply it to
two real-world datasets and present both sig-
nificant and interpretable improvements over
state-of-the-art methods. Source codes and
data can be found at https://github.
com/thunlp/DIAG-NRE.

1 Introduction

Relation extraction aims to extract relational facts
from the plain text and can benefit downstream
knowledge-driven applications. A relational fact is
defined as a relation between a head entity and
a tail entity, e.g., (Letizia Moratti, Birthplace,
Milan). The conventional methods often regard
relation extraction as a supervised classification
task that predicts the relation type between two de-
tected entities mentioned in a sentence, including
both statistical models (Zelenko et al., 2003; Zhou
et al., 2005) and neural models (Zeng et al., 2014;
dos Santos et al., 2015).

These supervised models require a large number
of human-annotated data to train, which are both
expensive and time-consuming to collect. There-
fore, Craven et al. (1999); Mintz et al. (2009) pro-
posed distant supervision (DS) to automatically
generate large-scale training data for relation ex-
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Figure 1: Two types of error labels, false negatives
(FN) and false positives (FP), caused by DS.

traction, by aligning relational facts from a knowl-
edge base (KB) to plain text and assuming that
every sentence mentioning two entities can de-
scribe their relationships in the KB. As DS can ac-
quire large-scale data without human annotation,
it has been widely adopted by recent neural rela-
tion extraction (NRE) models (Zeng et al., 2015;
Lin et al., 2016).

Although DS is both simple and effective in
many cases, it inevitably introduces intolerable la-
beling noises. As Figure 1 shows, there are two
types of error labels, false negatives and false pos-
itives. The reason for false negatives is that a sen-
tence does describe two entities about a target re-
lation, but the fact has not been covered by the KB
yet. While for false positives, it is because not all
sentences mentioning entity pairs actually express
their relations in the KB. The noisy-labeling prob-
lem can become severe when the KB and text do
not match well and as a result heavily weaken the
model performance (Riedel et al., 2010).

Recent research has realized that introducing
appropriate human efforts is essential for reduc-
ing such labeling noises. For example, Zhang
et al. (2012); Pershina et al. (2014); Angeli et al.
(2014); Liu et al. (2016) mixed a small set of
crowd-annotated labels with purely DS-generated
noise labels. However, they found that only suf-
ficiently large and high-quality human labels can
bring notable improvements, because there are
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significantly larger number of noise labels.
To enlarge the impact of human efforts, Ratner

et al. (2016); Liu et al. (2017a) proposed to incor-
porate pattern-based labeling, where the key idea
was to regard both DS and pattern-based heuris-
tics as the weak supervision sources and develop
a weak-label-fusion (WLF) model to produce de-
noised labels. However, the major limitation of the
WLF paradigm lies in the requirement of human
experts to write relation-specific patterns. Un-
fortunately, writing good patterns is both a high-
skill and labor-intensive task that requires ex-
perts to learn detailed pattern-composing instruc-
tions, examine adequate examples, tune patterns
for different corner cases, etc. For example, the
spouse relation example of Ratner et al. (2016)
uses 11 functions with over 20 relation-specific
keywords1. Even worse, when generalizing to a
new relation type, we need to repeat the hard man-
ual operations mentioned above again.

To ease the pattern-writing work of human ex-
perts and enable the quick generalization to new
relation types, we propose a neural pattern diag-
nosis framework, DIAG-NRE, which establishes
a bridge between DS and WLF, for common NRE
models. The general workflow of DIAG-NRE, as
Figure 2 shows, contains two key stages: 1) pat-
tern extraction, extracting potential patterns from
NRE models by employing reinforcement learn-
ing (RL), and 2) pattern refinement, asking hu-
man experts to annotate a small set of actively se-
lected examples. Following these steps, we not
only minimize the workload and difficulty of hu-
man experts by generating patterns automatically,
but also enable the quick generalization by only re-
quiring a small number of human annotations. Af-
ter the processing of DIAG-NRE, we obtain high-
quality patterns that are either supportive or un-
supportive of the target relation with high proba-
bilities and can feed them into the WLF stage to
get denoised labels and retrain a better model. To
demonstrate the effectiveness of DIAG-NRE, we
conduct extensive experiments on two real-world
datasets, where DIAG-NRE not only achieves sig-
nificant improvements over state-of-the-art meth-
ods but also provides insightful diagnostic results
for different noise behaviors via refined patterns.

In summary, DIAG-NRE has the following con-
tributions:

1https://github.com/HazyResearch/
snorkel/tree/master/tutorials/intro
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Figure 2: An overview of DIAG-NRE.

