
Scalable Kernel TCP Design and
Implementation for Short-Lived Connections

Xiaofeng Lin
Sina Corporation, ZHIHU

Corporation
jerrylin.lxf@gmail.com

Yu Chen
Department of Computer Science

and Technology, Tsinghua University
yuchen@mail.tsinghua.edu.cn

Xiaodong Li
Sina Corporation

xiaodong2@staff.sina.com.cn

Junjie Mao Jiaquan He Wei Xu Yuanchun Shi
Department of Computer Science and Technology, Tsinghua University

maojj12@mails.tsinghua.edu.cn, objectkuan@gmail.com, weixu@tsinghua.edu.cn, shiyc@tsinghua.edu.cn

Abstract
With the rapid growth of network bandwidth, increases in
CPU cores on a single machine, and application API models
demanding more short-lived connections, a scalable TCP
stack is performance-critical.

Although many clean-state designs have been proposed,
production environments still call for a bottom-up parallel
TCP stack design that is backward-compatible with existing
applications.

We present Fastsocket, a BSD Socket-compatible and
scalable kernel socket design, which achieves table-level
connection partition in TCP stack and guarantees connection
locality for both passive and active connections. Fastsocket
architecture is a ground up partition design, from NIC inter-
rupts all the way up to applications, which naturally elim-
inates various lock contentions in the entire stack. More-
over, Fastsocket maintains the full functionality of the kernel
TCP stack and BSD-socket-compatible API, and thus appli-
cations need no modifications.

Our evaluations show that Fastsocket achieves a speedup
of 20.4x on a 24-core machine under a workload of short-
lived connections, outperforming the state-of-the-art Linux
kernel TCP implementations. When scaling up to 24 CPU
cores, Fastsocket increases the throughput of Nginx and
HAProxy by 267% and 621% respectively compared with
the base Linux kernel. We also demonstrate that Fastsocket
can achieve scalability and preserve BSD socket API at the

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright c⃝ 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872391

same time. Fastsocket is already deployed in the production
environment of Sina WeiBo, serving 50 million daily active
users and billions of requests per day.

Categories and Subject Descriptors D.4.4 [Operating Sys-
tems]: Communications Management—Network communi-
cation

Keywords TCP/IP; multicore system; operating system

1. Introduction
Recent years have witnessed a rapid growth of mobile de-
vices and apps. These new mobile apps generate a large
amount of the traffic consisting of short-lived TCP connec-
tions [39]. HTTP is a typical source of short-lived TCP con-
nections. For example, in Sina WeiBo, the typical request
length of one heavily invoked HTTP interface is around
600 bytes and the corresponding response length is typically
about 1200 bytes. Both the request and the response only
consume one single IP packet. After the two-packet data
transaction is done, the connection is closed, which closely
matches the characteristics of short-lived connection. In this
situation, the speed of establishment and termination of TCP
connections becomes crucial for server performance.

As the number of CPU cores in one machine increases,
the scalability of the network stack plays a key role in the
performance of the network applications on multi-core plat-
forms. For long-lived connections, the metadata manage-
ment for new connections is not frequent enough to cause
significant contentions. Thus we do not observe scalabil-
ity issues of the TCP stack in these cases. However, it is
challenging to reach the same level of scalability for short-
lived connections as that of long-lived connections, since it
involves frequent and expensive TCP connection establish-
ment and termination, which result in severe shared resource

339

contentions in the TCP Control Block (TCB) and Virtual File
System (VFS).

TCB Management The TCP connection establishment
and termination operations involve managing the global
TCBs which are represented as TCP sockets in the Linux
kernel. All these sockets are managed in two global hash
tables, known as the listen table and the established table.
Since these two tables are shared system-wide, synchroniza-
tion are inevitable among the CPU cores.

In addition, the TCB of a connection is accessed and
updated in two phases:

1. Incoming packets of the connection are received in the
interrupt context through network stack on the CPU core
that receives the NIC (Network Interface Controller) in-
terrupt.

2. Further processing of incoming packets payload in user-
level application and transmission of the outgoing pack-
ets are accomplished on the CPU core running the corre-
sponding application.

It is ideal that for a given connection, both phases are
handled entirely on one CPU core, which maximizes CPU
cache efficiency. We refer to this property as connection lo-
cality. Unfortunately, in the current Linux TCP stack, these
two phases often run on different CPU cores, which seri-
ously affects scalability.

VFS Abstraction A socket is abstracted by VFS and
exposed to user-level applications as a socket File Descriptor
(FD). As a result, the performance of opening and closing a
socket FD in VFS has a direct impact on the efficiency of the
TCP connection establishment and termination. However,
there are severe synchronization overheads in processing
VFS shared states, e.g., inode and dentry, which results
in scalability bottlenecks.

Serious lock contention are observed on an 8-core pro-
duction server running HAProxy as an HTTP load balancer
for WeiBo to distribute client traffic to multiple servers.
From profiling data collected by perf, we observed that
spin lock consumes 9% and 11% of total CPU cycles in
TCB management and VFS respectively. Even worse, due
to contention inside the network stack processing, there is a
clear load imbalance across all CPU cores, though packets
are evenly distributed to these CPU cores by NIC.

Production Environment Requirements In production
environment, such as data center, the network server/proxy
applications have three fundamental requirements:

1. Compatibility of TCP/IP related RFC: Different applica-
tions follow different TCP/IP related RFCs. As a result,
the TCP/IP implementation in production environment
also need to support commonly accepted RFCs as far as
possible.

2. Security: TCP may be attacked in a variety of ways(DDoS,
Connection hijacking, etc.). These attacks result of a thor-
ough security protection of TCP [13] in OS kernel.

3. Resource Isolation and Sharing: TCP/IP stack needs to
support diverse existed NIC hardware resources, and
should isolated or share data with other name space or
sub-systems (disks, file systems, etc.)

Extensive researches [12, 21, 22, 27, 30, 38] are focused
on system support for enabling network-intensive applica-
tions to achieve performance close to the limits imposed by
the hardware. Some work proposes a brand new I/O abstrac-
tion to make the TCP stack scalable [21]. However, applica-
tions have to be rewritten with the new API. Recent research
projects [12, 22, 30] attempt to solve the TCP stack scal-
ability problem using modified embedded TCP stack lwIP
[26] or custom-built user-level TCP stack from the ground
up. Though these design can improve the performance of
network stack, it does not fully replicate all kernel’s ad-
vanced networking features (Firewall/Netfilter, TCP veto,
IPsec NAT and other vulnerabilities defenses for security,
TCP optimizations for wireless net, cgroup/sendfile/splice
mechanism for resource isolating or sharing, etc.) which are
heavily utilized by our performance-critical applications.

Therefore, currently it remains an open challenge to com-
pletely solve the TCP stack scalability problem while keep-
ing backward compatibility and full features to benefit exist-
ing network applications in the production environment.

In this paper, we present Fastsocket to address the afore-
mentioned scalability and compatibility problems in a back-
ward compatible, incrementally deployable and maintain-
able way. This is achieved with three major changes: 1)
partition the globally shared data structures, the listen table
and established table; 2) correctly steer incoming packets to
achieve connection locality for any connection; and 3) pro-
vide a fast path for socket in VFS to solve scalability prob-
lems in VFS and wrap the aforementioned TCP designs to
fully preserve BSD socket API.

