
System Problem Detection by Mining Console Logs

Wei Xu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-112

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-112.html

August 1, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

System Problem Detection by Mining Console Logs

by

Wei Xu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David A. Patterson, Chair
Professor Armando Fox
Professor Pieter Abbeel
Professor Ray R. Larson

Fall 2010

System Problem Detection by Mining Console Logs

Copyright 2010
by

Wei Xu

1

Abstract

System Problem Detection by Mining Console Logs

by

Wei Xu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David A. Patterson, Chair

The console logs generated by an application contain information that the developers
believed would be useful in debugging or monitoring the application. Despite the ubiq-
uity and large size of these logs, they are rarely exploited because they are not readily
machine-parsable. We propose a fully automatic methodology for mining console logs using
a combination of program analysis, information retrieval, data mining, and machine learn-
ing techniques. We use source code analysis to understand the structures from the console
logs. We then extract features, such as execution traces, from logs and use data mining
and machine learning methods to detect problems. We also use a decision tree to distill the
detection results to a format readily understandable by operators who need not be familiar
with the anomaly detection algorithms. The whole process requires no human intervention
and can scale to large scale log data. We extend the methods to perform online analysis on
console log streams. We evaluate the technique on several real-world systems and detected
problems that are insightful to systems operators.

i

To my family

ii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contributions . 3
1.3 Summary . 5

2 Key Insights and Overview 6
2.1 Key Insights . 6
2.2 Methodology Overview . 9
2.3 Case Studies and Overview of Results . 11
2.4 Summary . 13

3 Console Logs Preprocessing 16
3.1 Console Log Parser Design . 17

3.1.1 Challenges in log parsing . 17
3.1.2 Parser design overview . 19

3.2 Object Oriented Languages: A Running Example 21
3.3 Parsers for Other Languages . 24

3.3.1 C and C++ . 24
3.3.2 Scripting languages (Python) . 25

3.4 Extracting Message Templates from Program Binaries 27
3.4.1 Java byte code . 27
3.4.2 Binaries from C programs . 28

3.5 Evaluation: Accuracy and Scalability . 29
3.5.1 Accuracy . 30
3.5.2 Scalability . 31

3.6 Summary . 32

4 Offline Problem Detection and Visualization 33
4.1 Feature Creation . 34

4.1.1 State variables and state ratio vectors 34

iii

4.1.2 Identifiers and message count vectors 35
4.1.3 Implementing feature creation algorithms 36

4.2 Anomaly Detection . 37
4.2.1 PCA-based anomaly detection . 37
4.2.2 Improving PCA detection results . 40

4.3 Evaluation and Visualization . 42
4.3.1 Darkstar experiment results . 42
4.3.2 Hadoop experiment results . 45

4.4 Visualizing Detection Results with Decision Trees 47
4.5 Summary . 48

5 Problem Detection in Online Log Streams 51
5.1 Two-Stage Online Anomaly Detection . 52

5.1.1 Challenges in online detection . 52
5.1.2 Our solution: two-stage detection . 53

5.2 Stage 1: Frequent Pattern Mining . 54
5.2.1 Mining frequent event patterns . 56
5.2.2 Estimating distributions of session durations 57
5.2.3 Implementation of Stage 1 . 59

5.3 Stage 2: PCA Detection . 60
5.4 Evaluation . 60

5.4.1 Stage 1 pattern mining results . 61
5.4.2 Detection precision and recall . 62
5.4.3 Detection latency . 64
5.4.4 Comparison to offline results . 65

5.5 Discussion . 67
5.5.1 Limitations of online detection . 67
5.5.2 Use cases . 67

5.6 Summary . 67

6 Real world application 69
6.1 The art of log sanitization . 70
6.2 State-based detection . 71
6.3 Sequence-based detection . 73
6.4 Summary . 74

7 Related Work 75
7.1 System Monitoring and Problem Detection 75

7.1.1 System monitoring tools . 76
7.1.2 System problem detection with structured data 77

7.2 Console Log Analysis . 79
7.2.1 Console generation and collection . 79
7.2.2 Console log parsing . 79
7.2.3 Using console logs for problem detection 80

iv

7.3 Techniques Used in This Project . 81
7.4 Summary . 83

8 Future Directions 84
8.1 Anomaly Detection and Beyond . 84
8.2 Tools to Improve Console Log . 85
8.3 Beyond Console Logs . 86

9 Conclusion 88

Bibliography 90

v

List of Figures

2.1 Sample log and corresponding source code 7
2.2 Overview of four-step console log analysis methodology 9

3.1 A sample log and corresponding source code 17
3.2 Number of new log printing statements added each month in four real Google

systems . 18
3.3 Using source code information to parse console logs. 19
3.4 Example source code segments with type inheritance 21
3.5 Constructing message templates from source code analysis 22
3.6 Scalability of log parsing with number of nodes used. 31

4.1 The intuition behind PCA detection . 38
4.2 .9513.6Fractional of total variance captured by each principal component. 39
4.3 Darkstar state ratio vector detection results 42
4.4 Hadoop message count vector detection results 44
4.5 The decision tree visualization of Hadoop message count vectors 49
4.6 The decision tree visualization for Darkstar message count vectors 50

5.1 Overview of the two stage online detection systems. 52
5.2 Frequent patterns, anomalous cases and “middle ground” 54
5.3 Sample sessions. 55
5.4 Tail of durations follow power-law distribution. 58
5.5 Detection latency and number of events kept in detector’s buffer 64

6.1 Log sanitization overview . 71
6.2 Detection results on Google data . 72

vi

List of Tables

2.1 State variables and identifiers . 8
2.2 Summary of data sets used in evaluation . 12
2.3 Survey of console logging in popular software systems 15

3.1 Parsing accuracy of C/C++ parser . 25
3.2 Python parser accuracy . 26
3.3 Comparison between C source parser and C binary parser 29
3.4 Parsing accuracy using Java Parser . 30
3.5 Parsing Accuracy using the C/C++ parser on production data from Google 30

4.1 Semantics of rows and columns of features 37
4.2 Low effective dimensionality of feature data 39
4.3 Detected anomalies and false positives using PCA on Hadoop message count

vector feature . 46

5.1 Frequent patterns discovered from Hadoop logs 61
5.2 Hadoop online detection precision and recall. 63
5.3 Detection accuracy comparison with offline detection results 65
5.4 Add caption . 66
5.5 Detection accuracy comparison with offline detection results 66

vii

Acknowledgments

I am grateful for the collaboration, guidance and help during my entire PhD career.
First and foremost, I am extremely fortunate to have two great co-advisors, Professor

David Patterson and Professor Armando Fox. Throughout my career as a Ph.d. student
at Berkeley, they provided incredible help on every aspect of the research. From choosing
a research topic to further shaping the project, from technical directions to fixing English
problems, their help penetrates everywhere in this dissertation. I am especially grateful for
their encouragement and advice during the time when I had trouble finding a research topic.
I feel very fortunate to have the opportunity to learn from them.

My special thanks go to Ling Huang at Intel. We collaborated on every detail in the
project, and he captures even the slightest flaws existed and his insights of both machine
learning and systems shaped the entire project.

I also appreciate Professor Michael Jordan, who taught me about machine learning and
helped me solving many problems I had during the project.

My thanks go to my qualifying exam committee, Professor Eric Brewer, Professor Pieter
Abbeel and Professor Ray Larson for their great suggestions that helped improving the
dissertation, and especially for their encouragement. Professor Pieter Abbeel and Profes-
sor Ray Larson are also on my dissertation committee, helping me further improve the
dissertation.

I enjoyed the supportive and intellectually stimulating research environment of the RAD
Lab. All RAD Lab faculty, students and retreat guests provided important input throughout
this research.

Getting real data from industry is an essential part for this research. I appreciate Urs
Hoelzle’s help for allowing me to use Google’s log data. At Google, a number of kind
managers and engineers helped me reviewing and explaining the data, especially Jay Sutaria,
Alex Wu, Lea Kissner devoted a great amount of effort into the process. I also want to thank
Bill Bolosky and Devendra Jaisinghani for providing log data from Microsoft Research and
EBay.

I am also fortunate to get help from many industry experts for their invaluable com-
ments on various papers and presentations related to the dissertation: Joe L. Hellerstein,
Urs Hoelzle and Deborah Weisser from Google, Feng Zhao, Bill Bolosky, Richard Draves,
Alice Zheng and Moises Goldszmidt from Microsoft Research, Byung-Gon Chun, Jaideep
Chandrashekar and Petros Maniatis from Intel Labs, Peter Vosshall from Amazon Web Ser-
vices, Kimberly Keeton, Xiaoyun Zhu, Zhikui Wang and Sharad Singhal from HP Labs,
Bill Kramer and John Shalf from Lawrence Berkeley National Lab, and Jon Stearley from
Sandia National Lab.

When I was aimless in finding a research topic, Feng Zhou and Li Zhuang kindly offered
me an internship position at Netease Yodao in Beijing, where I, for the first time, built a
real system and found an exciting research opportunity that leads to this dissertation.

I also express my gratitude to my family – my father, mother and especially my wife
have always been so supportive during this research.

This research is supported in part by gifts from Sun Microsystems, Google, Microsoft,
Amazon Web Services, Cisco Systems, Cloudera, eBay, Facebook, Fujitsu, Hewlett-Packard,

viii

Intel, Network Appliance, SAP, VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152, 07-010, 06-148, 07-012, 06-146, 07-
009, 06-147, 07-013, 06-149, 06-150, and 07-008), the National Science Foundation (grant
#CNS-0509559), and the University of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240.

1

Chapter 1

Introduction

When a datacenter-scale service consisting of hundreds of software components running
on thousands of computers misbehaves, developer-operators need every tool at their dis-
posal to troubleshoot and diagnose operational problems. Ironically, there is one source of
information that is built into almost every piece of software that provides detailed informa-
tion that reflects the original developers’ ideas about noteworthy or unusual events, but is
typically ignored: the humble console log.