• easing the pattern-writing work of human ex-
perts by generating patterns automatically;

• enabling the quick generalization to new re-
lation types by only requiring a small number
of human annotations;

• presenting both significant and interpretable
performance improvements as well as intu-
itive diagnostic analyses.

Particularly, for one relation with severe false neg-
ative noises, we improve the F1 score by about 40.
To the best of our knowledge, we are the first to ex-
plicitly reveal and address this severe noise prob-
lem for that dataset.

2 Related Work

To reduce labeling noises of DS, earlier work at-
tempted to design specific model architectures that
can better tolerate labeling noises, such as the
multi-instance learning paradigm (Riedel et al.,
2010; Hoffmann et al., 2011; Surdeanu et al.,
2012; Zeng et al., 2015; Lin et al., 2016; Wu et al.,
2017). These models relax the raw assumption of
DS by grouping multiple sentences that mention
the same entity pair together as a bag and then as-
suming that at least one sentence in this bag ex-
presses the relation. This weaker assumption can
alleviate the noisy-labeling problem to some ex-
tent, but this problem still exists at the bag level,
and Feng et al. (2018) discovered that bag-level
models struggled to do sentence-level predictions.

Later work tried to design a dynamic label-
adjustment strategy for training (Liu et al., 2017b;
Luo et al., 2017). Especially, the most recent
work (Feng et al., 2018; Qin et al., 2018) adopted
RL to train an agent that interacts with the NRE
model to learn how to remove or alter noise la-
bels. These methods work without human inter-
vention by utilizing the consistency and difference
between DS-generated labels and model-predicted
ones. However, such methods can neither discover
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noise labels that coincide with the model predic-
tions nor explain the reasons for removed or al-
tered labels. As discussed in the introduction, in-
troducing human efforts is a promising direction
to contribute both significant and interpretable im-
provements, which is also the focus of this paper.

As for the pattern-extraction part, we note that
there are some methods with similar insights but
different purposes. For example, Zhang et al.
(2018) improved the performance of the vanilla
LSTM (Hochreiter and Schmidhuber, 1997) by
utilizing RL to discover structured representations
and Li et al. (2016) interpreted the sentiment pre-
diction of neural models by employing RL to find
the decision-changing phrases. However, NRE
models are unique because we only care about
the semantic inter-entity relation mentioned in the
sentence. To the best of our knowledge, we are the
first to extract patterns from NRE models by RL.

We also note that the relational-pattern mining
has been extensively studied (Califf and Mooney,
1999; Carlson et al., 2010; Nakashole et al., 2012;
Jiang et al., 2017). Different from those studies,
our pattern-extraction method 1) is simply based
on RL, 2) does not rely on any lexical or syntac-
tic annotation, and 3) can be aware of the pattern
importance via the prediction of NRE models. Be-
sides, Takamatsu et al. (2012) inferred negative
syntactic patterns via the example-pattern-relation
co-occurrence and removed the false-positive la-
bels accordingly. In contrast, built upon modern
neural models, our method not only reduces neg-
ative patterns to alleviate false positives but also
reinforces positive patterns to address false nega-
tives at the same time.

3 Methodology

Provided with DS-generated data and NRE mod-
els trained on them, DIAG-NRE can generate
high-quality patterns for the WLF stage to produce
denoised labels. As Figure 2 shows, DIAG-NRE
contains two key stages in general: pattern extrac-
tion (Section 3.2) and pattern refinement (Section
3.3). Moreover, we briefly introduce the WLF
paradigm in Section 3.4 for completeness. Next,
we start with reviewing the common input-output
schema of modern NRE models.
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Figure 3: The RL-based pattern-extraction workflow
and a typical pattern-induction example, where we in-
duce a pattern for the Birthplace relation via a se-
ries of actions (0: retaining, 1: erasing).

3.1 NRE Models

Given an instance s with T tokens2, a com-
mon input representation of NRE models is x =
[x1,x2, · · · ,xT ], where xi ∈ Rdx denotes the
embedding of token i and dx is the token embed-
ding size. Particularly, xi is the concatenation of
the word embedding, wi ∈ Rdx , and position em-
bedding, pi ∈ Rdp , as [wi;pi], to be aware of
both semantics and entity positions, where dx =
dw + dp. Given the relation type r, NRE models
perform different types of tensor manipulations on
x and obtain the predicting probability of r given
the instance s as Pφ(r|x), where φ denotes model
parameters except for the input embedding tables.

3.2 Pattern Extraction

In this stage, we build a pattern-extraction agent
to distill relation-specific patterns from NRE mod-
els with the aforementioned input-output schema.
The basic idea is to erase irrelevant tokens and
preserve the raw target prediction simultaneously,
which can be modeled as a token-erasing decision
process and optimized by RL. Figure 3 shows this
RL-based workflow in a general way together with
an intuitive pattern-induction example. Next, we
elaborate details of this workflow.