In the production environment, with Fastsocket, the con-
tention in TCB management and VFS is eliminated and the
effective capacity of HAProxy server is increased by 53.5%.
Our experimental evaluations show that in short-lived con-
nection benchmark of web servers and proxy servers han-
dling short-lived connections, Fastsocket outperforms base
Linux kernel by 267% and 621% respectively.

This paper makes three key contributions:

1. We introduce a kernel network stack design which achieves
table-level partition for TCB management and realizes
connection locality for arbitrary connection types. Our
partition scheme is complete and naturally solves all po-
tential contentions along the network processing path, in-
cluding the contentions we do not directly address such
as timer lock contention.

2. We demonstrate that BSD socket API does not have to
be an obstacle in network stack scalability for commod-
ity hardware configuration. The evaluation using real-
world applications and benchmarks shows throughput

340

with Fastsocket can scale up to 20.4x on a 24-core ma-
chine with 10G NIC, using the BSD socket API. The re-
sults suggest that there is no scalability reasons to give
up the BSD socket API. Moreover, this compatibility en-
sures that existing network applications do not need mod-
ifications to use Fastsocket.

3. We demonstrate that with moderate modifications in ker-
nel, we can build a highly scalable kernel network stack.
By integrating into the kernel framework, our design
can preserve robustness and all features of kernel net-
work stack, which makes it a practical scheme for pro-
duction environment deployment. Fastsocket follows this
idea and has been massively deployed in the Sina WeiBo
production environment.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the challenges in scaling TCP stack
while being backward compatible in more detail. We de-
scribe the Fastsocket design in Section 3. Section 4 evaluates
Fastsocket in the production environment and with several
benchmarks as well. Section 5 presents related work and we
conclude in Section 6.

2. Challenges
In this section, we focus on the scalability bottlenecks: TCB
management and VFS abstraction. We analyze the challenge
to completely solve these bottlenecks and parallelize TCP
stack while keeping backward compatibility.

2.1 Bottleneck in TCB Management
Management of global TCBs is a major scalability bottle-
neck for the TCP stack on multi-core platforms. Due to
mutual exclusion requirement when operating these global
TCBs, locks are widely used, leading to potential lock con-
tentions when multiple CPU cores need to update the TCBs
(represented as sockets in Linux) concurrently.

Global Listen Table
While establishing passive connections with concurrent
clients requesting the same service port, a global listen
socket is used to set up connections on all CPU cores, which
is a major scalability bottleneck.

Both Linux SO REUSEPORT [23] and Megapipe [21] ad-
dress this scalability problem using socket-level partition.
For example, in SO REUSEPORT, each application process
creates a private copy of the original listen socket and these
copies are linked into a single bucket list in the listen ta-
ble. When handling new connections, kernel traverses the
list and randomly selects a listen socket copy from all others
in NET RX SoftIRQ . Application processes accept new con-
nections from its own listen socket copy only. As a result,
they can remove the global listen socket bottleneck based
on this socket-level partition. However, this solution hits an-
other scalability problem. Though in NET RX SoftIRQ ker-
nel can use multiple listen sockets to avoid intensive con-

tention, it has to traverse the bucket list to choose a listen
socket for any connection request. In this case, the com-
plexity of finding a listen socket is O(n), where n is number
of CPU core in the server. Therefore, when the number of
CPU cores increases, the cost of matching a listen socket be-
comes serious enough to be a bottleneck. Our benchmarks
with SO REUSEPORT show that the function that matches a
listen socket, inet lookup listener(), consumes only
0.26% CPU cycles on a single core machine, but the over-
head soars to an average of 24.2% per-core with 24 CPU
cores.

Although Megapipe has a different implementation, it
uses the same socket-level partitioning design as SO REUSEPORT

and suffers from the same problem.
It may be worth attempting to use a naive table-level par-

tition scheme, in which each CPU core has its own local lis-
ten table containing the copied listen socket to avoid search-
ing the bucket list with a O(n) complexity. However, this par-
tition breaks the TCP stack. For example, if one process in
the application crashes, the operating system will destroy the
copied listen socket created by the process. In this case, there
is no copied listen socket in the local listen table of that cer-
tain CPU core. When a SYN packet is delivered to the CPU
core, it cannot match any listen socket in the local socket ta-
ble and the connection request from client would be rejected
with a RST packet, even if other application processes (on
other CPU cores) are available to handle the client connec-
tion, which breaks the TCP robustness.

Global Established Table
A new socket is created and added into the established table
to represent an established connection for both passive and
active connections. Linux currently adopts per-bucket locks
to synchronize concurrent modifications to the established
table shared by multiple CPU cores. This locking granularity
works fine on a 8-core machine serving hundreds of concur-
rent connections. However, the global design of established
table will inevitably lead to considerable lock contentions
when both the CPU cores and concurrent connections in a
single server grow rapidly. Therefore, lock granularity re-
finement is just an optimization but not a thorough solution
to the scalability problem.

Naive partition of the global established table into per-
core local tables does not work, because there is no guaran-
tee that in NET RX SoftIRQ any incoming packet is always
processed on the same CPU core that has the corresponding
socket in the local established table. As a result, it is possible
that the socket is created by one CPU core and inserted into
the local table of the CPU core while a subsequent packets
of the connection arrives on the other CPU core. In this con-
dition, the packet would be rejected and the TCP connection
breaks with this naive partition design.

Through the above analysis, it is still challenging to real-
ize a full partition of TCB management, that is when man-

341

aging any socket, no lock is ever contended and the cost is
constant regardless of number of CPU cores.

2.2 Lack of Connection Locality
Incoming and outgoing packets in a single connection can
be handled by two different CPU cores, which causes CPU
cache bouncing and performance degradation. Therefore,
for maximum scalability, it is desirable to achieve complete
connection locality, i.e., all activities for a given connection
are always handled on the same CPU core, including both
passive and active connections.

It is worth noting that complete connection locality is not
only a performance optimization, but also the key prerequi-
site to partition the established table, as we discussed in the
previous section. If we can ensure a connection is always
handled on the same CPU core, we naturally solve the estab-
lished table partition problem.

The completeness is the real challenge, which has not
been solved by various optimizations to improve connection
locality in a best-effort way that only provide a probabilistic
guarantee.

For passive connections, Affinity-Accept [29] and Megapipe
[21] achieves connection locality by making the application
accept new connections on the CPU core where the applica-
tion is running. Unfortunately, this design does not apply to
active connections that are heavily used in proxy and RPC
(Remote Procedure Call) applications. This is because ac-
tive connections are initiated in the applications which has
no control over selection of the CPU core the connection
will be processed later in NET RX SoftIRQ .

To improve connection locality, RFS (Receive Flow De-
liver) was introduced into Linux [6, 7]. RFS introduces a
table to track connections in the system. In the table, RFS
records on which CPU core each connection is processed in
application and delivers incoming packets according to the
table. However, managing the table introduces considerable
overhead and complete connection locality cannot be guar-
anteed due to the table size limit.