In this project, we use a combination of program analysis, information retrieval and
machine learning techniques to automatically extract structured information out of console
logs, and automatically detect and visualize runtime problems in large scale distributed
systems. We applied our methodology to a variety of real-world systems and got insightful
detection results.

We first discuss the difficulties facing current system monitoring solutions, and the ad-
vantages/disadvantages of using free text console logs. We then summarize the methodology
we used for log analysis and our contributions. Finally, we give a quick preview of the de-
tection results on a number of case studies.

1.1 Background and Motivation

Monitoring and diagnosing large scale systems is hard

Today’s large-scale Internet services run in large server clusters. A recent trend is to run
these services on virtualized cloud computing environments such as Amazon’s Elastic Com-
pute Cloud (EC2) [3]. These system architectures enable highly scalable Internet services at
a relatively low cost. However, solving problems in such systems brings new challenges for
both system developers and operators. One significant problem is that as the system scales,
the amount of information operators need to process goes far beyond the level that can be
handled manually, and thus there is a huge demand for automatic processing of monitoring
data.

Much work has been done on automatic problem detection and diagnosis in such systems.
Researchers and operators have been using all kinds of monitoring data, from the simplest

2

numerical metrics such as resource utilization counts [58, 19, 8] to system events [45, 67] to
more detailed tracing such as execution paths [17, 16]. Sometimes operators even dedicate a
significant portion of application code for monitoring [63]. Metrics collected provide different
levels of insights into the systems under study and can often help operators and developers
solve problems in their systems, we introduce these methods in detail in Chapter 7.

Monitoring infrastructures are costly to maintain in an Internet service system. These
systems integrate external (often open source) components. These components may not
have the required instrumentation built-in and thus require programmer overhead to im-
plement. Even worse, these components are frequently revised or upgraded, keeping the
instrumentation with this churn rate makes the overhead even more significant. Also, as
developers cannot always predict what kind of problems that a particular set of metrics can
help diagnose, it is often hard to justify such instrumentation to collect them.

On the other hand, console logs are original instrumentation built into almost every
software systems by the developers. The overhead for collecting console logs are very low,
but the information contained in console logs can be rich. In this project, we develop a
general technique to automatically discover the information contained in console logs that
can be used to supplement or even replace custom instrumentations.

Console logs are everywhere, but not commonly used

Since the dawn of programming, developers have used everything from printf to complex
logging and monitoring libraries [31, 39] to record program variable values, trace execution,
report runtime statistics, and even printing out full-sentence messages designed to be read
by a human—usually by the developer. However, modern large-scale services usually com-
bine large open-source components authored by hundreds of developers, and the people
scouring the logs—part integrator, part developer, part operator, and charged with fixing
the problem—are usually not the people who chose what to log or why. (We’ll use the term
operator to represent a potentially diverse set of people trying to detect operational prob-
lems.) Furthermore, even in well-tested code, many operational problems are dependent on
the deployment and runtime environment and cannot be easily reproduced by the developer.
Thus, it is unavoidable that people other than the original developers need to source logs
from time to time when diagnosing problems. Our goal is to provide them with better tools
to extract value from the console logs.

As logs are too large to examine manually [50, 75] and too unstructured to analyze
automatically, operators typically create ad hoc scripts to search for keywords such as “error”
or “critical,” but this has been shown to be insufficient for determining problems [50, 75].
Rule-based processing [80] is an improvement, but the operators’ lack of detailed knowledge
about specific components and their interactions makes it difficult to write rules that pick
out the most relevant sets of events for problem detection. To make things worse, high
code churn rates in Internet service systems make manually specified rules infeasible to
maintain overtime, as code updates can change what’s in the logs and the relevance of
certain messages. Instead of asking users to search, we provide tools to automatically find
“interesting” log messages.

3

1.2 Contributions

We aim to build a fully automatic problem detection system using only console log
information. Our goal is to find the “needles in the haystack” that might indicate operational
problems, without any manual input.

Since unusual log messages often indicate the source of the problem, it is natural to
formalize log analysis as an anomaly detection problem in machine learning. However, it is
not always the case that the presence, absence, or frequency of a single type of message is
sufficient to pinpoint the problem; more often, a problem manifests as an abnormality in
the relationships among different types of log messages as correlations, relative frequencies,
and so on. Therefore, instead of analyzing the words in textual logs (as done, for example,
in [89]), we create features that accurately capture various correlations among log messages,
and perform anomaly detection on these features. Constructing such features requires
parsing console logs accurately to extract information embedded in the free text messages,
such as variable values. Existing log parsing methods (discussed in later chapters) do not
provide the required accuracy, so we designed a new log parser leveraging program source
code information, which is part of our contribution.

We studied logs and source code of many popular software systems used in Internet
services, and observed that a typical console log is much more structured than it appears: the
definition of its “schema” is implicit in the log printing statements, which can be recovered
from program source code. This observation is key to our log parsing approach, which yields
detailed and accurate features. Given the ubiquitous presence of open-source software in
many Internet systems, we believe the need for source code is not a practical drawback to
our approach. In cases when source code is not readily available or too hard to manage,
we show that we can extract the “schema” of log messages directly from program binaries
without much sacrifice on accuracy.

We make the following the three contributions in this dissertation.

1. A general methodology for automated console log processing
Our first contribution is a general four-step methodology that allows machine learning

and information retrieval techniques to be applied to free-text logs. Our approach requires
no changes to existing software and works on existing textual console logs of any size.
Specifically, our methodology involves the following four aspects:

1. A technique for analyzing source code or program binaries to recover the structure
inherent in console logs;

2. The identification of common information in logs—state variables and object identifiers—
and the automatic creation of features from the logs (exploiting the structure found)
that can be subjected to analysis by a variety of machine learning algorithms;

3. Demonstration of a machine learning and information retrieval methodology that ef-
fectively detects unusual patterns or anomalies across large collections of such features
extracted from a console log;

4

4. Where appropriate, automatic construction of a visualization that distills the results
of anomaly detection in a compact and operator-friendly format that assumes no
understanding of the details of the algorithms used to analyze the features.

2. Online problem detection with message sequences.
Our second contribution is a novel two-stage online log processing approach that com-

bines frequent pattern mining with Principal Component Analysis (PCA) based anomaly
detection to allow fast and accurate detection on features based on sequences of messages.
In particular, we show how to trade off time-to-detection vs. accuracy in the online setting
by augmenting frequent-sequence information with timestamp information. We show that
we can achieve similar detection accuracy as the offline approach. As a beneficial side effect,
the pattern mining aspect of our approach can potentially help operators better understand
system behavior even under normal conditions.

3. System implementation and evaluation on real world systems.
Our third contribution is the implementation of the log processing system and evaluations

on real world systems. We implemented parsers to extract message templates from source
code written in a variety of programming languages, including C, C++ (Macros heavy), Java
(Object-oriented), and even scripting languages like Python. In cases where source code is
difficult to obtain or manage, we showed that we can achieve similar parsing accuracy by
analyzing program binaries for Java byte code and binaries compiled from C codes.

We implemented both of our parsing and feature extraction steps in an “embarrass-
ingly parallel”1 style, allowing us to run them as Hadoop [9] map-reduce jobs using cloud
computing, achieving nearly linear speedup for a few dollars per run.

We evaluate our approach and demonstrate its capability and scalability with three
real-world systems: the Darkstar online game server [90], the Hadoop File System [9] and
a production system at Google. In all these three systems, we showed that our log
analysis method not only helps system operators discover operational problems, but also
provides insights to developers about potential bugs. For example, in the Darkstar case,
our method accurately detects performance anomalies immediately after they happen and
provides hints as to the root cause. As another example, in a 203-node Hadoop cluster, we
detect runtime anomalies that are commonly overlooked, and distill over 24 million lines
of console logs to a one-page decision tree that a domain expert who is not familiar with
machine learning can readily understand. Studying the detection results, we are able to find
a number of temporary failures affecting performance, a bug causing data loss, as well as
bad log messages confusing many hadoop users. We also focus on scalability of our method.
The analysis of 24 million lines of Hadoop logs can be done with Hadoop map-reduce on
60 Amazon EC2 nodes within 3 minutes. Google system is a production cluster consisting
of thousands of nodes. Comparing to Darkstar and Hadoop logs, The Google data set is
five magnitudes larger, and it is also more complex in terms of the amount of information
contained. Despite of these differences, we can apply almost same log analysis methods and

1The parallel is “embarrassing” because the workload separates into different independent tasks without
effort. In our case, parsing one log message does not depend on other messages, once we obtain all message
templates.

5

get insightful results. All these examples demonstrate the generality and applicability of
our log analysis approach to a variety of real world systems.

In summary, the combination of elements in our approach, including our novel com-
bination of source code analysis with log analysis and automatic creation of features for
anomaly detection, enables a level of detail in log analysis that was previously impossible
due to the inability of previous methods to correctly identify the features necessary for
problem identification.

1.3 Summary

Despite the fact that console log is a rich information source for system monitoring and
diagnosis, it is not fully utilized by system operators today due to its free-text nature. In this
dissertation, we present a general approach to automatically process console logs to detect
problems in large scale Internet service systems. Our contributions include the methodology
design, system implementation, and application to real-world systems.

In the next chapter, we summarize the key insights into the console log analysis problem,
and highlight how we turn these insights into a four-step methodology design. Then, we
summarize a number of systems we surveyed to demonstrate the generality of our approach.
We also introduce three data sets, which contain from a million to hundreds of billions of
lines of console logs, which we use in the evaluation of our methodology throughout this
dissertation.

The rest of the dissertation proceeds as follows: Chapter 3 describes our log parsing
technique and different parser implementations in detail. Chapter 4 presents two complete
case studies in feature creation, anomaly detection, and visualization. Chapter 5 extends
the methodology to perform online problem detection on console log streams. We discuss
the real world application of this methodology on Google’s production data in Chapter 6.
In Chapter 7, we review existing work on console log mining, and in system monitoring and
diagnosis in general. We suggest possible future directions in Chapter 8 and conclude in
Chapter 9.