Action. The agent takes an action ai, retaining
(0) or erasing (1), for each token of the instance
s and transforms the input representation from x
into x̂. During this process, the column i of x,

2In this paper, we refer to a sentence together with an en-
tity pair as an instance and omit the instance index for brevity.



xi = [wi;pi], corresponding to the token i of
raw instance s, is transformed into x̂i = [ŵi;pi],
where the position vectors are left untouched and
the new word vector ŵi is adjusted based on the
action taken by the agent. For the retaining action,
we retain the raw word vector as ŵi = wi. While
for erasing, we set ŵi to be all zeros to remove
the semantic meaning. After taking a sequence of
actions, a = [a1; a2; · · · ; aT ], we get the trans-
formed representation x̂ with T̂ tokens retained.

Reward. Our purpose is to find the most sim-
plified sequence that preserves the raw prediction
confidence. Therefore, given the raw input repre-
sentation x and the corresponding action vector a,
we define the reward as follows:

R(a|x) = log

(
Pφ(r|x̂)

Pφ(r|x)

)
︸ ︷︷ ︸
Prediction Confidence

+η · (1− T̂ /T )︸ ︷︷ ︸
Sparsity

,

where the total reward is composed of two parts:
one is the log-likelihood term to pursue the high
prediction confidence and the other is the sparse
ratio term to induce sparsity in terms of retained
tokens. We balance these two parts through a
hyper-parameter η.

State. To be general, the state provided to the
agent should be independent of NRE architectures.
Moreover, the state needs to incorporate complete
information of the current instance. Therefore, in
our design, the agent directly employs the input
representation x as the state.

Agent. We employ policy-based RL to train a
neural-network-based agent that can predict a se-
quence of actions for an instance to maximize
the reward. Our agent network directly esti-
mates πΘ(a|x) =

∏T
i=1 πΘ(ai|x) in a non-

autoregressive manner by calculating πΘ(ai|x) in
parallel, where Θ denotes the parameters of the
agent network. To enrich the contextual infor-
mation when deciding the action for each token,
we employ the forward and backward LSTM net-
works to encode x into h as
−→
h = [

−→
h 1,
−→
h 2, · · · ,

−→
h T ] = Forward-LSTM(x),

←−
h = [

←−
h 1,
←−
h 2, · · · ,

←−
h T ] = Backward-LSTM(x),

h = [h1, h2, · · · , hT ] = Concatenate(
−→
h ,
←−
h ),

where
−→
h i ∈ Rdh ,

←−
h i ∈ Rdh , hi = [

−→
h i;
←−
h i] ∈

R2×dh , and dh denotes the size of LSTM’s hid-
den state. Then, we employ an attention-based

strategy (Bahdanau et al., 2015) to aggregate the
contextual information as c = [c1, c2, · · · , cT ].
For each token i, we compute the context vector
ci ∈ R2dh as follows:

ci =
T∑
j=1

αijhj ,

where each scalar weight αij is calculated by
eij/(

∑T
k=1 e

i
k). Here eij is computed by a small

network as eij = v>α tanh(Wxxi + Whhj), where
Wx ∈ R2dh×dx , Wh ∈ R2dh×2dh and vα ∈
R2dh are network parameters. Next, we com-
pute the final representation to infer actions as
z = [z1, z2, · · · , zT ], where for each token i,
zi = [xi; ci] ∈ Rdx+2dh incorporates semantic,
positional and contextual information. Finally, we
estimate the probability of taking action ai for to-
ken i as

πΘ(ai|x) = oaii · (1− oi)
(1−ai),

where oi = sigmoid(W>o zi + bo), Wo ∈ Rdx+2dh

and bo ∈ R1 are network parameters.

Optimization. We employ the REINFORCE al-
gorithm (Williams, 1992) and policy gradient
methods (Sutton et al., 2000) to optimize param-
eters of the agent network, where the key step is
to rewrite the gradient formulation and then apply
the back-propagation algorithm (Rumelhart et al.,
1986) to update network parameters. Specifically,
we define our objective as:

L(Θ) = Es
[
EπΘ(a|x)R(a|x)

]
,

where x denotes the input representation of the in-
stance s. By taking the derivative of J(Θ) with re-
spect to Θ, we can obtain the gradient∇ΘL(Θ) as
Es[EπΘ(a|x)[R(a|x)∇Θ log πΘ(a|x)]]. Besides,
we utilize the ε-greedy trick to balance exploration
and exploitation.