Modern NIC provides advanced features such as FDir
(Flow Director) [9] to deliver incoming packets intelligently.
FDir works in two modes: ATR (Application Target Rout-
ing) or Perfect-Filtering. ATR works similarly to RFS but
differs in that ATR samples outgoing packet and maintains
the connection-CPU-mapping table in the NIC. Since the
mapping is based on sampling and the size of hardware ta-
ble is limited, it is actually a best-effort solution instead of a
complete solution. With Perfect-Filtering, users can program
NIC to a limited extent to decide which CPU core to deliver
an incoming packet to, based on the IP address and TCP
port of the packet. However, it is impractical to use Perfect-
Filtering to realize active connection locality, as there lacks a
general pattern of the IP address and TCP port we can lever-
age to program the delivery policy to the NIC.

Even if there is a design realizing active connection lo-
cality, in order to achieve complete connection locality, the

design cannot break the passive connection locality, which
makes it even more challenging to implement complete con-
nection locality.

2.3 Additional Overhead for Compatibility
Socket has an abstraction in VFS as a special file type and
VFS associates each socket with corresponding inode and
dentry data structures in the same way as other file types.
As discussed in [14], when sockets are frequently allocated,
VFS spends much effort to manage the globally visible
inodes and dentries, which involves expensive synchro-
nization.

Mainline Linux kernel and research[14] use fine-grained
locking mechanism,sloppy counter,lock-free protocol, etc.
to improve the efficiency of VFS synchronization. However,
we believe it is unnecessary for socket to inherit such over-
heads, even if they are becoming smaller, as inode and
dentry are actually not being used by socket at all, because
of the fundamental differences between networking and a
disk file.

Recent researches have proposed two kinds of new de-
signs to address the scalability problem of VFS for socket
and TCP stack. For example, a user-level TCP stack [22]
and a new IO API design [21]. These new designs avoid syn-
chronization at the cost of advanced TCP stack features and
backward compatibility.

The user-level TCP stack, mTCP [22], or modified em-
bedded TCP stack, lwIP [12, 30], used by rescent research
works, eliminates VFS overhead and bypasses all the com-
plexity of kernel to achieve high performance. However, the
performance gain is not free. First, these TCP stacks imple-
ment a light version of TCP stack. Many advanced features
such as namespace and firewall, which are very useful in
practice, are not implemented. Overtime, these stacks could
replicate the kernel functions, but it will be a very com-
plex and expensive development process. Second, the APIs
provided by these network stacks are not fully compatible
with BSD socket, VFS and RFCs, leading to expensive code
changes in applications. Finally, to enable a NIC to work
with these TCP stacks, we can no longer share the NIC with
the kernel, preventing other “normal” applications from run-
ning on the same NIC port. All these limitations make it im-
practical for us to deploy in production environment.

Megapipe [21], on the other hand, introduces a new I/O
API which completely bypasses VFS and maintains the in-
kernel advantages that user-level TCP stack does not pro-
vide. However, Megapipe is no longer compatible with
socket API. To deploy Megapipe, we need to modify all
existing applications and tools. Some of the modifications
are nontrivial as Megapipe presents a different network pro-
gramming model. The incompatibility severely limits the
real-world applicability of Megapipe.

Our goal is to redesign a kernel-level TCP stack that
keeps compatibility to the BSD socket API while achieving

342

Application Process

TCP Layer

Local
Established

Table

Local
Listen
Table

Application Process

NIC

Kernel

User...

...

Fastsocket-aware VFSFastsocket-aware VFS

PerCore Process Zone

 NET-RX
 SoftIRQ

RSS

TCP Layer

Local
Established

Table

Local
Listen
Table

 NET-RX
 SoftIRQ

PerCore Process Zone

Receive Flow Dilever

Outgoing packets to NIC Incoming packets from NIC

Figure 1: Fastsocket Architecture

high scalability and low overhead, which is the genuine
demand for large-scale production environment.

3. Fastsocket Design
3.1 Architecture Overview
Figure 1 presents an architecture overview of Fastsocket.
Fastsocket provides three components, the partitioned TCB
data structures (the Local Listen Table and the Local Estab-
lished Table), Receive Flow Deliver (RFD), and Fastsocket-
aware VFS, which are highlighted with bold box in Figure 1.
The three modules cooperate to provide Per-Core Process
Zones in which all activities for a given connection, from
NIC interrupts up to application accesses, are executed on a
single CPU core with minimum cross-core synchronization.

To build the Per-Core Process Zone, we have made im-
provements to the shared data structure, the connection-core
binding and the VFS abstraction implementation:

1. Fastsocket fully partitions the data structure and man-
agement of both global TCB tables. Thus, when NET RX

SoftIRQ reaches the TCP layer, Fastsocket uses per-core
Local Listen Table and per-core Local Established Table
for a full partitioning of TCB management.

2. Before an incoming packet enters the network stack,
Fastsocket uses Receive Flow Deliver to steer the packet
to a proper CPU core where the corresponding local ta-
ble is managed and its relating application process is
running. This way, Fastsocket achieves maximum con-
nection locality and minimize CPU cache bouncing.

3. The kernel VFS layer is the key to the socket API abstrac-
tion and compatibility. Fastsocket-aware VFS bypasses
unnecessary and lock-intensive VFS routines and uses
socket-special fast path instead to eliminate scalability

Application Process

FD

Application Process

 Global Listen Table

Local Listen Table
match?

Local Listen Socket

Global Listen Socket

RSS

SYN or ACK Packet

Local_listen()

Accept()

Local Listen Table

Control Flow

Packet Data Flow

empty?

(1)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Y

Y

N

N

 Per-Core Process Zone

 Core 0

Figure 2: Local Listen Table

bottlenecks, while retaining enough states to provide all
socket API functionalities.

The remaining of this section describes each of the three
Fastsocket component designs in detail.

3.2 Full Partition of TCB Management
In this section, we describe ways to use Local Listen Table
and Local Established Table to implement table-level parti-
tions of the listen sockets and established sockets manage-
ment.

3.2.1 Local Listen Table
We propose Local Listen Table to realize table-level partition
for listen sockets while guaranteeing the robustness of the
TCP stack. In addition, passive connection locality is also
achieved with Local Listen Table.

In the kernel TCP setup stage, Fastsocket allocates a local
listen table for each CPU core and maintains the original
global listen table for robustness.

On startup, the first process of a server application typ-
ically listen()s on a certain TCP port to wait for client
requests. The kernel correspondingly creates a listen socket
in the global listen table. Then the server forks multiple pro-
cesses and binds them with different CPU cores. These child
processes inherit the listen socket and are ready to accept
new connections and process accepted connections in paral-
lel.

With Fastsocket, each process invokes local listen()

to inform the kernel that the process wants to handle incom-
ing connections from the CPU core to which it has been
bound (1). As Figure 2 shows, for the process bound on CPU
core 0, a new listen socket is copied from the original listen
socket and inserted into the local listen table of CPU core
0 (2). We refer to the copied listen socket as the local lis-

343

ten socket and the original listen socket as the global listen
socket.

Steps (3) to (6) and (8) to (10) in Figure 2 illustrates the
fast (normal) path of setting up a passive connection using
local listen table, and step (7), (11) and (12) illustrate slow
(abnormal) path to handle the fault condition.

Fast Path
When a SYN packet comes in (3) and it is delivered to CPU
core 0 by RSS, the kernel searches the local listen table of
CPU core 0 to match a local listen socket (4). Without any
failures, the local listen socket which is previously inserted
by local listen() will be matched (5). After the three-
way handshake is done, a ready connection is placed in the
accept queue of the local listen socket. When the process
bound on core 0 issues accept() for new connections (6),
the kernel first checks the accept queue of the global listen
socket (7). Under normal operation, the accept queue is
always empty. This check is done without locking, as we
will explain later in this section. Then the kernel will check
the local listen table of core 0 for any ready connection (8).
Naturally, the previously ready connection can be found (9)
and returned to application process (10).