6

Chapter 2

Key Insights and Overview

Unlike most existing work that either treats console logs as a collection of English
words [87, 80], or as a time series of events [60, 61, 99], our model of console logs is fun-
damentally different. In Section 2.1, we summarize our insights into console log: console
logs can be automatically transformed into a number of interleaving event sequences, based
on fine-grained information extracted from free text messages. These event sequences best
represents program executions and thus the best way to detect problems.

We provide an overview our methodology of automatically analyzing console logs in
Section 2.1 and highlight the key components in our systems and their importance in the
entire framework.

In order to evaluate the generality of our approach, we surveyed console logs from a
number of real-world systems, ranging from operating system kernels to web applications.
Section 2.3 shows our methodology applies to most of them. We also provide detailed
description of three sets of console logs we use as case studies throughout the dissertation.

2.1 Key Insights

Important information is buried in the millions of lines of free-text console logs. To ana-
lyze logs automatically, we need to create high quality features, the numerical representation
of log information that is understandable by a machine learning algorithm. The following
four key observations lead to our solution to this problem.

Source code is the “schema” of logs.

Although console logs appear in free text form, they are in fact quite structured because
they are generated entirely from a relatively small set of log printing statements in the
system.

Consider the simple console log excerpt and the source code that generated it in Fig-
ure 2.1. Intuitively, it is easier to recover the log’s hidden “schema” using the source code

7

starting: xact 325 is COMMITTING

starting: xact 346 is ABORTING

1 CLog.info("starting: " + txn);

2 Class Transaction {

3 public String toString() {

4 return "xact " + this.tid +

5 " is " + this.state;

6 }

7 }

Figure 2.1: Top: two lines from a simple console log. Bottom: Java code that could produce
these lines.

information (especially for a machine). Our method leverages source code analysis to recover
the structure of logs.

The most significant advantage of our approach is that we are able to accurately parse
all possible log messages, even the ones rarely seen in actual logs. In addition, we are able
to eliminate most heuristics and guesses for log parsing used by existing solutions.

Common log structures lead to useful features

A person usually reads the log messages in Figure 2.1 as a constant part (starting:
xact ... is) and multiple variable parts (325/326 and COMMITTING/ABORTING). In this dis-
sertation, we call the constant part the message type and the variable part the message
variable.

Message types – marked by constant strings in a log message – are essential for analyzing
console logs and have been widely used in earlier work [61]. In our analysis, we use the
constant strings solely as markers for the message types, completely ignoring their semantics
as English words, which are known to be ambiguous [75].

Message variables carry crucial information as well. In contrast to prior work that focuses
on numerical variables [61, 75, 99], we identified two important types of message variables
for problem detection by studying logs from many systems and by interviewing Internet
service developers / operators who heavily use console logs.

Identifiers are variables used to identify an object manipulated by the program (e.g., the
transaction ids 325 and 346 in Figure 2.1), while state variables are labels that enumerate
a set of possible states an object could have in program (e.g. COMMITTING and ABORTING in
Figure 2.1). Table 2.1 provides extra examples of such variables. We can determine whether
a given variable is an identifier or a state variable progmatically based on its frequency
in console logs. Intuitively, state variables have a small number of distinct values while
identifiers take a large number of distinct values (detailed in Section 4.1).

We acknowledge that logs also contain other types of message variables such as times-

8

Variable Examples Distinct values
Identifiers transaction id in Darkstar;

block id in Hadoop file system;
cache key in Apache HTTP server;
task id in Hadoop map reduce.

many

State Vars Transaction stages in Darkstar;
Server names in Hadoop;
HTTP status code (200, 404);
POSIX process return values.

few

Table 2.1: State variables and identifiers

tamps and various counts. We do not discuss those variables in this paper as they have
been well studied in existing work [89].

Message types and variables contain important runtime information useful to the oper-
ators. However, lacking tools to extract these structures, operators either ignore them, or
spend hours grep’ing and manually examining log messages, which is tedious and inefficient.

Our accurate log parsing allows us to use structured information such as message types
and variables to automatically create features that capture information conveyed in logs. To
our knowledge, this is the first work extracting information at this fine level of granularity
from console logs.

Message sequences are important in problem detection

When log messages are grouped properly into message sequences, there is a strong and
stable correlation among messages within the same group. For example, messages containing
a certain file name are likely to be highly correlated because they are likely to come from
logically related execution steps in the program.

A message sequence is often a better indicator of problems than individual messages.
Many anomalies are only indicated by incomplete message sequences. For example, if a
write operation to a file fails silently (perhaps because the developers do not handle the
error correctly), no single error message is likely to indicate the failure. By correlating
messages about the same file, however, we can detect such cases by observing that the
expected “closing file” message is missing.

Previous work grouped logs by time windows only, and the detection accuracy suffers
from noise in the correlation [50, 89, 99]. In contrast, we create message groups based on
more accurate information, such as the message variables described above. In this way, the
correlation is much stronger and more readily encoded so that the abnormal correlations
also become easier to detect.

Although we could also adopt traditional log mining method, we focus on features based
on message sequences in this dissertation. Of course, sequence-based features bring addi-
tional challenges in an online detection setting, as we have to decide when detection can

9

starting: xact 325 is PREPARING

prepare: xact 325 is COMMITTING

comitted: xact 325 is COMMITTED

1. Log Parsing

type=1, tid=325, state=PREPARING

type=2, tid=325, state= COMMITTING

type=3, tid=325, state=COMMITTED
1 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0

2. Feature creation 3. Anomaly

detection
4.Visualization

Message Count Vectors

State Ratio Vector

PREPARING

COMMITTING

COMMITTED

ABORTED

PCA Anomaly Detection

325:

326:

327:

Source Code

Raw Console Log Structured Log

starting: xact (.*) is (.*)

Message template

void startTransaction(){

…

LOG.info(“starting” + transact);

}

Decision Tree

At time window 100

Figure 2.2: Overview of four-step console log analysis methodology.

begin a continuously growing sequence. We solve this problem using frequent-pattern-based
filtering techniques.

Strong patterns with lots of noise

Our last important observation in production console logs is that the normal patterns -
whether in terms of frequent individual messages or frequent message sequences - are very
obvious. It is obvious why these strong patterns exist: in production systems, most of the
operations are normal, and generate normal log sequences. This observation enables us
to use simple machine learning algorithms, such as frequent pattern mining and Principal
Component Analysis (PCA), for problem detection.

On the other hand, due to the console log generation and collection process, much noise
is introduced. The two most notable kinds of noise are the random interleaving of messages
from multiple threads or processes as well as the inaccuracy of message ordering. Our
grouping methods help reduce this noise, but the detection algorithm still needs to tolerate
the noise. We discuss the patterns and noise that exist in console logs in Chapter 5, when
we introduce our online problem detection techniques.

2.2 Methodology Overview

Figure 2.2 shows the four steps in our general framework for mining console logs.

Step 1: Log parsing

We first convert a log message from unstructured text to a data structure that shows the
message type and a list of message variables in (name, value) pairs. We get all possible log
message template strings from either the source code or program binaries and match these
templates to each log message to recover its structure (that is, message type and variables).
We discuss our parsing method and implementations for different programming languages

10

in Chapter 3. Our experiments show that we can achieve high parsing accuracy in a variety
of real-world systems.

There are systems that use structured tracing only, such as BerkeleyDB (Java edition).
In this case, because logs are already structured, we can skip this first step and directly
apply our feature creation and anomaly detection methods. Note that these structured logs
still contain both identifiers and state variables.1

Step 2: Feature creation

Next, we construct feature vectors from the extracted information by choosing appropri-
ate variables and grouping related messages. Our method provides flexibility for generating
features, including application-specific ones that incorporate operators’ domain knowledge.
The structured parsing step makes it very easy to implement and parallelize the feature
creation algorithms.

In this dissertation, we first give the construction of two widely applicable features: the
state ratio vectors and the message count vectors, both of which are unexploited in prior
work. As we will show in Chapter 4, the state ratio vector feature is trivial to use in an online
detection setting. In contrast, the message count vector feature is nontrivial to construct
over an online log stream. We demonstrate our method for doing so in Chapter 5.

Step 3: Machine learning

Next, we apply machine learning methods to mine feature vectors. In this dissertation,
we focus on using anomaly detection techniques, labeling each feature vector as normal or
abnormal. We find that the Principal Component Analysis (PCA)-based anomaly detection
method [23] works very well with both features. This method is an unsupervised learn-
ing algorithm, in which all parameters can be either chosen automatically or tuned easily,
eliminating the need for prior input from the operators. In an online setting, we added
an extra filtering step, which uses frequent pattern based methods to take care of the vast
majority of normal messages quickly. Combining these two methods, we can achieve both
small detection latency and high detection accuracy.

Although we only demonstrated two specific machine learning algorithms in this dis-
sertation, neither is intrinsic to our approach, and different algorithms utilizing different
extracted features could be readily “plugged in” to our framework.

Step 4: Visualization.

Finally, in order to let system integrators and operators better understand the PCA
anomaly detection results, we visualize results in a decision tree [98]. Compared to the

1In fact, the last system in Table 2.3 (Storage Prototype) is an anonymous research prototype with
built-in customized structured traces. Without any context, even without knowing the functionality of the
system, our feature creation and anomaly detection algorithm successfully discovered log segments that the
developer found insightful.

11

PCA-based detector, the decision tree provides a more detailed explanation of how the
problems are detected, in a form that resembles the event processing rules [42] with which
system integrators and operators are familiar.

The four steps discussed above can either work as a coherent system, or be applied
individually to certain data sets as required. For example, on tracing data that are already
structured, we can directly apply the feature extraction step without parsing. Users can
also add log parsers for specific programming languages, create application specific features,
apply good machine learning algorithms for problem detection, etc.

In particular, our framework follows a modularized implementation: Each step is imple-
mented in one or multiple modules, and the interfaces between modules are simple and well
defined. Thus it is easy to add or replace an implementation for each step.