Pattern Induction. Given instances and corre-
sponding agent actions, we take the following
steps to induce compact patterns. First, to be
general, we substitute raw entity pairs with corre-
sponding entity types. Then, we evaluate the agent
to obtain retained tokens with the relative distance
preserved. To enable the generalized position in-
dication, we divide the relative distance between
two adjacent retained tokens into four categories:
zero (no tokens between them), short (1-3 tokens),
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Figure 4: The human-in-the-loop pattern refinement.

medium (4-9 tokens) and long (10 or more tokens)
distance. For instance, Figure 3 shows a typical
pattern-induction example. Patterns with such for-
mats can incorporate multiple kinds of crucial in-
formation, such as entity types, key tokens and the
relative distance among them.

3.3 Pattern Refinement

The above pattern-extraction stage operates at the
instance level by producing a pattern for each eval-
uated instance. However, after aggregating avail-
able patterns at the dataset level, there inevitably
exist redundant ones. Therefore, we design a pat-
tern hierarchy to merge redundant patterns. Af-
terward, we can introduce human experts into the
workflow by asking them to annotate a small num-
ber of actively selected examples. Figure 4 shows
the general workflow of this stage.

Pattern Hierarchy. To identify redundant pat-
terns, we group multiple instances with the same
pattern and build a pattern hierarchy by the match-
ing statistics. In this hierarchy, the parent pat-
tern should cover all instances matched by the
child pattern. As the parent pattern already has
sufficient relation-supporting signals, we can omit
child patterns for human annotation. Moreover,
the number of instances from which the pattern
can be induced is closely related to the pattern rep-
resentativeness. Therefore, we follow the decreas-
ing order of this number to select top nr most rep-
resentative patterns for human annotation.

Human Annotation. To quantitatively evalu-
ate the pattern quality, we adopt an approximate
method by randomly selecting na pattern-matched
instances and annotating them manually. Thus, for
each relation type, we end up with nr ∗na human-
annotated instances. We assign patterns with the
accuracy higher than ph and lower than pl into the
positive pattern set and the negative pattern set, re-

spectively, to serve the WLF stage. In practice,
users can tune these hyper-parameters (nr, na, ph
and pl) accordingly for different applications, such
as increasing ph to prefer precision. While in this
paper, to show the wide applicability and robust-
ness of DIAG-NRE, we demonstrate that a single
configuration can handle all 14 relation types.

3.4 Weak Label Fusion

The WLF model aims to fuse weak labels from
multiple labeling sources, including both DS and
patterns, to produce denoised labels. In this paper,
we adopt data programming (DP) (Ratner et al.,
2016) at our WLF model. The input unit of DP is
called labeling function (LF), which takes one in-
stance and emits a label (+1: positive, -1: negative
or 0: unknown). In our case, the LF of DS gen-
erates +1 or -1, LFs of positive patterns generate
+1 or 0, and LFs of negative patterns generate -1
or 0. We estimate parameters of DP on the small
set of human-annotated labels with a closed-form
solution (see the appendix for detailed formula-
tions). With the help of DP, we get denoised la-
bels to retrain a better model. Note that designing
better generic WLF models is still a hot research
topic (Varma et al., 2016; Bach et al., 2017; Liu
et al., 2017a) but outside the scope of this work,
which is automatically generating patters to ease
human’s work.

4 Experiments

In this section, we present experimental results
and comprehensive analyses to demonstrate the ef-
fectiveness of DIAG-NRE.

4.1 Experimental Setup

Evaluation. To clearly show the different noise
behaviours for various relation types, we treat each
relation prediction task as a single binary classifi-
cation problem, that is predicting the existing or
not of that relation for a given instance. Different
from previous studies, we report relation-specific
metrics (Precision, Recall and F1 scores, all in the
percentage format) and macro-averaged ones at
the dataset level, because the distribution of rela-
tion types is extremely imbalanced and the micro-
averaged evaluation inevitably overlooks noisy-
labeling issues of many relation types. Moreover,
we only utilize human-annotated test data to eval-
uate models trained on noise labels, as Ratner et al.
(2016); Liu et al. (2016) did. The reason is that the



TID Relation Abbreviation Train Test

N
Y

T

R0 Bus./Company 5.3k 186
R1 Loc./Admin. Div. 4.9k 180
R2 Loc./Capital 5.3k 20
R3 Loc./Contains 44.6k 263
R4 Loc./Country 4.9k 89
R5 Loc./Neighbor. 5.6k 55
R6 Peo./National. 7.5k 84
R7 Peo./Place Lived 6.7k 230
R8 Peo./Birthplace 3.1k 16
R9 Peo./Deathplace 1.9k 19

U
W

Ru
6 Peo./National. 107k 1.8k

Ru
7 Peo./Place Lived 20.9k 3.8k

Ru
8 Peo./Birthplace 15.3k 458

Ru
9 Peo./Deathplace 5.7k 1.3k

Table 1: The total 14 relation prediction tasks with cor-
responding task IDs (TIDs), relation abbreviations and
the number of positive labels in the train and test sets.
The train set, generated by DS, contains 452, 223 and
395, 738 instances for NYT and UW, respectively. The
test set, annotated by the human, contains 1, 027 and
15, 622 instances for NYT and UW, respectively.

severe labeling noises of many relation types heav-
ily weaken the reliability of the DS-based held-
out evaluation (Mintz et al., 2009), which cannot
judge the performance accurately.