Therefore, with a table-level partition of Local Listen Ta-
ble, every operation (except for the lock-free check) is on the
local table, which eliminates the synchronization bottleneck
during the establishment of a passive connection.

As a by-product, we also achieve passive connection lo-
cality as all processing (in application process and the kernel
interrupt context) of any passive connection runs on the same
CPU core.

Slow Path
Application failures complicate things a bit, as we have de-
scribed in Section 2.1. Under certain unusual circumstance,
it is possible that the copied listen socket in the local listen
table of certain CPU core is missing.

In Fastsocket, Figure 2 shows, when a SYN packet cannot
match a local listen socket in the local listen table, the ker-
nel will set up a new connection with the global listen socket
in the global listen table (11). When any application process
calls accept() (6), the ready connection in the global listen
socket will be found since the accept queue of the global lis-
ten socket is checked first (7). The kernel can then accept()
the connection from the global listen socket to the applica-
tion process, just what the legacy TCP stack does (12).

As we have mentioned before, we need to check the ac-
cept queue of the global listen socket first, prior to accepting
a new connection from the local listen socket. This is be-
cause on a busy server, there are always new connections in
the local listen socket. If we check the local listen socket
first, we will keeping processing connections in the local
listen socket and starve the connection in the global listen
socket.

In addition, no locking is needed when checking the
global listen socket, since it is done by checking whether
the accept queue pointer is NULL using a single atomic read
operation. If there is a new connection in the accept queue
(very rare), we have to lock the global listen socket. When
the socket is locked, the accept queue is checked again and
we accept the new connection from the global listen socket.
Though locking is involved in the slow path, this circum-
stance rarely happens in practice, and thus does not cause
lock contentions.

In summary, Fastsocket solves any scalability bottlenecks
in passive connection establishment with Local Listen Ta-
ble, and achieves passive connection locality while keeping
robustness of TCP under application failures.

3.2.2 Local Established Table
We propose Local Established Table to partition the estab-
lished table for locally accessing established sockets.

Operations of Local Established Table are designed as
follows:

• Fastsocket allocates a local established table for each
CPU core when kernel initializes network stack.

• New established sockets are inserted into the local estab-
lished tables.

• In NET RX SoftIRQ , the kernel checks the local estab-
lished table to match an established socket for any in-
coming packet.

As described in Section 2.1, we need to make sure that
for any connection, inserting and matching the established
socket are carried out on the same CPU core to make this
design work. Fastsocket provides the guarantee we will de-
scribe in Section 3.3.

With Local Established Table, established sockets man-
agement is fully partitioned across the CPU cores and this
design eliminates scalability problems in the established ta-
ble regardless of the number of CPU cores in a single ma-
chine.

At this point, Fastsocket has achieved table-level partition
for both listen table and established table and a full partition
of TCB management is achieved.

3.3 Complete Connection Locality
As shown in previous section, Local Listen Table design re-
alizes the passive connection locality. In this section, we pro-
pose Receive Flow Deliver (RFD) to solve the active connec-
tion locality problem described in Setion 2.2 to achieve the
complete connection locality.

Build Active Connection Locality
The key insight is that the kernel can encode the current CPU
core id into the source port when making an active connec-
tion request. To achieve this, we use a hash function hash(p)
that maps ports to CPU cores. When the application running

344

on CPU core c attempts to establish an active connection,
RFD chooses a port psrc so that c = hash(psrc). Upon re-
ceiving a response packet, RFD picks the destination port
of the received packet pdst which is the port RFD previ-
ously chosen, determines which CPU core should handle the
packet by hash(pdst), and steers the packet to the selected
CPU core, if this is not the CPU core currently handling the
packet. In this way, RFD guarantees that each active con-
nection is always processed by the same CPU core, which
eliminates the non-local connection problem.

Retain Passive Connection Locality
Passive connections and active connections can exist in one
machine simultaneously, and incoming traffic consists of
both passive incoming packets and active incoming pack-
ets. Before decoding the CPU core id from the destination
port of incoming packets, RFD has to distinguish the two in-
coming packet categories since the hash function is designed
for active connections and should only be applied to active
incoming packets. Otherwise, RFD would break the passive
connection locality from Local Listen Table.

To determine whether an incoming packet is a passive
incoming packet or an active incoming packet, RFD applies
the following rules in order:

1. If the source port of an incoming packet is in the range
of the well-known (less than 1024) ports, it should be
an active incoming packet. We assume the kernel never
picks a port within the well-known ports as the source
port under normal conditions.

2. If the destination port is a well-known port, it is a passive
incoming packet for the same reason.

3. (optional) If neither of the previous condition meets, we
see whether the packet can match a listen socket. If so, it
indicates that it is a passive incoming packet because it
is not allowed to start an active connection with a source
port that was previously listened. Otherwise, the packet
is an active incoming packet.

The classification work could be done within the first two
quick checks when the application is serving on well-known
ports, which is usually the case. A precise classification,
if required, can be guaranteed by applying the third rule
directly(the first two rules should be skipped in this case).

Leverage Hardware Features
RFD can work correctly without any hardware NIC features.
However, as synchronization is required when RFD needs to
steer a packet to a different CPU core, it is beneficial for RFD
to take advantage of advanced NIC features such as FDir and
offload the steering work to the NIC.

As Section 2.2 describes, there are two modes in FDir:
Perfect-Filtering and ATR. When using Perfect-Filtering,
RFD may program the hash function into NIC in order to
offload the steering work completely to hardware. When us-

ing ATR mode, the majority of incoming packets are deliv-
ered to the right CPU core thanks to the sampling of NICs
and the rest of them are left to RFD to handle. Thus, RFD
can be used either with Perfect-Filtering for maximum per-
formance benefits at a cost of extra NIC configuration, or
with ATR to enhance connection locality of the system with
minimal maintenance efforts, and coexists with other appli-
cations requiring the ATR mode.

Our RFD Implementation
To choose a proper hash function, we need to consider the
capability of the underlying NIC hardware and the software
overhead for extra packet steering work in RFD.

In our implementation of Fastsocket, we use the follow-
ing hash function:

hash(p) = p & (ROUND UP POWER OF 2(n) - 1)

where ROUND UP POWER OF 2(x) returns the next power
of two of x and n is the number of CPU cores we have.

This function can be easily programmed into the FDir in
Perfect-Filtering mode which supports bit-wise operations
only.

We can introduce some randomness to improve security
by randomly selecting the bits used in the operation. It helps
prevent malicious attacks that try to make the server process
all connections on the same CPU core. We can also leverage
existing efforts on defending such attacks [5, 25] on top of
Fastsocket. The defensing work could be left to the dedicated
network security devices as well. The security solutions are
beyond the scope of this paper.

With Local Listen Table and Receive Flow Deliver, Fast-
socket has achieved complete connection locality.

3.4 Fastsocket-aware VFS
In some operating systems, such as Linux, socket is managed
by VFS abstraction among other file types. However, sockets
are fundamentally different from files on disk [21].