2.3 Case Studies and Overview of Results

A Survey of console logs

We studied source code and logs from a total of 29 different systems. Twenty-five of them
are widely deployed open source systems, one is a research prototype, one is a proprietary
web application’s Flash client, and the last three are production systems at Google. Table 2.3
summarizes the results. Though these systems are distinct in functionality, developed using
different languages by different developers at different times. 27 of the 29 systems use free
text logs, and our source-code-analysis based log parsing applies to all of these 27.

Though these systems cover several popular programming languages, including C, C++,
Java, Python and ActionScript3, their logs have many common properties. For example,
we found that about 1%-5% of code lines are logging calls in most of the systems, but most
of these calls are rarely, if ever, executed because they represent erroneous execution paths.
It is almost impossible to maintain log-parsing rules manually with such a large number of
distinct logger calls, which highlights our advantage of discovering message types automati-
cally from source code. On average, a log message reports a single variable. However, there
are many messages such as starting server that report no variables, while other messages
can report 10 or more. Also, we can find at least one state variables or identifiers in 28 of
the 29 systems in Table 2.3 (22 have both), confirming our assumption of their prevalence.

Of course, different programming languages have different logging styles. Generally
speaking, there are two styles: using format strings and using string concatenation. Most
C programs use printf style format strings for logging. C++ programs use both string
concatenation style cout streams and printf style formatting strings. It is common practice
for programmers to use wrapper functions or macros to generate standard information such
as time stamps and severity levels. These wrappers can sometimes be detected automatically
from the format string parameter. However, as we will discuss in Chapter 3, some wrappers
add extra variables into the message, which requires more detailed analysis.

Java and Python programs usually use string concatenation to generate log messages
and often rely on standard logger packages (such as log4j or its Python ports). Analyzing

12

System Nodes Messages Log Size
Darkstar 1 1,640,985 266 MB

Hadoop (HDFS) 203 24,396,061 2412 MB
Google System1 tens of thousands 2 tens of billions 400 GB

Table 2.2: Data sets used in evaluation. Nodes=Number of nodes in the experiments.

these logging calls requires understanding data types, which we detail in Chapter 3. Our
source-code-analysis based log parsing approach successfully works on most of them.

Data set used in this dissertation

To be succinct yet reveal important issues in console log mining, we focus further discus-
sion on three representative systems shown in Table 2.3: the Darkstar online game server,
the Hadoop File System (HDFS), and a production system used at Google. All these systems
handle persistence, an important yet complicated function in large-scale Internet services.
However, they are different in nature. Darkstar focuses on small, time sensitive transactions,
while HDFS is a file system designed for storing large files and batch processing. Google’s
system is also a storage system, but runs at much larger scale. Darkstar and Hadoop are
both written in Java, and represent two major open source contributors (Sun and Apache,
respectively) with different coding and logging styles. Google’s system is implemented in
C++ and has its own coding standards and logging libraries.

For HDFS and Darkstar data, we collected logs from systems running on Amazon’s
Elastic Compute Cloud (EC2) and we also used EC2 to analyze these logs. Table 2.2 sum-
marizes the log data sets we used. The Darkstar example revealed a behavior that strongly
depended on the deployment environment, which led to problems when migrating from
traditional server farms to clouds. In particular, we found that Darkstar did not grace-
fully handle performance variations that are common in the cloud-computing environment.
By analyzing console logs, we found the reason for this problem, as discussed in detail in
Section 4.3.1.

Satisfied with Darkstar results, to further evaluate our method we analyzed HDFS logs,
which are much more complex. We collected HDFS logs from a Hadoop cluster running on
over 200 EC2 nodes, yielding 24 million lines of logs. We successfully extracted log segments
indicating run-time performance problems that have been confirmed by Hadoop developers.

The Google data is collected from one of Google’s production clusters. It contains logs
from each node, ranging from several days to a couple of months, depending on the rate
at which messages are generated and the utilization of hard drive space on each particular
node. In this dissertation, we focused on logs from a storage system during a two-month
period of time. We applied both identifier based detection and state variable based detection
techniques. We found that the our analysis methods remained almost the same, despite of
size and complexity of the log, and the analysis results were insightful.

All log data are collected from unmodified off-the-shelf systems. Console logs are written
directly to local disks on each node and collected offline by simply copying log files, which

13

shows the convenience (no instrumentation or configuration) of our log mining approach. In
the HDFS experiment, we used the default logging level, while in the Darkstar experiment,
we turned on debug logging (FINER level in the logging framework). Google’s logging level
defaults to a level similar to INFO level in HDFS, but instead of recording each request, it
focuses only on important operations such as object creation and background processes.

2.4 Summary

Our log analysis techniques are based on the following four key insights:

• Despite the free-text appearance of console log messages, they are in fact structured,
and the source code contains the schema definition of these messages.

• Console logs in many systems contain common information, most notably, identifiers
and state variables. This information leads to useful features in problem detection.

• Many important problems in systems are captured not by individual error messages
in logs, but by abnormal sequences of messages.

• Console logs from production systems usually exhibit a strong pattern, due to the fact
that normal operations dominate in those systems. However, because of the simple
mechanism used in console log collection, there can be many inaccuracies.

We developed a four-step methodology for automated analysis of console logs, which
includes parsing, feature creation, machine learning and visualization steps. Each step
makes the data more structured and less noisy. All four steps are modularized so different
algorithms can be “plugged in”. In this dissertation, we focus on algorithms generally
applicable to many different systems.

To demonstrate the generality of our systems, we surveyed a number of different systems,
and show that our methods apply to most of them. We also studied logs from three of
these systems in detail. These three systems are different in functionalities, use cases,
programming styles, deployment scales, from a single node to thousands of nodes. The logs
we collected range from just over a million lines to hundreds of billions of lines. We show
that our methods work in this variety of cases.

In the next chapter, we will discuss the source-code-analysis-based log parsing techniques.
We introduce parsers implementations for different languages and focus on the language-
specific issues in four different languages. We also briefly discuss how we can obtain log
structure directly from program binaries when source code is hard to obtain or manage.

14

System Lang Logger Msg Construction Lines
of
Code

Lines
of
Logs

Vars Parse ID ST

Operating system
Linux (Ubuntu) C custom printk + printf wrap 7477k 70817 70506 Y Yb Y
Low level Linux services
Bootp C custom printf wrap 11k 322 220 Y N N
DHCP server C custom printf wrap 23k 540 491 Y Yb Y
DHCP client C custom printf wrap 5k 239 205 Y Yb Y
ftpd C custom printf wrap 3k 66 67 Y Y N
openssh C custom printf wrap 124k 3341 3290 Y Y Y
crond C printf printf wrap 7k 112 131 Y N Y
Kerboros 5 C custom printf wrap 44k 6261 4971 Y Y Y
iptables C custom printf wrap 52k 2341 1528 Y N Y
Samba 3 C custom printf wrap 566k 8461 6843 Y Y Y
Internet service building blocks
Apache 2 C custom printf wrap 312k 4008 2835 Y Y Y
mysql C custom printf wrap 714k 5092 5656 Y Yb Yb

postgresql C custom printf wrap 740k 12389 7135 Y Yb Yb

Squid C custom printf wrap 148k 2675 2740 Y Y Y
Jetty Java log4j string concatenation 138k 699 667 Y Y Y
Lucene Java custom custom log function 217k 143 159 Ya Y N
BDB (Java) Java custom custom trace 260k - - - Y N
Web Applications
MoinMoin Python custom string replacement 96k 566 611 Y Y Y
Trac Python custom string replacement 84k 104 65 Y Y Y
AppEngine SDK Python custom string replacement 122k 378 349 Y Y Y
Flash Game Client ActionScript AS3 built-in string concatenation -d -d -d Y Y Y
Distributed systems
Hadoop Java custom log4j string concatenation 173k 911 1300 Y Y Y

Continued on next page ...

15

... Continued
System Lang Logger Msg Construction Lines

of
Code

Lines
of
Logs

Vars Parse ID ST

Darkstar Java jdk-log Java format string 90k 578 658 Y Yb Yb

Nutch Java log4j string concatenation 64k 507 504 Y Y Y
Cassandra Java log4j string concatenation 46k 393 437 Y N Y
Storage Prototype C custom custom trace -c -c -c -c Y Y
Google System 1 C++ custom string concatenation -d 10k -d Y Y Y
Google System 2 C++ custom string concatenation -d 21k -d Y Y Y
Google System 3 C++ custom string concatenation -d 6k -d Y Y Y

Table 2.3: Survey of console logging in popular software
systems. LOC = lines of codes in the system. LOL
= number of log printing statements. Vars = number
of variables reported in log messages. Parse = whether
our source analysis based parsing applies. ID = whether
identifier variables are reported. ST = whether state vari-
ables are reported.

aLogger class is not consistent in every module, so we need to manually specify the logger function name for each module.
bSystem prints minimal amount of logs by default, so we need to enable debug logging.
cSource code not available, but logs are well structured so manual parsing is easy.
dOmitted due to confidentiality issues.

16

Chapter 3

Console Logs Preprocessing

The convenience and flexibility of console logs come from the support of using free text
messages. This flexibility makes the analysis of such logs very difficult. Console log parsing
has been the focus of much prior work. There are tools that help extracting “standard
fields” such as timestamps, from logs [87, 35]. These tools, however, are not able to extract
message types and message variables (defined in Section 2.1), the essential information used
in this research.

We therefore focus on the free text part of a log message, as shown in Figure 3.1. At
the top of the figure, human readers would reasonably conclude that 325, 346, COMMITTING,
and ABORTING are message variables while the rest are constant strings marking message
types. They could then write a regular expression such as starting: xact (.*) is (.*)

to “templatize” such log messages. We want to automate this process.
Automating log parsing is essential in Internet services where code churn is very high.

Figure 3.2 plots the number of new log printing statements added to the source code each
month in four Google systems during the past six years. Systems 1, 2, 3 are relatively
mature systems, while System 4 is new development. We can see that there are tens or
even hundreds of new log printing statements introduced every month independent of the
development stage. These new logs are added either to test new functionalities or to debug
pre-existing problems. Without an automated message parsing solution, it is difficult to
maintain manually-written rules with such a high churn rate.