Data & Tasks. We select top ten relation types
with enough coverage (over 1, 000 instances) from
the NYT dataset (Riedel et al., 2010)3 and all
four relation types from the UW dataset (Liu
et al., 2016)4. Originally, the NYT dataset con-
tains a train set and a test set both generated by
DS with 522, 611 and 172, 448 instances, respec-
tively; the UW dataset contains a train set gener-
ated by DS, a crowd-annotated set and a minimal
human-annotated test set with 676, 882, 18, 128
and 164 instances, respectively. To enable the re-
liable evaluation based on human annotations, for
the NYT dataset, we randomly select up to 100
instances per relation (including the special un-
known relation NA) from the test set and manu-
ally annotate them; while for the UW dataset, we
directly utilize the crowd-annotated set (disjoint
from the train set) with the broad coverage and
very high quality as the ground truth. Table 1 sum-
maries detailed statistics of these 14 tasks.

Hyper-parameters. We implement DIAG-NRE
based on Pytorch5 and directly utilize its default

3http://iesl.cs.umass.edu/riedel/ecml/
4https://www.cs.washington.edu/ai/

gated_instructions/naacl_data.zip
5https://pytorch.org/

initialization for neural networks. For the NRE
model, we adopt a simple yet effective LSTM-
based architecture described in Zhou et al. (2016)
and adopt widely-used hyper-parameters (see the
appendix for details). As for DIAG-NRE, we
use the following configuration for all 14 tasks.
For the agent network, the LSTM hidden size is
200, the optimizer is Adam with a learning rate
of 0.001, the batch size is 5, and the training
epoch is 10. At the pattern-extraction stage, we
use ε = 0.1 and alter η in {0.05, 0.1, 0.5, 1.0, 1.5}
to train multiple agents that tend to squeeze pat-
terns with different granularities and combine out-
puts of all agents to serve the pattern-refinement
stage. To speed up the agent training, we use fil-
tered instances by taking the top 10, 000 ones with
the highest prediction probabilities. At the pattern-
refinement stage, hyper-parameters include nr =
20, na = 10, ph = 0.8 and pl = 0.1. Thus, for
each task, we get 200 human-annotated instances
(about 0.05% of the entire train set) and at most 20
patterns for the WLF stage.

4.2 Performance Comparisons
Based on the above hyper-parameters, DIAG-NRE
together with the WLF model can produce de-
noised labels to retrain a better NRE model. Next,
we present the overall performance comparisons
of NRE models trained with different labels.

Baselines. We adopt the following baselines:
1) Distant Supervision, the vanilla DS described
in Mintz et al. (2009), 2) Gold Label Mix (Liu
et al., 2016), mixing human-annotated high-
quality labels with DS-generated noise labels, and
3) RLRE (Feng et al., 2018), building an instance-
selection agent to select correct-labeled ones by
only interacting with NRE models trained on noise
labels. Specifically, for Gold Label Mix, we
use the same 200 labels obtained at the pattern-
refinement stage as the high-quality labels. To fo-
cus on the impact of training labels produced with
different methods, besides for fixing all hyper-
parameters exactly same, we run the NRE model
with five random seeds, ranging from 0 to 4, for
each case and present the averaged scores.

Overall Results. Table 2 shows the overall re-
sults with precision (P.), recall (R.) and F1 scores.
For a majority of tasks suffering large labeling
noises, including R1, R4, R5, R8, R9 and Ru8 , we
improve the F1 score by 5.0 over the best base-
line. Notably, the F1 improvement for task R1 has

http://iesl.cs.umass.edu/riedel/ecml/
https://www.cs.washington.edu/ai/gated_instructions/naacl_data.zip
https://www.cs.washington.edu/ai/gated_instructions/naacl_data.zip
https://pytorch.org/


TID Distant Supervision Gold Label Mix RLRE DIAG-NRE
P. R. F1 P. R. F1 P. R. F1 P. R. F1 Inc-DS Inc-Best