1. Sockets are not on disk. Due to the slow speed of disks,
dentry and inode are used as memory caches for the
metadata of files on the slow disk. However, sockets
exist in memory for their entire lifecycle and cannot
benefit from the caching mechanism for which dentry

and inode are designed.

2. Directory path is never used to identify socket. Usu-
ally, directory path is used to identify the disk files, and
internally the kernel maps the directory path to a dentry
and its corresponding inode to find the file. However,
sockets are accessed directly through the private data

field of file structures. As a result, dentry and inode

are not being used to identify sockets.

Therefore, we can see that dentry and inode are func-
tionally useless for sockets, but still associated with sockets
to be compatible with VFS abstraction. As discussed in 2.3,

345

the useless dentry and inode introduce tremendous syn-
chronization overhead when sockets are allocated frequently.

We propose Fastsocket-aware VFS to tackle the VFS
scalability bottleneck for sockets while keeping the Fast-
socket compatible with legacy VFS.

Avoid Unnecessary Overhead Fastsocket-aware VFS
provides a fast path in the VFS processing for sockets to
avoid the unnecessary overhead. Specifically, Fastsocket-
aware VFS skips most initialization/destruction work of
dentry and inode when creating/destroying a socket,
which involves acquiring several locks and managing the
dentry and inode in various tables and links.

Keep Compatibility We cannot remove dentry and
inode from socket completely, as the remove will break
the compatibility with legacy sockets. For example, widely
used system tools such as lsof and netstat will fail, since
they access the corresponding socket status through /proc
file system, which relies on dentry and inode (but does
not require them to be completely initialized). Fastsocket-
aware VFS only keeps the necessary states and functions of
dentry and inode to support /proc file system, which is a
small price to pay to achieve compatibility.

In short, Fastsocket-aware VFS internally customizes
VFS for sockets to improve scalability while externally
keeping VFS compatibility for socket applications and sys-
tem tools.

4. Evaluation
To evaluate the performance and scalability of Fastsocket,
we focus on the following two questions in this section:

1. Does Fastsocket benefit real applications?

2. How does Fastsocket scale, compared to the state-of-the-
art Linux TCP kernel stack implementations, especially
for short-lived TCP connection handling?

To answer the first question, we evaluate Fastsocket on a
8-core server running HAProxy as HTTP load balancer in a
production environment and we observe a 53.5% improve-
ment in the effective capacity by deploying Fastsocket. In
addition, we also carry out an experimental evaluation with
Nginx and HAProxy, the two most important component in
our infrastructure. The results show that their throughputs
with Fastsocket outperform the base Linux by 267% and
621% respectively on a 24-core machine.

For the second question, The results show that the through-
put with Fastsocket on a 24-core system scales to 20x while
Linux 3.13 with SO REUSEPORT [23] achieves only 12x.
In addition, we collect statistics on locking and L3 shared
cache missing rate in order to illustrate how and why each
individual design benefits the overall performance.

With the excellent scalability performance of Fastsocket
from the evaluation result, we demonstrate that BSD socket
API is no longer the scalability obstacle for TCP stack.

0%

10%

20%

30%

40%

50%

60%

70%

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

C
P
U

 U
ti

liz
a
ti

o
n

Time

base
Fastsocket

Figure 3: CPU utilization of two 8-core HAProxy servers in
the Sina WeiBo production environment. One is with

Fastsocket and the other is not. The upper line presents the
average CPU utilization of the server without Fastsocket in
one day and the lower line is with Fastsocket. We adopt a
box plot [37] to visually convey the spread of 8 CPU core
utilization for the two servers, which are sampled every

hour.

4.1 Experiment Setup
Our testing environment consists of three machines, each of
which has two 12-core Intel Xeon E5 2697 v2 processors,
64GB memory and a dual-port Intel 82599 10GE NIC. RSS
is enabled on the NICs if FDir is not explicitly configured.
The number of NIC queues is configured according to the
number of CPU cores involved. We configure NIC interrupt
affinity and XPS (Transmit Packet Steering) [8] to assign
each RX and TX queue to one CPU core. As the baseline
kernel has trouble in fully utilizing CPU resources with a
single listen socket, all benchmarks listen on different IP
addresses but on the same port 80.

All benchmarks fork multiple processes per server appli-
cation and pin each process to a different CPU core. We use
connections per second to measure throughput, as our main
concern is the cost associated with connection establishment
and termination. Unless otherwise stated, http load [2] is
used as the HTTP workload generator.

In order to saturate the benchmark servers with Fast-
socket, we have to deploy Fastsocket on the clients and back-
end servers to increase their throughput to the same level.

4.2 Application Performance
4.2.1 Production Environment Evaluation
We have deployed Fastsocket on production servers running
HAProxies in the Sina WeiBo production system. We col-
lected the CPU utilization on two servers handling the same
amount of requests (ensured by the load balancer) during
the same period of time. Each server has two 4-core CPUs
and 1GE NIC (without FDir support). HTTP Keep-alive[3]
is disabled on HAProxy. One server is Fastsocket-enabled
and the other is not. Figure 3 presents the results.

346

When serving client requests, we need to guarantee some
service-level agreement (SLA), such as the 99.9th percentile
response latency. In our production environment, we need to
keep the CPU utilization under a certain threshold, in our
case, 75%, to achieve the SLA. If any CPU core reaches
the threshold, the workload handled by that CPU core will
suffer a long latency, causing a latency SLA violation, even
if other CPU cores are still idle. We describe this situation
as the server has reached its effective capacity. The effec-
tive capacity is determined by the most utilized CPU core.
Therefore, the load balance among different CPU cores and
avoiding a “hot” CPU core is an important performance op-
timization.

As Figure 3 shows, without Fastsocket, the average CPU
utilization is relatively high. Moreover, the variation of CPU
utilization is very high among the 8 CPU cores (the error bar
shows the max and min CPU utilization on different CPU
cores). The underlying reason is using shared resources and
lock contentions in the Linux kernel. For example, when
multiple CPU cores try to get new connections from the
shared accept queue, they need to first acquire the listen
socket lock, as described in Section 2.1. The first CPU core
will take the connection and there would probably be no
connection left for the last CPU core when the core acquires
the lock in turn. This can happen each time when kernel
informs application that there are new connections ready
to be accepted, which makes certain CPU cores have more
connections to process and introduces the sustaining load
variances among different CPU cores.

In the contrast, with Fastsocket, the average CPU uti-
lization is considerably reduced because of the lower over-
head in lock contention. Even better, the utilization of all
CPU cores is perfectly balanced since Fastsocket eliminates
shared resources and lock contentions in TCP stack.

Take a busy time 18:30 as an example. Without Fast-
socket, average CPU utilization is 45.1%, while for the
server with Fastsocket, the number is 34.3%, revealing that
Fastsocket can improve CPU efficiency by 31.5% in han-
dling the same amount of real traffic. Without Fastsocket,
the CPU utilization varies from 31.7% to 57.7%, and with
Fastsocket, the utilization of all CPU cores is very close to
each other, ranging from 32.7% to 37.6%. We reasonably
assume that the CPU consumption of a server is linear with
the traffic it is supporting. Thus, the effective capacity and
the utilization of the most utilized CPU core are inversely
proportional. As a result, Fastsocket has improved effective
capacity by

(37.6%)−1 − (57.7%)−1

(57.7%)−1
= 53.5%

In addition, these production servers are relatively old
machines that only have 8 CPU cores. The scalability prob-
lem only gets worse with the increasing number of CPU
cores in the very near future. Fastsocket will become more
crucial in the new multi-core machines. Nonetheless, the

0
50k

100k
150k
200k
250k
300k
350k
400k
450k
500k

1 4 8 12 16 20 24

th
ro

u
g
h
p
u
t

(c
p
s)

Number of Cores

(a) nginx

Base 2.6.32
Linux 3.13
Fastsocket

0

50k

100k

150k

200k

250k

300k

350k

400k

450k

1 4 8 12 16 20 24

Number of Cores

(b) HAProxy

Base 2.6.32
Linux 3.13
Fastsocket

Figure 4: Connections per second throughput of the Nginx
and HAProxy tests

53.5% performance boost by Fastsocket is still a big cost-
saving in the production environment.