Much work has been done to automatically extract variables from free text messages.
Some projects use heuristics such as matching numbers or IP addresses [99, 61]. The heuris-
tics are not general enough to handle string-valued variables. Others have used more so-
phisticated data mining methods to discover the structure of the log message. Most of these
methods rely on repeating textual patterns [95, 30, 68]. These methods work well on mes-
sages types that occur many times in the log, but they cannot handle rare message types
that are likely to be related to the runtime problems. Chapter 7 discusses related work in
more detail.

As discussed in Section 2.1, it is much easier for a machine to use the source code as the
“schema” for console logs. Our log parsing method contains two separate steps: 1) static
source code / binary analysis to extract message templates for all possible log messages,

17

starting: xact 325 is COMMITTING

starting: xact 346 is ABORTING

1 CLog.info("starting: " + txn);

2 Class Transaction {

3 public String toString() {

4 return "xact " + this.tid +

5 " is " + this.state;

6 }

7 }

Figure 3.1: Top: two lines from a simple console log. Bottom: Java code that could produce
these lines. This figure is the same as Figure 2.1 in Chapter 2, and is reproduced here for
easy reference.

and 2) runtime log parsing to parse each message. We focus on the accuracy of generated
message templates in the first step and on scalability in the second. Notice that the first
step is programming language dependent while the second step is not. We implemented
parsers for four languages, and they all share the same second step.

In this chapter, we first discuss the “big picture” of our parser design. To be concrete,
we provide a running example using our Java parser as a case study in Section 3.2. Then
we briefly introduce our parser implementations for C, C++ and Python, highlighting the
language specific challenges and solutions. Section 3.4 introduces our methods of extracting
message templates directly from program binaries.

We evaluate our parser accuracy with two methods. First, for systems for which we
do not have a large enough amount of log data, we use a “micro” evaluation method, in
which we compare the message templates with manually extracted templates from program
source code. We discuss these “micro” evaluation results along with the introduction of the
parser implementations. Second, for systems for which we have enough log data, we perform
end-to-end evaluation on both steps of log parsing, and we discuss the results in Section 3.5.
Both evaluations demonstrate highly accurate parsing results.

3.1 Console Log Parser Design

3.1.1 Challenges in log parsing

Conceptually, if the software is written in a language like C, it is likely that the tem-
plate can be directly inferred from printf variants that generate the messages, such as

18

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

Months

N
ew

 L
og

 P
rin

ts

System1
System2
System3
System4

Figure 3.2: Number of new log printing statements added each month in four real Google
systems. System 1, 2, 3 are relatively mature systems, while System 4 is new develop-
ment. We can see that new log messages are constantly introduced at different stages of
development.

fprintf(LOG, "starting: xact %d is %s"), with the various escapes (%d, %f, and so on)
telling us something about the types of the variables1.

It is more challenging to handle object-oriented (OO) languages such as Java, which is
increasingly used for open source software ([94] and Table 2.3 in Section 2.3). Consider
the excerpt of Java source shown in the bottom half of Figure 3.1, which generated the two
example log lines. Clearly, the tid variable of the txn object corresponds to the identifiers
325 and 346 in the log message of Figure 3.1, and the state variable corresponds to the
labels COMMITTING and ABORTING. Trying to extract a regular expression by simply “grepping”
the source code would only give us starting: (.*) (line 1), which does not distinguish
tid and state as separate features with distinct ranges of possible values. Critically, as we
will show later, we need this finer level of feature resolution to extract the correct identifier
(tid) to detect “interesting” problems. Three reasons contribute to this difficulty in OO
languages.

1. First, we need to know that CLog identifies a logger object; that is, knowing the name
of the logger class is not enough.

2. Second, the OO idiom for printing is for an object to implement a toString() method
that returns a printable representation of itself for interpolation into a string. In this

1Technically, the C parsers are complicated by the extensive use of preprocessor macros, which we will
detail in Section 3.3.1.

19

starting: (.*)
[transact][Transaction]

[Participant.java:345]

Partial message template

toString() definitions

starting: xact (.*) is (.*)
[tid,state][int,String]
[at Participant.java:345]

starting: xact (.*) is (.*) at node (.*)
[tid, state, node] [int, String, Node]
[at Participant.java:345]

Complete message templatesASTSource Code Type hierarchy info

Reverse Index

Console Logs

Parsing results

Static source code analysis Runtime log parsing

Figure 3.3: Using source code information to parse console logs.

example, the toString() method of the abstract type Transaction actually reveals
the underlying structure of the log message, including the tid variable we need for our
feature creation algorithm.

3. Third, due to class inheritance, the actual toString() method used in a particular
call might be defined in a subclass rather than the base class of the logger object.

3.1.2 Parser design overview

All three of the above challenges are addressed by our log parsing method, which consists
of two steps: a static source code analysis step and the runtime log parsing step, as Figure 3.3
illustrates.

Step 1: Static source code analysis

The static source code analysis step takes program source (and possibly the names of
the logger class) as input. In this step, we first generate the source code’s abstract syntax
tree (AST) [4], a popular data structure for traversing and analyzing source code. We use
the AST implementations built into the open-source Eclipse IDE for both Java and C/C++
codes [82, 38], while dynamic scripting languages like Python has built-in functionality to
analyze AST [66]. For programs that use printf-style logging, we identify all the logger calls
in AST and extract the message template directly from the format string.

Object oriented languages bring extra complexity in the static analysis step, as discussed
in the previous section. We still automatically discover all log print statements, but ana-
lyzing these statements alone gives us only a partial message template, since the template
may involve interpolation of objects of non-primitive types, as in line 1 of the source code
excerpt in Figure 3.1.

In addition, we do type inference on all objects appearing in the log printing state-
ments. For each type, we then discover its toString() definitions, and look at the string
formatting statements in those calls to deduce the types of variables in message templates,
substituting this type information back into the partial templates. We do this recursively
until all templates interpolate only primitive types; if no toString() method can be found
for a particular variable anywhere along its inheritance path, we assume that that variable

20

can take on any string value and we do no further semantic interpretation. A single pass
can accomplish all of these operations over the AST. The output of the process is the set of
complete message templates, with a data structure containing each message’s template (reg-
ular expression), position in the source code, and the names and data types of all variables
appearing in the message.

We describe a concrete example of implementing a parser for Java in the Section 3.2 and
briefly introduce the language-specific challenges in Section 3.3.

Notice that our source code analysis only uses function call statement information and
data type information. Sometimes, when source code is not readily available or is too
hard to manage, we can extract the similar information directly from program executables.
We discuss our implementations of binary parsers for both Java class files and Windows
executables compiled from C programs in Section 3.4.

Step 2: Runtime log parsing

In a nutshell, in the runtime log parsing step, we perform the following two operations:
finding the matching template for each log message and extracting message variables using
the template. Note that finding the matching template for a message implies identifying
the message type. The goal is to make the process efficient and scalable.

The most computationally intensive step is finding the matching template, because Ta-
ble 2.3 in the previous chapter shows that there can be tens of thousands of message tem-
plates, and we need to do the matching for each message. In order to make the process of
matching template fast, we first compile all message templates into an Apache Lucene [44]
reverse index [69], which allows us to quickly associate any log message with the correspond-
ing template. The index fits in memory easily (it is a few MB in size), and once the index
is loaded, for each log message, the matching process goes as following.

1. Using established heuristics in log analysis [61, 92], we construct an index query from
each log message by removing all numbers and special symbols.

2. We search the index with the query constructed, and rank results by relevance score.

3. From the list of relevance-ranked candidate results returned by the reverse-index
search, we pick the highest-ranked result that allows a regular expression match to
succeed against the log message.

After finding the matching template, the actual variable extraction is a simple regular
expression operation. At this step, we also try to add information such as data type from
the source code to the parsing results.

We note that once the reverse index is distributed to each of the parser node, the parsing
step is embarrassingly parallel, because parsing of each message is independent of other
messages. We implement the parser as a Hadoop map-reduce job by replicating the index
to every worker node and partitioning the log among the workers, achieving near linear
speedup. The map stage performs the reverse-index search; the reduce stage processing

21

0 Transaction transact = ...;

1 Log.info("starting: " + transact);

2 Class Transaction {

3 public String toString() {

4 return "xact " + this.tid +

5 " is " + this.state;

6 }

7 }

8 Class SubTransaction extends Transaction{

9 private Node node =;

10 public String toString() {

11 return "xact " + this.tid +

12 " is " + this.state +" at "+ node;

13 }

14 }

15 Class TransactExec extends Transaction {

16

Figure 3.4: Example source code segments. Notice that the logger call in line 1 may generate
different log messages at runtime due to the class hierarchies.

depends on the features to be constructed, and Section 4.1 in the next chapter shows two
examples of such features.

In particular, we do not claim to handle every situation correctly (despite extensive
support for language idioms), as we are essentially guessing programs’ runtime behavior
from static analysis. However, we do show that the high accuracy of our parser enable us
to extract features previously not possible from existing log parsers.

The most complex part of the techniques is in the static analysis step, which is also
programming language specific. In the next two sections, we provide examples of such
parsers to illustrate the subtleties in the parser design.

3.2 Object Oriented Languages: A Running Example

Designing a parser to extract message templates for object oriented languages is the
most involved. We illustrate the details of our source code analysis techniques for message
template extraction with a running example in Java, though the general idea applies to
other object-oriented languages as well.

22

starting: (.*) [transact][Transaction] [Participant.java:345]

Partial message template

Transaction xact (.*) is (.*)
[tid, state][int, String]

SubTransction xact (.*) is (.*) at (.*)
[tid, state, node][int, String, Node]

TransactExec ……

Class Hierarchy Table

toString Table

Transaction

SubTransaction TransactExec

starting: xact (.*) is (.*) [tid,state][int,String] [at Participant.java:345]

starting: xact (.*) is (.*) at node (.*) [tid, state, node] [int, String, Node][at Participant.java:345]

… … …

Complete message templates

(a)

(b)

(c)

Partial template extraction

Type analysis

starting: (.*) [transact][Transaction] [Participant.java:345]

xact (.*) is (.*) [tid, state] [int, String]

starting: (.*) [transact][Transaction] [Participant.java:345]

xact (.*) is (.*) at (.*) [tid, state, node] [int, String, Node]

… … …

Type resolution

(Transaction)

(SubTransaction)

(TransactExec)… …

(d)

Figure 3.5: Constructing message templates from source code analysis.