R0 95.1 41.5 57.8 95.7 40.8 57.2 97.7 32.4 48.6 95.7 42.8 59.1 +1.4 +1.4
R1 91.9 9.1 16.4 90.2 11.7 20.2 92.6 4.2 8.0 94.5 44.8 60.7 +44.3 +40.4
R2 37.0 83.0 50.8 40.0 85.0 54.0 64.8 68.0 66.1 42.4 85.0 56.0 +5.2 -10.1
R3 87.5 79.2 83.2 87.1 80.2 83.5 87.5 79.2 83.2 87.0 79.8 83.2 +0.0 -0.3
R4 95.3 50.1 64.7 94.1 49.0 63.9 98.2 47.9 64.0 94.5 57.5 71.5 +6.7 +6.7
R5 82.7 29.1 42.9 84.7 29.5 43.6 82.7 29.1 42.9 84.5 37.5 51.8 +8.9 +8.3
R6 82.0 83.8 82.8 81.6 84.0 82.7 82.0 83.8 82.8 81.5 83.3 82.3 -0.5 -0.5
R7 82.3 22.3 35.1 82.0 22.6 35.4 83.5 21.8 34.5 82.0 25.6 39.0 +3.8 +3.6
R8 66.2 32.5 39.8 70.5 47.5 55.8 66.2 32.5 39.8 73.4 61.3 65.5 +25.7 +9.7
R9 85.4 73.7 77.9 85.9 80.0 81.5 85.4 73.7 77.9 89.0 87.4 87.1 +9.2 +5.6

Avg. 80.5 50.4 55.1 81.2 53.0 57.8 84.1 47.3 54.8 82.5 60.5 65.6 +10.5 +6.5

Ru
6 35.9 75.7 48.7 35.8 75.0 48.5 36.0 75.3 48.7 36.2 74.5 48.7 +0.0 -0.0

Ru
7 57.8 18.5 28.0 59.3 19.1 28.8 57.8 18.5 28.0 56.3 23.5 33.1 +5.1 +4.3

Ru
8 37.3 64.0 46.9 40.0 64.9 49.1 37.3 64.0 46.9 48.1 71.9 57.5 +10.6 +8.3

Ru
9 77.1 71.3 74.0 77.5 70.3 73.5 77.1 71.3 74.0 80.7 71.1 75.4 +1.5 +1.5

Avg. 52.0 57.4 49.4 53.1 57.3 50.0 52.0 57.3 49.4 55.3 60.2 53.7 +4.3 +3.5

Table 2: Overall results for 14 tasks, where we present relation-specific scores, the macro-averaged ones (Avg.),
the F1 improvement of DIAG-NRE over the vanilla DS (Inc-DS) and the best baseline (Inc-Best), and we highlight
the best F1 for each task and the significant improvements.

TID Prec. Recall Acc. #Pos. #Neg.

R0 100.0 81.8 82.0 20 0
R1 93.9 33.5 36.2 18 0
R2 75.7 88.0 76.5 9 5
R3 100.0 91.4 92.0 20 0
R4 93.3 72.4 80.9 10 2
R5 93.8 77.3 86.5 15 0
R6 88.3 76.9 75.1 14 0
R7 91.9 64.6 64.0 20 0
R8 29.3 30.4 60.0 4 10
R9 66.7 38.1 74.4 6 11
Ru

6 81.8 90.7 81.0 7 0
Ru

7 93.5 70.7 68.3 17 1
Ru

8 35.0 70.0 60.0 4 15
Ru

9 87.5 59.2 67.7 12 5

Table 3: Total diagnostic results, where columns con-
tain the precision, recall and accuracy of DS-generated
labels evaluated on 200 human-annotated labels as well
as the number of positive and negative patterns pre-
served after the pattern-refinement stage, and we un-
derline some cases in which DS performs poorly.

reached 40. For some tasks with fewer noises, in-
cluding R0, R7, Ru7 and Ru9 , our method can ob-
tain small improvements. For a few tasks, such
as R3, R6 and Ru6 , only using DS is sufficient to
train competitive models. In such cases, fusing
other weak labels may have negative effects, but
these side effects are small. The detailed reasons
for these improvements will be elaborated together
with the diagnostic results in Section 4.3. An-
other interesting observation is that RLRE yields
the best result on tasks R2 and Ru6 but gets worse
results than the vanilla DS on tasks R0, R1, R4

and R7. Since the instance selector used in RLRE
is difficult to be interpreted, we can hardly figure
out the specific reason. We conjecture that this be-
havior is due to the gap between maximizing the
likelihood of the NRE model and the ground-truth
instance selection. In contrast, DIAG-NRE can
contribute both stable and interpretable improve-
ments with the help of human-readable patterns.