4.2.2 Nginx
We perform Nginx benchmark to evaluate Fastsocket with
the real-world web server. We disable HTTP Keep-alive on
Nginx to allow the emulated clients to establish multiple
short-lived connections. Http load fetches a 64 bytes static
file from Nginx with a concurrency of 500 multiplied by
the number of CPU cores. The file is cached in memory so
no disk I/O is involved. As the listen socket contention is
eliminated by Fastsocket, we disabled accept mutex in the
Fastsocket test.

The throughput of Nginx on 1 to 24 CPU cores are shown
in Figure 4(a). Fastsocket with Linux 2.6.32 on 24 CPU
cores achieves 475K connections per second, with a speed
up of 20.0x. The throughput of Nginx with base 2.6.32
kernel increases non-linearly up to 12 CPU cores and drops
dramatically to 178K with 24 CPU cores. The latest 3.13
kernel only achieves the throughput to 283K when using 24
CPU cores. Here we observe that the latest kernel does not
completely solve the scalability bottlenecks, preventing it
from scaling beyond 12 CPU cores. We will show the reason
later in Section 4.2.4.

4.2.3 HAProxy
In addition to Nginx, we present our HAProxy benchmark,
to demonstrate the active connection (to the backend servers)

347

performance. We setup a client running http load with con-
currency of 500 multiplied by number of CPU cores and a
backend server sending a constant 64-byte page.

Figure 4(b) presents the throughput of HAProxy. Fast-
socket outperforms Linux 3.13 by 139K connections per
second and base 2.6.32 by 370K when using 24 CPU cores,
though the single CPU core throughputs are very close
among all the three kernels. HAProxy is a proxy application
and different with Nginx in that it makes frequently active
connections to backend servers. With Receive Flow Deliver,
Fastsocket introduces connection locality for active connec-
tions and greatly reduces CPU cache bouncing. This local
processing of connections is important since Receive Flow
Deliver increases throughput by 15%, as shown in Section
4.2.4.

4.2.4 Analysis on Fastsocket Performance
Improvements

Lock Contention
To understand the effect of Fastsocket on reducing lock

contentions, we have run the HAProxy benchmark with 24
CPU cores for 60 seconds and used lockstat [4] statistics
to measure lock contentions. Table 1 presents the hottest
locks, their contention counts in the baseline Linux and their
contention count changes after enabling Fastsocket.

For the baseline kernel, dcache lock and inode lock

in VFS suffer from the most severe contention and Fastsocket-
aware VFS eliminates these unnecessary contentions as dis-
cussed in Section 3.4.

Socket is shared between interrupt context and process
context in the TCP stacks by multiple CPU cores, therefore,
a slock is used to protect the shared state of socket. Using
Local Listen Table and Receive Flow Deliver, we achieve
complete connection locality, therefore, each socket is pro-
cessed only on a single CPU core, which eliminates any
socket sharing across CPU cores. Thus we reduce the con-
tentions on slock to 0 when enabling Local Listen Table
and Receive Flow Deliver.

TCP processing involves other kernel systems, e.g., Epoll
and Timer. Ep.lock avoids parallel socket status updating
on the event ready list of epoll instance. Base.lock protects
modifications to per-socket timers managing TCP timeouts.
They suffer the same slock contention problem, since they
are in the critical path of TCB processing. When Fastsocket
has achieved complete connection locality, these lock con-
tentions are naturally eliminated as Table 1 shows.

Ehash.lock is the per-bucket lock protecting the global
established table. Contentions on this lock have been com-
pletely eliminated by adopting the Local Established Table.

After Fastsocket is deployed, locks (esp. spinlocks) con-
sumes no more than 6% CPU cycles and most of the locks
can be acquired without contention due to the partitioned
data structure in Fastsocket. As a result, lock contention is
no longer a performance bottleneck in our TCP stack.

Connection Locality

0

50k

100k

150k

200k

250k

300k

RSS RFD+RSS
FDir_ATR

RFD+FDir_ATR

RFD+FDir_perfect

 5%

 6%

 7%

 8%

 9%

 10%

 11%

 12%

 13%

 14%

T
h
ro

u
g

h
p

u
t

(c
p

s)

L3
 C

a
ch

e
 M

is
s

R
a
te

Configuration
(a)

L3 Cache Miss Rate Throughput

 0%

 20%

 40%

 60%

 80%

100%

RSS RFD+RSS
FDir_ATR

RFD+FDir_ATR

RFD+FDir_perfect

Lo
ca

l
P
a
ck

e
t

P
ro

p
o
rt

io
n

Configuration
(b)

Local Packet Proportion

Figure 5: Throughput, L3 cache miss rate and local packet
proportion with different NIC packets delivering features

enabled

To evaluate Receive Flow Deliver in more detail, we con-
duct experiments with RFD enabled or disabled, combined
with different NIC packet delivering features including RSS,
FDir in ATR mode (FDir ATR) and FDir in Perfect-Filtering
mode (FDir Perfect). The experiment is carried out on a
SandyBridge server with 16 CPU cores as the latest Cen-
tOS 6 does not support ioatdma [10] on IvyBridge yet,
which would affect CPU cache usage patterns in the test.
Fastsocket-aware VFS and Local Listen Table are always en-
abled in these experiments.

We did not perform the experiment of using FDir Perfect
without Receive Flow Deliver, because as discussed in Sec-
tion 2.2, it will cause correctness problems.

We use throughput and L3 cache miss rate as metrics to il-
lustrate the connection locality effect of RFD combined with
different NIC packets delivering features. In addition, for ac-
tive connections, we count the number of local packets, i.e.
packets received from NIC and later processed in applica-
tion on the same CPU core, as well as the total number of
packets received. We present the percentage of local packets
among all packets received to illustrate the effectiveness in
preserving connection locality.

The throughput, L3 cache miss rates are presented in
Figure 5(a) and local packet proportion data in Figure 5(b).

When RSS is enabled, the NIC evenly distributes incom-
ing packets to different CPU cores, regardless of where the
packets would be processed by applications. As a result, the
local packet proportion is 6.2%, showing that the majority

348

Table 1: Lock Contention Counts (HAProxy benchmark with 24 CPU cores for 60 Seconds)

V = Fastsocket-Aware VFS, L = Local Listen Table, R = Receive Flow Deliver, E = Local Establish Table

lock Baseline
∆

Fastsocket
+V V +L VL +R VLR +E

dcache lock 26.4M -26.4M - - - 0
inode lock 4.3M -4.3M - - - 0
slock 422.7K +451.6K -852.0K -22.3K - 0
ep.lock 1.0M +906.4K -1.3M -649.7K - 0
base.lock 451.3K +337.2K -277.6K -510.9K - 8
ehash.lock 868 +754 +466 +499 -2.6K 0

of incoming packets are received and processed on different
CPU cores. In this case, the software Receive Flow Deliver
forwards these non-local packets to the right CPU core to
avoid further overhead from non-local connection problem.
This reduces L3 cache miss rate by 6 percentage point and
consequently improves throughput by 6.1% (from 261k to
277k).