Figure 3.4 is an extended version of the example shown in Figure 3.1. Line 1 of Figure 3.4
is a simple logger call. However, as we discussed in Section 3.1, it might generate different
kinds of messages such as
starting: xact 325 is COMMITTING

starting: xact 346 is ABORTING at n1:8080

This complication is because the variable transact is a complex data type with multiple
toString() definitions (Line 2-15). Our goal is to discover all possible message templates
that Line 1 could generate, so we need to resolve the type hierarchy of transact.

Figure 3.5 illustrates the major steps of our approach. All analysis is done on the
abstract syntax tree (AST) [4] generated by the Eclipse IDE. Our analysis uses three data
structures created from the AST: a list of partial message templates, a table of templates
representing toString() methods for all declared types (the “toString Table”), and a Class
Hierarchy table. Although logically the data structures are independent of each other, our
implementation builds them using a single pass over the AST.

Partial message template extraction

We first look for all method invocations on objects of the logger class. These invocations
give us the list of all log messages that could possibly be generated, whether they actually
appear in the log or not. Common logger class libraries such as log4j -based loggers [39]
can be automatically detected by examining the library the software uses. Analyzing the
parameters of the logger call in Line 1 of Figure 3.4 gives the partial message template shown
in Figure 3.5 (a). We also record the names and types of message variables interpolated
into the log message (such as transact in Line 1 of Figure 3.4), which are crucial for the
final type resolution, and the filename and line number of the logger call.

23

Type analysis

We next determine how each message variable will be rendered as a string in the logger
call. For example, because transact is of type Transaction, we can determine how it would
appear in a log message by looking at the toString() method of the Transaction class.
We traverse the AST to build a toString Table containing the toString() definitions and
toString templates of all classes. Figure 3.5 (b) shows the toString templates extracted from
Lines 2–16 in Figure 3.4.

Due to the importance of class hierarchy information, we do a third traversal on AST to
build the Class Hierarchy table. Box (c) in Figure 3.5 shows an example.

Type resolution

Finally, for each partial message template containing non-primitive variables (i.e., mem-
ber of a non-primitive class), we lookup the class’s toString method and corresponding
toString templates in the toString Table, and substitute the templates found into the par-
tial message template. For example, for the logger call in Line 1 of Figure 3.4 that refer-
ences the transact object, we lookup the toString method of its class (Transaction). If the
toString() method is not explicitly defined in Transaction class, we use the Class Hierarchy
Table, built from the AST, to attempt to resolve toString() in the object’s superclasses.
We do this recursively until either a toString() method is found or we reach the root of the
class hierarchy (in Java, the java.lang.Object class), in which case we give up and treat
the template as an unparsed string (.*).

The sub-classing problem is also handled in this step. We find all descendants of a
declared class. If there is a toString() method defined in any sub-classes, we generate a
message template as if the sub-class is used instead of the declared class. For example, be-
cause SubTransaction is a sub-class of Transaction, we generate a second message template
capturing the case when transact is actually an instance of SubTransaction. We do this for
every subclass of Transaction known at compile time.

Lastly, note that type resolution is recursive. For example, if an object has class
SubTransaction, we examine the toString method of SubTransaction (line 8 of Figure 3.4)
and we find that it interpolates a variable node of non-primitive type (line 11). We recurse
and substitute in the toString template of Node. We do this until the type of every vari-
able becomes a primitive type or unparsed strings. We also limit the maximum depth of
recursions to deal with recursive type definitions.

Corner cases and bad logging

Because we are using static analysis techniques to predict what the log output will look
like at runtime, it is impossible to correctly handle all cases. Examples of such cases include
loops and recursive calls. We make our technique robust by allowing it to fall back to
unparsed string (.*) in such cases. In the real systems we studied, these hard cases rarely
occur in log printing and rarely cause problems in practice. There are some language-specific
idioms such as Arrays.deeoToString(array) (array dumping) in Java, which has an implicit

24

built-in format that uses commas to separate array elements. Our parser recognizes these
idioms and handles them as special cases.

Of course, our method relies on programmers to write “good” log messages. For example,
if programmers use very general types such as Object in Java (very rare in practice), our
type resolution step fails because there are too many possibilities. We guard against this by
limiting the number of descendants of a class to 100, which is large enough to accommodate
all logs we studied but small enough to filter out genuine JDK, AWT, and Swing classes
with many subclasses (such as Object). Features such as generics and mix-ins in modern
OO languages provide the mechanisms usually needed to avoid having to declare an object
in a very general class. In addition, some log messages are undecorated, emitting only a
variable of some primitive type without any constant label. These messages are usually
leftovers from the debugging phase, and we simply ignore these messages. It is not a goal
of this dissertation to try to fix bad logging practices, but helping programmers producing
more useful logs is an interesting future direction (more details in Chapter 8).

3.3 Parsers for Other Languages

In addition to the Java parser discussed in the previous section, we also implemented
parsers for some additional languages to demonstrate the generality of our log parsing
method.

3.3.1 C and C++

C and C++ are still among the most widely used programming languages today [94].
As we discussed in Section 3.1, it is conceptually simple to extract message templates from
C programs, as most C programmers use printf style formatting strings, which explicitly
reveal the message template. However, in practice, extracting templates from C programs
is complicated by the heavy use of preprocessor definitions (i.e. the macros).

C++ programmers use both printf style format strings and C++-stream style string
concatenations. Although C++ is an object oriented language, the systems we analyzed in
this dissertation do not use the object-oriented features for log printing. Thus, we did not
perform type resolution steps as we did for Java.

We use built-in parser for Eclipse C Development Tooling (CDT) [38] to parse both C
and C++ code into AST. The method we used to traverse the AST to extract all log printing
functions and their parameters. The implementation is very similar to the Java parser.

C/C++ programmers heavily utilize macros [53], which complicate our analysis. These
macros are handled by the preprocessor before compiling, and thus are not part of the AST.
What is worse, the results of these macro expansions are really determined by external
information, such as the preprocessor arguments passed to the compiler at build-time and
header files that may be OS-dependent.

We cannot simply ignore these macros, as programmers use macros extensively for log-
ging, and ignoring these macros prevents the resulting program from compiling correctly.
Our analyzer could analyze the makefile to understand what arguments values are used.

25

However, we face the cross-compiling issue: unless the system we use for static analysis is
exactly the same as the system generating logs, the templates might still be different due
to the system-dependent macros.

Instead, our code tries to evaluate the macro with all possible branches, and take the
union of all the message templates extracted from each branch. In this case, we produce
more possible templates than actually exist, but completeness is our goal. These templates
use a small amount of extra space in the index, but do not affect our log parsing accuracy
as they never match any log messages during the online log parsing stage.

Inter-dependencies of libraries and packages are also more complex for C and C++ pro-
grams. In contrast to Java, it is common for an open source C/C++ to require header files,
which could contain macros from the libraries. However, it is a challenge to get all source
files that could print logs. We currently use heuristics to detect commonly used libraries,
and use full text search on the entire repository for any log messages that does not match
any template, in order to find the possible source file. Because of this complication, extract-
ing message templates directly from program binaries sometimes yields better accuracy. We
discuss the binary analysis approach in Section 3.4.

System LOC Manual Parser Accuracy
Apache HTTP Server 1.3 125,782 499 448 89.8%
Open SSL 84,734 2,348 2,227 94.8%

Table 3.1: Parsing accuracy of C/C++ parser. LOC is the number of source code lines. We
compare the number of correctly extracted message templates by the C/C++ parser with
the message templates manually discovered from source code. In the Apache case, we only
considered ap log error logger function.

We evaluate the parser with two widely used systems, Apache HTTP Server and OpenSSL
library, and Table 3.1 summarizes the results. The relatively lower extraction rate in the
Apache case is mainly due to the complexity of the macros used in Apache source code.
Specifically, there are nested macros which might need multiple parameters to expand. Our
current parser does not handle such cases, so it missed some templates.

Although we could fix these problems, the work in binary parsing makes us aware that
most of these logger calls embedded in complex macros are not compiled into the final
executables. Thus, we did not improve the parser further along this direction, but instead,
we used binary parsing to solve the problem. Section 3.4.2 further discusses the parsing
results using program binaries.

3.3.2 Scripting languages (Python)

Python is a very popular scripting language, and it is widely used in Internet service
systems to implement both maintenance scripts and user-facing web applications [66]. In
this dissertation, we use Python as an example to demonstrate our techniques on scripting
languages.

26

System LOC Manual Parser Accuracy
MoinMoin 96,363 576 566 98.3%
Trac 84,467 107 104 97.2%
Google App Engine 122,549 382 378 99.0%

Table 3.2: Python parser accuracy. LOC is the number of source code lines. We compare
the number of correctly extracted message templates by the Python parser with the message
templates manually discovered from source code.

Although it is a scripting language, the Python 2.x’s runtime environment provides a
built-in compiler module, which allows programmers to access AST tree information using
normal Python scripts. Like all other languages previously discussed, our Python analyzer
is based on traversing the AST to detect log printing statements. Python programs usually
use two logging styles, the built-in print statements and the standard logging library, which
is quite similar to the Java logger [66].

For the purpose of extracting message templates, there are two major differences between
a scripting language and conventional languages discussed above. First, variable types are
not declared explicitly, but dynamically inferred by the interpreter at runtime. Variable
types can even change while the program is running. Dynamic typing makes it hard to
implement type inference as we did in the Java case. Fortunately, Python programmers often
use a printf-like logging style, specifying the entire format in the log printing statements. In
systems we studied, missing type information does not have a major impact on our parsing
accuracy.