4.3 Pattern-based Diagnostic Results

Besides for improving the extraction performance,
DIAG-NRE can interpret different noise effects
caused by DS via refined patterns, as Table 3
shows. Next, we elaborate these diagnostic results
and the corresponding performance degradation of
NRE models from two perspectives: false nega-
tives (FN) and false positives (FP).

FN. A typical example of FN is task R1

(Administrative Division), where the
precision of DS-generated labels is fairly good but
the recall is too low. The underlying reason is
that the relational facts stored in the KB cover too
few real facts actually contained by the corpus.
This low-recall issue introduces too many neg-
ative instances with common relation-supporting
patterns and thus confuses the NRE model in cap-
turing correct features. This issue also explains
results of R1 in Table 2 that the NRE model
trained on DS-generated data achieves high pre-
cision but low recall, while DIAG-NRE with rein-
forced positive patterns can obtain significant im-



TID Patterns & Matched Examples DS RLRE DIAG-NRE

R1

Pos. Pattern: in ENTITY2:CITY PAD{1,3} ENTITY1:COUNTRY (DS Label: 382 / 2072)
Example: He will , however , perform this month in Rotterdam , the
Netherlands , and Prague . 0 None 0.81

R8

Pos. Pattern: ENTITY1:PER PAD{1,3} born PAD{1,3} ENTITY2:CITY (DS Label: 44 / 82)
Example: Marjorie Kellogg was born in Santa Barbara . 0 0 1.0
Neg. Pattern: mayor ENTITY1:PER PAD{1,3} ENTITY2:CITY (DS Label: 21 / 62)
Example: Mayor Letizia Moratti of Milan disdainfully dismissed it . 1 1 0.0

Ru
9

Pos. Pattern: ENTITY1:PER died PAD{4,9} ENTITY2:CITY (DS Label: 66 / 108)
Example: Dahm died Thursday at an assisted living center in Huntsville ... 0 0 1.0
Neg. Pattern: ENTITY1:PER PAD{4,9} rally PAD{1,3} ENTITY2:CITY (DS Label: 40 / 87)
Example: Bhutto vowed to hold a rally in Rawalpindi on Friday ... 1 1 0.0

Table 4: Positive (Pos.), negative (Neg.) patterns and associated examples with labels produced by different
methods. For each pattern, we present “DS Label” as the number of DS-generated positive labels over the number
of pattern-matched instances. For RLRE, None means the instance is removed. For DIAG-NRE, we present the
soft label produced by the WLF model.

provements due to much higher recall. For tasks
R8 (Birthplace) and R9 (Deathplace), we
observe the similar low-recall issues

FP. The FP errors are mainly caused by the as-
sumption of DS described in the introduction. For
example, the precision of DS-generated labels for
tasks R8 and Ru8 is too low. This low precision
means that a large portion of DS-generated posi-
tive labels do not indicate the target relation. Thus,
this issue inevitably causes the NRE model to ab-
sorb some irrelevant patterns. This explanation
also corresponds to the fact that we have obtained
some negative patterns. By reducing labels with
FP errors through negative patterns, DIAG-NRE
can achieve large precision improvements.

For other tasks, DS-generated labels are rela-
tively good, but the noise issue still exists, major
or minor, except for task R3 (Contains), where
labels automatically generated by DS are incred-
ibly accurate. We conjecture the reason for such
high-quality labeling is that for task R3, the DS
assumption is consistent with the written language
convention: when mentioning two locations with
the containing relation in one sentence, people get
used to declaring this relation explicitly.

4.4 Incremental Diagnosis
In addition to the performance comparisons based
on 200 human-annotated instances, we show the
incremental diagnosis ability of DIAG-NRE by
gradually increasing the number of human anno-
tations from 10 to 200. As Figure 5 shows, where
we pick those tasks (three from NYT and two from
UW) suffering large labeling noises, most tasks
experience a rapid improvement phase with the
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Figure 5: The F1 improvements of DIAG-NRE over
DS with the increased number of human annotations.

help of high-quality patterns automatically gen-
erated by DIAG-NRE and then enter a saturate
phase where adding annotations does not con-
tribute much. This saturation accords with the in-
tuition that high-quality relational patterns are of-
ten limited. The only exception is task R9 that
drops first and then increases again, the reason
is that the fully automatic pattern refinement of
DIAG-NRE produces one incorrect pattern acci-
dentally, while later patterns alleviate this mistake.
Actually, in practice, users can further curate pat-
terns generated by DIAG-NRE to get even better
results, which can also be much easier and quicker
than writing patterns from scratch.

4.5 Case Studies

Table 4 shows five pattern examples from three
tasks. For task R1, the positive pattern can rem-
edy the extremely low coverage caused by DS. For
tasks R8 and Ru9 , besides for the help of the posi-
tive pattern, the negative pattern can correct many



FP labels caused by DS. These cases intuitively il-
lustrate the ability of DIAG-NRE to diagnose and
denoise DS-generated labels.