For FDir ATR, the local packet proportion rises to 76.5%
and Receive Flow Deliver provides another performance im-
provement of 0.8% compared to FDir ATR alone. Though
the L3 cache miss rate when using FDir ATR is close to
RSS+RFD, FDir ATR delivers a majority of packets to the
right CPU core in NIC hardware and thus reduces soft-
ware overhead on packet steering. At the same time, Receive
Flow Deliver makes FDir Perfect practical for accurately
distributing incoming packets with a 100% local packet pro-
portion, which gives us 1.8% reduction in L3 cache miss
rate and 2.4% throughput improvement (from 293k to 300k)
compared to only using FDir ATR.

5. Related Work
Reducing Shared Resource Contentions In [14, 21], inode
and dentry of VFS has been identified as the bottleneck
for socket scalability and a more fine-grained lock scheme is
proposed to mitigate inter-core shared resource contention.
Megapipe [21] proposes a new channel design to bypass
VFS completely. However, Megapipe loses compatibility
with VFS abstraction. This forces legacy applications to
modify their code and causes some system tools to mis-
behave, such as netstat and lsof. As described in Section 3.4,
we adopt a more moderate design which retains the compat-
ibility and remove locks associated with inode and dentry.

Locks in the listen socket is another hot spot identified by
recent researches. Affinity-Accept [29], SO REUSEPORT
[23] and Megapipe [21] solve the single socket problem by
cloning a listen socket copy for each CPU core. But these
designs are still based on the global listen table. This is
a potential scalability bottleneck Fastsocket has solved the
problem completely with Local Listen Table.

Achieving Connection Locality Some researchs [34,
36, 38, 40–42] analyze and modify modern OSes, such
as OpenSolaris, FreeBSD, Linux, Windows, etc., for high-
performance TCP/IP network. In [38], two variations on a

partitioned network-stack design for scalability in FreeBSD
are described, and compared in evaluation with a conven-
tional locked implementation. One variation protects par-
titioned data structures with locks that are global, but in
practice uncontended. A second associates partitioned data
structures whose instances may be accessed only by specific
threads, providing synchronisation; Willman describes sub-
stantial overhead from context switching. Affinity-Accept
[29] and Megapipe [21] achieve acceptable connection lo-
cality in the case of passive connection. Fastsocket goes
further by realizing complete connection locality on both
passive and active connections with Local Listen Table and
Receive Flow Deliver.

Batching System Calls and zero-copy Communication
FlexSC [32] and Megapipe [21] proposed system call batch-
ing to save the cost of context switch. It is possible to im-
plement system call batching in Fastsocket and simulate the
BSD socket API in the user library. Since we focus on the
scalability problem in TCP stacks in this paper, integrat-
ing system call batching is left as future work. Zero-copy
reduces data movement overheads and simplifies resource
management [28]. POSIX OSes have been modified to sup-
port zero-copy through page remap- ping and copy-on-write
[15]. Fastsocket can use zero-copy technologies in POSIX
OSes [33].

Relaxing System Call Restrictions on Semantics Ex-
isting literatures [16, 21] have blamed the lowest available
file descriptor in POSIX specification for poor scalability
and relaxed the rule. However, there are applications imple-
mented based on the rule. For example, the latest HAProxy
assumes that file descriptor should never exceed the current
connection number based on the file descriptor rule and uses
file descriptor as the index of a connection array for connec-
tion management [1]. To achieve compatibility, we have not
introduced these semantics changes in Fastsocket.

User-level Network Stacks Application-specific extensi-
bility was one of the main motivations behind user-level net-
working. For example, application-specific customization of
the networking stack in a user-level networking system was
shown to be beneficial by enabling application-controlled
flow control and feedback. There have been several user-
level network stacks that try to accelerate the performance
[17–20, 22]. However, they lack the full BSD socket API,

349

general and robust implementation of kernel network stack,
as described in Section 1. Fastsocket, on the other hand,
is built into the Linux kernel and is designed to be com-
patible with both existing applications and mature network
stack components in the kernel. The compatibility achieved
by Fastsocket makes it easier to deploy our proposal to pro-
duction systems.

Library operating systems with hardware virtualiza-
tion Library operating systems: Exokernels extend the end-
to-end principle to resource management by implementing
system abstractions via library operating systems linked in
with applications [19]. Library operating systems often run
as virtual machines. Hardware support for virtualization nat-
urally separates control and execution functions, e.g., to
build type-2 hypervisors [35], run virtual appliances [24].
IX [12] and Arrakis [30] uses hardware virtualization to
separate the I/O dataplane from the control plane. IX uses
a full Linux kernel as the control plane; provides three-way
isolation between the control plane, networking stack, and
application; and proposes a dataplane architecture that opti-
mizes for both high throughput and low latency. Arrakis uses
Barrelfish [11] as the control plane and includes support for
IOMMUs and SR-IOV. As far as we know, IX and Arrakis
use modified embedded TCP stack lwIP, which missed many
advanced features as described in Section 1, which are very
useful in practice.

Reserving Cores for Network IsoStack [31] aims to im-
prove network system efficiency with a novel architecture
that designates one CPU core to handle all network stack
work to remove contentions, while all other CPU cores run
applications. However, when adopting IsoStack in 10G and
even 40G network, the dedicated single CPU core will be
overloaded, especially in the CPU-intensive short-lived con-
nection scenarios. Fastsocket shows that full partition of
TCB management is a more efficient and feasible alternative
to scale TCP stack.

6. Conclusion
This paper introduces Fastsocket, a new scalable TCP socket
which successfully partitions shared socket tables including
the listen table and established table. Fastsocket further im-
plements PerCore Process Zone to avoid lock contentions
and keep compatibility at the same time.

The key designs are 1) Local Listen Table which parti-
tions the global listen table and guarantees passive connec-
tion locality, 2) Local Established Table which partitions the
global established table and guarantee full partition on TCB
management. 3) Receive Flow Deliver which guarantees ac-
tive connection locality which coexists with passive con-
nection locality, and 4) Fastsocket-aware VFS which avoids
heavy lock contentions on sockets while keeping compatible
with existing applications.

Nginx and HAProxy evaluation on Intel 24-core shows
Fastsocket improves the performance by 267% and 621%

respectively and retains full BSD socket API, which ben-
efits existing socket applications and their developers as
well. Moreover, all these modifications are not intrusive to
the Linux kernel, which means Fastsocket can gracefully
fit into the existing Linux kernel. Because of both high
scalability and compatibility, Fastsocket has been deployed
in Sina Weibo system to serve requests from all over the
world. All Fastsocket source code is publicly available at
https://github.com/fastos/fastsocket.

Acknowledgments
This research is carried out by Sina&Tsinghua&Intel’s co-
operation. We thank Intel, especially Mr. Xu Chen, for their
hardware and expertise. And also thank Sixing Xiao for his
early research work. This research is supported by Natural
Science Foundation of China under Grant No. 61170050,
National Science and Technology Major Project of China
(2012ZX01039-004),The National High Technology Re-
search and Development Program of China (2015AA011505).