Second, the syntax is much more flexible than other languages. The most notable idioms
are the Perl-style “do or die” expressions. These expressions are commonly used in logging
calls. For example, the call logging.info("Connection was made from connection %s"

%(new connection() or die())) combines logging, the function call, and error handling
(or die) in the same statement. Without debating whether this is good programming style,
our parser is tuned specifically to accommodate these common constructs. Of course, there
are some expressions that we could not handle correctly, as discussed below.

We tested our parser on three widely deployed Python programs: the MoinMoin Wiki [73],
the Trac Project Management Tool [26], and Google App Engine Python SDK2 [37]. These
applications cover both common use cases for Python: building web applications (MoinMoin
and Trac) and writing operational scripts (App Engine SDK).

Table 3.2 shows that in all these three systems, we can get very accurate parsing re-
sults. In fact, there is only one case that our parser does not handle correctly, the list
comprehension feature. This feature in Python allows programmers to dump the entire list
as a variable, so programmers can write lines like print [c for c in story.comment set].
Without proper type information, it is impossible to infer what the list will look like in the
printouts.

2The SDK is not a server program. It is a tool kit allowing programmers to emulate the Google App
Engine Python environment for software development.

27

3.4 Extracting Message Templates from Program Bi-

naries

Although we described our log parsing method as “source-code-analysis-based”, the tech-
nique can be easily extended to use program binaries instead of source code. Obviously,
using binary is the only choice if source code is not available, but there are other benefits
as well. First, binary is much easier to manage by system operators. Checking-out and
building source code are traditionally only performed by developers and may be beyond
operators’ skill sets. Second, as we discussed in the C/C++ parsing case, it is often tedious
to find source code for all required libraries/modules, especially when these modules are all
constantly changing.

Of course, we may not always always get the same results with binaries as using source
code. Obviously, most of the variable names are lost, unless the program is compiled with
extensive debugging information. Also, it becomes more challenging if C++ stream style
logging is used. We did not implement parsers for C++ binaries, which could be an inter-
esting future direction.

We briefly introduce our binary analysis implementations for Java byte code and Win-
dows binaries compiled from C programs. Specifically, in Java, we can achieve the same
accuracy using source code or binaries. There are more differences between the templates
extracted from C source and binaries, and we discuss these differences in Section 3.4.2.

3.4.1 Java byte code

Java program compiles into an intermediate language, the Java byte code, a special
instruction set executed by the Java Virtual Machine (JVM) [62]. Java byte code concep-
tually represents the instruction set of a stack-oriented, capability architecture. Each byte
code opcode is one byte in length, although some require parameters, resulting in some
multi-byte instructions. The intermediate byte code representation is a crucial component
to support the cross-platform functionality of Java. The byte code is stored in class files,
and each class file represents a Java class. In addition to the byte code instructions, it
also contains meta information such as class name, super classes / interfaces, access flags,
and all constants, fields, and method definitions within the class. We leverage these meta
information to provide the type-inference part of our message template extraction.

We use an open source Java byte code analysis and manipulation library, ASM [77].
ASM library is designed to generate, transform and analyze compiled Java class files. ASM
allows us to use higher level concepts than bytes, such as numeric constants, strings, Java
identifiers, Java types, fields, local variables etc [11].

Unlike the AST model we used in the source code analysis case, ASM uses an event-
based representation of a class, and notifies our analysis code of each instruction or definition
found in the class file [11]. Compared to the AST model, which is a top-down approach,
the event model parses the program bottom-up. For this reason, we keep a stack in our
analyzer to track previous parser events and look for potential function calls and return
statements of the toString() methods. We find that we can obtain many names of types,

28

functions and class variables from Java byte code, even if the debug option is turned off
during compilation. Of course, we do not get names for local variables, but this does not
affect the analysis much.

As with Java source code, we scan the byte code in two passes. The first pass builds the
type hierarchy graph while the second pass extracts all message templates. Once these two
passes are done, the third step of constructing complete message templates is exactly the
same as the source code case.

We evaluate the byte code analysis on class files for HDFS and Darkstar (described
in Section 2.3). These class files are the same version as the program binary. Instead of
building the class files from source code ourselves, we download the binary directly from
the project websites to ensure that it is compiled with the “default” settings. The result
is very promising: we recover exactly the same set of message templates from each system,
except for the local variables and some source code line numbers. This experiment shows
that since we do not rely on the variable names for analysis, we get the same result with
both binary analysis and source code analysis for the Java case.

3.4.2 Binaries from C programs

Many server programs are still written in C, especially the packages bundled in Linux
distributions. Although most of these packages are open source, managing the source code
can be overwhelming for system operators. Modern packaging tools such as Debian’s dpkg
and RPM Package Manager [85] make the effort of making the source code distribution
easier, but they do not eliminate the difficulty of building a package from source, which is
intimidating to system operators. Thus, we want to support extracting message templates
directly from program binaries compiled from C programs.

Conceptually, extracting message template from binaries is simple thanks to the printf
style format strings. On most platforms, these printf strings appear in either data or text
segments in program binaries. Also, as there are many log printing statements throughout
the program, it is easy to automatically detect which functions often use these strings
as parameters, which helps us distinguish the message template strings from other string
constants used in the program. Note that it is also correct to include more strings than
necessary into the message template index. Those non-template strings are unlikely to match
any log message, causing only minor performance hit, without affecting parsing accuracy.
Therefore, in our current implementation, we do not make much effort to distinguish whether
a string is a printf formatting string or not.

In order to handle binary file formats in different operating systems, we build our analyzer
on top of Interactive Disassember (IDA) [24], a popular tool for reverse-engineering. In
addition to disassemble binary files, IDA also uses many heuristics to distinguish data types
from the bytes in binary. It also tries to include as many debugging symbols as possible,
which helps us to recover part of the function names from program binaries. IDA supports
its own scripting language, in which our analyzer is written. Our experience shows that
IDA can successfully recover most of the strings from both Windows executable files (exe),
dynamically linked libraries (dll), and Linux binaries on Intel x86.

29

Our parser scans through the disassembly result for pointers to string variables. Once
we find the variable, we find the next CALL/JMP instruction to get the name of the callee. We
also record all other parameters passed to the function. Finally, we mark the location of the
function call. IDA provides convenient functionality to determine the enclosing functions
for each location in the text segment, and we use this functionality to get the caller of
the logger. After processing the entire binary file, we use heuristics, such as counting the
frequency of using % in string arguments for each function, to guess which function is related
to logging.

System Source Binary Manually Found in Binary
Apache HTTP Server 1.3 448 258 258
Open SSL 2,227 1,631 1,631

Table 3.3: Comparison between C source parser and C binary parser. The binary are cygwin
binaries downloaded from cygwin website. The third column is the number of format strings
we found by manually examine the disassembled binary.

Table 3.3 summarizes our comparison results between the source code and binary based
parsers. We see major differences between the number of message template extracted from
source and binaries. We manually examined the disassembly output in order to find the
problem (the third column in Table 3.3). Surprisingly, our manual examination confirmed
that all printf format strings that appear in the binary files are correctly extracted by our
binary analyzer. Further examination of the results reveals the following two problems
causing the difference between source and binary results:

1. As we discussed in Section 3.3.1, the GNU code base often contains code for many
platforms. On any specific platform (cygwin in our case), only a fraction of the code
is actually compiled into the executables.

2. In the Apache case, the build scripts automatically download and apply patches to the
source code before compiling. The patches may add, remove, or modify log printing
statements. Our source parser does not have access to these patches, so there might
be differences between results from source and binaries.

Because of the two problems above, in fact the source code analysis in this case can
neither provides the accurate list of format strings, as almost 50% of the strings never get
into the binary, nor cover all possible cases, as new message templates might be introduced
by patches during the build process. In that sense, we believe using binary analysis can
even produce better parsing accuracy, unless the ability to extract variable names is highly
desirable.

3.5 Evaluation: Accuracy and Scalability

The parsing results presented in the previous section are “micro” evaluations, which only
show the accuracy of extracting message templates from source code or binaries. Lacking

30

System Total Log Lines Failed Failed %
HDFS 24,396,061 29,636 0.121%
Darkstar 1,640,985 35 0.002%

Table 3.4: Parsing accuracy using Java Parser. Parse fails on a message when we cannot
find a message template that matches the message and extract message variables.

a large enough log data set for all ten systems, we present the “end-to-end” evaluation
of message-level parsing accuracy in this section using the five data sets introduced in
Section 2.3. We achieve over 99% parsing accuracy in all five data sets, which is far higher
than existing parsers. We also show that our parser can scale from a single node to thousands
of nodes and handle extremely large data sets efficiently.

3.5.1 Accuracy

Table 3.4 shows that our log parsing method achieves over 99.8% accuracy on both
systems. Specifically, our technique successfully handled rare messages types, even those
that appeared only twice in over 24 million messages in HDFS. On the contrary, word-
frequency based console log analysis tools, such as SLCT [95], do not recover either of the
features we use in this paper. State variables are too common to be separated from constant
strings by word frequency only. In addition, these tools ignore all rare messages, which are
required to construct message count vectors.

There are only a few message types that our parser fails to handle. Almost all of these
messages contain long string variables. These long strings may overwhelm the constant
strings we are searching for, preventing reverse index search from finding the correct message
template. However, these messages typically appear at the initialization or termination
phase of a system (or a subsystem), when the state of the system is dumped to the console.
Thus, we did not see any impact of missing these messages on our detection results.

System Total Log Lines Failed %
Google System 1 46 ×109 <0.001%
Google System 2 8 ×109 <0.012%
Google System 3 8 ×109 <0.011%

Table 3.5: Parsing Accuracy using the C/C++ parser on production data from Google.