5 Conclusion and Future Work

In this paper, we propose a neural pattern diag-
nosis framework, DIAG-NRE, to diagnose and
improve NRE models trained on DS-generated
data. DIAG-NRE not only eases the hard pattern-
writing work of human experts by generating pat-
terns automatically, but also enables the quick gen-
eralization to new relation types by only requiring
a small number of human annotations. Coupled
with the WLF model, DIAG-NRE can produce de-
noised labels to retrain a better NRE model. Ex-
tensive experiments with comprehensive analyses
demonstrate that DIAG-NRE can contribute both
significant and interpretable improvements.

For the future work, we plan to extend DIAG-
NRE to other DS-based applications, such as ques-
tion answering (Lin et al., 2018), event extrac-
tion (Chen et al., 2017), etc.
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A Appendices

In the appendices, we introduce formulation de-
tails of the weak-label-fusion (WLF) model and
the hyper-parameters for our neural relation ex-
traction (NRE) model.

A.1 Weak Label Fusion

As mentioned in the main body, we employ the
data programming (DP) (Ratner et al., 2016) as
our WLF model. DP proposed an abstraction of
the weak label generator, named as the labeling
function (LF), which can incorporate both DS and
pattern-based heuristics. Typically, for a binary
classification task, an LF is supposed to produce
one label (+1: positive, -1: negative or 0: un-
known) for each input instance. In our case, the LF
of DS generates +1 or -1, LFs of positive patterns
generate +1 or 0, and LFs of negative patterns gen-
erate -1 or 0.

Given m labeling functions, we can write the
joint probability of weak labels Ls and the true la-
bel Y s ∈ {−1,+1} for instance s, Pα,β(Ls, Y s),
as

1

2

m∏
i=1

(βiαi1{Ls
i=Y s} + βi(1− αi)1{Ls

i=−Y s}

+ (1− βi)1{Ls
i=0}),

where each Lsi ∈ {−1, 0,+1} denotes the weak
label generated for instance s by the ith labeling
function, and α and β are model parameters to be
estimated.

Originally, Ratner et al. (2016) conducted the
unsupervised parameter estimation based on unla-
beled data by solving

max
α,β

∑
s∈S

log

(∑
Y s

Pα,β (Ls, Y s))

)
.

Different from the general DP that treats each
LF with the equal prior, we have strong priors that
patterns produced by DIAG-NRE are either sup-
portive or unsupportive of the target relation with
high probabilities. Therefore, in our case, we di-
rectly employ the small labeled set SL obtained at
the pattern-refinement stage to estimate (α,β) by
solving

max
α,β

∑
s∈SL

logPα,β(Ls, Y s),

where the closed-form solutions are

αi =

∑
s∈SL

1{Ls
i=Y s}∑

s∈SL

[
1{Ls

i=Y s} + 1{Ls
i=−Y s}

] ,
βi =

∑
s∈SL

[
1{Ls

i=Y s} + 1{Ls
i=−Y s}

]
|SL|

,

for each i ∈ {1, · · · ,m}. After estimating these
parameters, we can infer the true label distribu-
tion by the posterior Pα,β(Y s|Ls) and use the de-
noised soft label to train a better NRE model, just
as Ratner et al. (2016) did.

A.2 Hyper-parameters of the NRE model
For the NRE model, we implement a simple
yet effective LSTM-based architecture described
in (Zhou et al., 2016). We conduct the hyper-
parameter search via cross-validation and adopt
the following configurations that can produce
pretty good results for all 14 tasks. First, the
word embedding table (dw = 100) is initialized
with Glove vectors (Pennington et al., 2014), the
size of the position vector (dp) is 5, the maxi-
mum length of the encoded relative distance is
60, and we follow (Zeng et al., 2015; Lin et al.,
2016) to randomly initialize these position vec-
tors. Besides, the LSTM hidden size is 200, and
the dropout probabilities at the embedding layer,
the LSTM layer and the last layer are 0.3, 0.3 and
0.5, respectively. During training, we employ the
Adam (Kingma and Ba, 2014) optimizer with the
learning rate of 0.001 and the batch size of 50.
Moreover, we select the best epoch according to
the score on the validation set.

Notably, we observe that when training on data
with large labeling noises, different parameter ini-
tializations can heavily influence the extraction
performance of trained models. Therefore, as
mentioned in the main body, to clearly and fairly
show the actual impact of different types of train-
ing labels, we restart the training of NRE models
with 5 random seeds, ranging from 0 to 4, for each
case and report the averaged scores.