References
[1] Haproxy. http://haproxy.1wt.eu/.

[2] http load - multiprocessing http test client. http://www.

acme.com/software/http_load/.

[3] Hypertext transfer protocol – http/1.0. http://tools.

ietf.org/html/rfc1945.

[4] Lock statistics. https://git.kernel.org/cgit/

linux/kernel/git/torvalds/linux.git/tree/

Documentation/lockstat.txt.

[5] Tcp syn flooding attacks and common mitigations. http:

//tools.ietf.org/html/rfc4987.

[6] Rfs hardware acceleration. http://lwn.net/Articles/

406489/, 2010.

[7] rfs: Receive flow steering. http://lwn.net/Articles/

381955/, 2010.

[8] xps: Transmit packet steering. http://lwn.net/

Articles/412062/, 2010.

[9] Intel 82599 10 gigabit ethernet controller datasheet.
http://www.intel.com/content/www/us/en/

ethernet-controllers/82599-10-gbe-controller-

datasheet.html, 2014.

[10] Intel i/o acceleration technology: Intel network adapters
user guide. http://web.mit.edu/cron/documentation/
dell-server-admin/en/IntelNIC/ioat.htm, 2014.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: A new os architecture for scalable multicore sys-
tems. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 29–44,
New York, NY, USA, 2009. ACM.

[12] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. Ix: A protected dataplane operating system
for high throughput and low latency. In Proceedings of the

350

11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 49–65, Berkeley, CA, USA,
2014. USENIX Association.

[13] S. M. Bellovin. A look back at ”security problems in the tcp/ip
protocol suite”. In Proceedings of the 20th Annual Computer
Security Applications Conference, ACSAC ’04, pages 229–
249, Washington, DC, USA, 2004. IEEE Computer Society.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux
scalability to many cores. In R. H. Arpaci-Dusseau and
B. Chen, editors, OSDI, pages 1–16. USENIX Association,
2010.

[15] H.-k. J. Chu. Zero-copy tcp in solaris. In Proceedings of
the 1996 Annual Conference on USENIX Annual Technical
Conference, ATEC ’96, pages 21–21, Berkeley, CA, USA,
1996. USENIX Association.

[16] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The scalable commutativity rule: designing
scalable software for multicore processors. In M. Kaminsky
and M. Dahlin, editors, SOSP, pages 1–17. ACM, 2013.

[17] S. Communications. Introduction to openonload:
Building application transparency and protocol con-
formance into application acceleration middleware.
http://www.solarflare.com/content/userfiles/

documents/solarflare_openonload_intropaper.pdf,
2011.

[18] D. Ely, S. Savage, and D. Wetherall. Alpine: A user-level
infrastructure for network protocol development. In USITS.
USENIX, 2001.

[19] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceo,
R. Hunt, T. Pinckney, and V. Inc. Fast and flexible application-
level networking on exokernel systems. ACM Transactions on
Computer Systems, 20:49–83, 2000.

[20] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Deploying safe user-level network services with
icTCP. In OSDI, pages 317–332. USENIX Association, 2004.

[21] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
Megapipe: A new programming interface for scalable network
i/o. In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’12, pages
135–148, Berkeley, CA, USA, 2012. USENIX Association.

[22] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mtcp: a highly scalable user-level tcp stack for
multicore systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 489–
502, Seattle, WA, Apr. 2014. USENIX Association.

[23] M. Kerrisk. The so reuseport socket option. http://lwn.

net/Articles/542629/, 2013.

[24] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing,
SC ’04, pages 7–, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[25] G. Loukas and G. Öke. Protection against denial of service
attacks. Comput. J., 53(7):1020–1037, Sept. 2010.

[26] lwIP community. lwip - a lightweight tcp/ip stack - summary.
http://savannah.nongnu.org/projects/lwip/, 2012.

[27] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley. Per-
formance issues in parallelized network protocols. In Pro-
ceedings of the 1st USENIX Conference on Operating Systems
Design and Implementation, OSDI ’94, Berkeley, CA, USA,
1994. USENIX Association.

[28] V. S. Pai, P. Druschel, and W. Zwaenepoel. Io-lite: A unified
i/o buffering and caching system. ACM Trans. Comput. Syst.,
18(1):37–66, Feb. 2000.

[29] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Im-
proving network connection locality on multicore systems. In
P. Felber, F. Bellosa, and H. Bos, editors, EuroSys, pages 337–
350. ACM, 2012.

[30] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krish-
namurthy, T. Anderson, and T. Roscoe. Arrakis: The oper-
ating system is the control plane. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’14, pages 1–16, Berkeley, CA, USA, 2014.
USENIX Association.

[31] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: Highly efficient network processing on dedicated
cores. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’10,
pages 5–5, Berkeley, CA, USA, 2010. USENIX Association.

[32] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In R. H. Arpaci-
Dusseau and B. Chen, editors, OSDI, pages 33–46. USENIX
Association, 2010.

[33] T. Suzumura, M. Tatsubori, S. Trent, A. Tozawa, and T. On-
odera. Highly scalable web applications with zero-copy data
transfer. In Proceedings of the 18th International Conference
on World Wide Web, WWW ’09, pages 921–930, New York,
NY, USA, 2009. ACM.

[34] S. Tripathi. Fireenginea new networking architecture for
the solaris operating system. http://www.scn.rain.com/

~neighorn/PDF/FireEngine_WP.pdf, 2004.

[35] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M.
Martins, A. V. Anderson, S. M. Bennett, A. Kagi, F. H. Leung,
and L. Smith. Intel virtualization technology. Computer,
38(5):48–56, May 2005.

[36] R. N. M. Watson. Introduction to multithreading and
multiprocessing in the freebsd smpng network stack.
http://www.watson.org/~robert/freebsd/netperf/

20051027-eurobsdcon2005-netperf.pdf, 2005.

[37] D. F. Williamson, R. A. Parker, and J. S. Kendrick. The
box plot: a simple visual method to interpret data. Annals
of internal medicine, 110(11):916–921, 1989.

[38] P. Willmann, S. Rixner, and A. L. Cox. An evaluation of net-
work stack parallelization strategies in modern operating sys-
tems. In Proceedings of the Annual Conference on USENIX
’06 Annual Technical Conference, ATEC ’06, pages 8–8,
Berkeley, CA, USA, 2006. USENIX Association.

[39] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park.
Comparison of caching strategies in modern cellular backhaul

351

networks. In H.-H. Chu, P. Huang, R. R. Choudhury, and
F. Zhao, editors, MobiSys, pages 319–332. ACM, 2013.

[40] P. Xie, B. Wu, M. Liu, J. Harris, and C. Scheiman. Profiling
the performance of tcp/ip on windows nt. Computer Perfor-
mance and Dependability Symposium, International, 0:133,
2000.

[41] H. youb Kim and S. Rixner. Performance characterization of
the freebsd network stack. http://www.cs.rice.edu/CS/
Architecture/docs/kim-tr05.pdf, 2005.

[42] H. Zou, W. Wu, X.-H. Sun, P. DeMar, and M. Crawford. An
evaluation of parallel optimization for opensolaris network
stack. In Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pages 296–299, Oct 2010.

352