Table 3.5 summarizes the message parsing accuracy on Google’s production logs. We
parsed source code for all libraries referenced by each of the systems in order to cover as
many message types as possible. The parser output is checked by a heuristic-based checker
to ensure the message type and message variables are correctly extracted. The “Failed
%” field in the table is calculated from the output of this checker. Failure cases mostly
involve complex array dumps (e.g. programmer could use a function to dump an entire
array in a single log message), and long string variables, such as a command line with tens

31

0 20 40 60 80 100
0

2

4

6

8

10x 10
6

M
es

sa
ge

s/
m

in

Number of nodes

Figure 3.6: Scalability of log parsing with number of nodes used. The x-axis is the number
of nodes used, while the y-axis is the number of messages processed per minute. All nodes are
Amazon EC2 high-CPU medium instances. We used the HDFS data set (described in (Table 2.2)
with over 24 million lines. We parsed raw textual logs and generated the message count vector
feature (see Section 4.1.2). Each experiment was repeated 4 times and the reported data point is
the mean.

of arguments. As these corner cases are relatively rare in the data, we can still achieve high
parsing accuracy.

We believe the accuracy of our parsing is essential; only with an accurate parsing system
can we extract state variables and identifiers—the basis for our feature construction—from
textual logs. Thus, we consider the extra step of static source code / binary analysis to be
a small price to pay, given the high quality parsing results that our technique produces.

3.5.2 Scalability

We evaluate the scalability of our log parsing approach with a varying number of EC2
nodes. Figure 3.6 shows the result: Our log parsing and feature extraction algorithms scale
almost linearly with up to about 50 nodes. Even though we parse all messages generated
by 200 HDFS nodes (with aggressive logging) over 48 hours, log parsing takes less than 3
minutes with 50 nodes, or less than 10 minutes with 10 nodes. When we use more than 60
nodes, the overhead of index dissemination and job scheduling dominate running time.

Google’s logs are almost 2000x larger than the data sets used in Figure 3.6. In order
to have minimal impact on the production system generating these logs, we limited the
resource utilization on each node in log parsing. We were able to distribute the log parsing
execution onto thousands of nodes and parse almost two months’ worth of logs in less than
8 hours.

Due to the stateless nature of the log parser implementation, all experiments show that

32

our log parsing approach scales up and down easily. We can do the entire log parsing on a
single node, or scale to thousands of nodes. We could also perform log parsing as a data
stream processor, which is very useful for our online problem detection.

3.6 Summary

Automatic console log parsing is a prerequisite to perform detailed analysis on message
types and message variables. Existing log parsing methods suffer from either the tediousness
of ad hoc scripting or the lack of accuracy. We used program source code or binary to extract
message template and use these message templates to parse logs. Our technique eliminates
most of the “guesses” involved in console log parsing. Experiments on eleven real world
systems written in four different programming languages show that our technique provides
accurate message template extraction and parsing results. Throughout this chapter, we
assume no changes to existing logging in the programs, even if there are obvious flaws in
logging. We consider an improved logging framework as an interesting future direction (see
Chapter 8).

The goal of log parsing is to discover structure within individual messages, turning an
unstructured text message into semi-structured form containing message types and message
variables. However, as we pointed out in Section 2.1, we need to exploit the inter-message
correlations to detect operational problems in these systems. In the next chapter, we discuss
our method of grouping related messages, representing these groups as numerical features,
and doing anomaly detection.

33

Chapter 4

Offline Problem Detection and
Visualization

Console log parsing makes it easy to handle free textual console logs. However, as we
discussed in Chapter 2, being able to parse log messages does not solve the entire problem, as
parsing only captures the structure of single log message, while most interesting problems
in systems can only be discovered by analyzing a sequence of related log messages. In
this chapter, we introduce the details of the last three steps of our technique: feature
creation, anomaly detection and visualization. Throughout this chapter, we assume that
the analysis is offline, where we have the access to the entire log trace from a complete
execution. Although this offline assumption is sometimes hard to satisfy, it is easier for
readers to understand the ideas behind these techniques. We will discuss the techniques for
performing online detection in the next chapter.

As we discussed in Chapter 2, we focus on features that are based on correlations among
different messages. In this chapter, we discuss two different features, the state ratio vector
and the message count vector, based on state variables and identifiers, respectively. These
two features are generally applicable to logs from many different applications, and represent
two important types of anomalies in distributed systems: anomaly in aggregated behavior
and anomaly in individual operations. These high quality features allow us to apply efficient
machine learning techniques and achieve high detection accuracy. We also show that by
adopting well known techniques in information retrieval, we can further improve the problem
detection accuracy. Finally, because most operators are not familiar with these machine
learning techniques, we visualize the detection result in a single-page decision tree, which
resembles the operation rules that operators are familiar with.

To be concrete in the discussion, we use two real world systems, the Darkstar online
game server [90] and Hadoop File System (HDFS) [9] as case studies in this chapter. We
present the evaluation results for both case studies in Section 4.3.

34

4.1 Feature Creation

Console logs contain records on arbitrarily many different aspects of the program exe-
cution, from tracing individual operations to reporting the aggregated statistics from the
program. The rich variety of data in console logs allows us to extract many features, a ma-
chine learning term meaning numerical representations of certain aspects of the raw data.
Many features are ad-hoc and application specific [61, 75], while some features are com-
mon to many different logs. Most existing work models console logs as a single sequence
of events and analyzes different message types appearing in time windows [45, 67]. Unlike
existing work, we model logs as several interleaving sequences. We also analyze the variables
contained in the log messages in addition to message types. We will discuss related work
further in Chapter 7.

This section describes our technique for constructing features from parsed logs. We focus
on two features, the state ratio vector and the message count vector, based on state variables
and identifiers (see Section 2.1), respectively. The state ratio vector is able to capture the
aggregated behavior of the system over a time window. The message count vector helps
detect problems related to individual operations. Both features describe message groups
constructed to have strong correlations among their members. The features faithfully cap-
ture these correlations, which are often good indicators of runtime problems. Although these
features are from the same log, and similar in structure, they are constructed independently,
describe different aspects of the system execution, and thus have different semantics.

4.1.1 State variables and state ratio vectors

In many systems, during normal execution the relative frequency of each value of a
state variable in a time window usually stays the same. For example, in Darkstar, the
ratio between ABORTING and COMMITTING is very stable during normal execution, but changes
significantly when a problem occurs. As another example, HDFS assigns roughly equal
number of new blocks to each storage node. The number of blocks assigned to some node
might be much smaller than other nodes during a problem period. Notice that the actual
number does not matter (as it depends on workload), but the ratio among different values
matters. State variables can appear in a large portion of log messages. In fact, 32% of the
log messages from Hadoop and 28% of messages from Darkstar contain state variables.

We construct the state ratio vector y to encode this correlation: Each state ratio vector
represents a group of state variables in a time window, while each dimension of the vector
corresponds to a distinct state variable value, and the value of the dimension is how many
times this state value appears in the time window.

In creating features based on state variables, we use an automatic procedure that com-
bines two desiderata: 1) message variables should be frequently reported, but 2) they should
range across a small constant number of distinct values. The number of distinct values
should not depend on the number of messages. Specifically in our experiments, we chose
state variables that were reported at least 0.2N times, with N the number of messages, and

35

had a number of distinct values not increasing with N for large values of N (e.g., more than
a few thousand). Our results were not sensitive to the choice of 0.2.

The time window size is also automatically determined. Currently, we choose a size that
allows the variable to appear at least 10D times in 80% of all the time windows, where D
is the number of distinct values. This choice of time window allows the variable to appear
enough times in each window to make the count statistically significant [20] while keeping
the time window small enough to capture transient problems. We tried with parameters
other than 10 and 80% and we did not see a significant change in detection results.

If a state variable has n distinct values. Recall that each distinct values is represented by
a dimension in the feature vector y. Thus, y is n-dimensional. We stack all n-dimensional
y’s from m time windows to construct the m × n state ratio matrix Ys.

4.1.2 Identifiers and message count vectors

Identifiers, the message variables used to identify program objects, are also prevalent in
logs. For example, almost 50% of messages in HDFS logs contain identifiers. We observe
that all log messages reporting the same identifier convey a single piece of information about
the identifier. For instance, in HDFS, there are multiple log messages about a block when
the block is allocated, written, replicated, or deleted. By grouping these messages, we get
the message count vector, which is similar to an execution path [31] that would come from
custom instrumentation.

To form the message count vector, we first automatically discover identifiers, then group
together messages with the same identifier values, and create a vector per group. Each
vector dimension corresponds to a different message type, and the value of the dimension
tells how many messages of that type appear in the message group.

The structure of this feature is analogous to the bag of words model in information
retrieval [29]. In our application, the “document” is the message group. The dimensions
of the vector consist of the union of all useful message types across all groups (analogous
to all possible “terms”), and the value of a dimension is the number of appearances of the
corresponding message types in a group (corresponding to “term frequency”).

Algorithm 1 summarizes our three-step process for feature construction. We now try to
provide intuition behind the design choices in this algorithm.

In the first step of the algorithm, we automatically choose identifiers since we do not
want to require operators to specify a search key. The intuition is that if a variable meets
the three criteria in step 1 of Algorithm 1, it is likely to identify objects such as transactions.
The frequency/distinct value pattern of identifiers is very different from other variables, so
it is easy to discover identifiers1. We have very few false selections in all data sets, and
the small number of false choices is easy to eliminate by a manual examination. Notice
that continuous numerical values, such as file sizes, do not meet these criteria, because it is

1Like the state variable case, identifiers are chosen as variables reported at least 0.2N times, where N is
total number of messages. We also require the variables have at least 0.02N distinct values, and reported
in at least 5 distinct messages types.

36

Algorithm 1 Message count vector construction

1. Find all message variables reported in the log with the following properties:
a. Reported many times;
b. Has many distinct values;
c. Appears in multiple message types.

2. Group messages by values of the variables chosen above.
3. For each message group, create a message count vector y = [y1, y2, . . . , yn],

where yi is the number of appearances of messages of type i (i = 1 . . . n)
in the message group.

unlikely for the same value to appear in several different message types. In the HDFS log,
the only variable selected in step 1 is block ID, an important identifier.

In the second step, the message group essentially describes an execution path, with two
major differences. First, not every processing step is necessarily represented in the console
logs. Since the logging points are hand chosen by developers, it is reasonable to assume
that logged steps should be important for diagnosis. Second, correct ordering of messages is
not guaranteed across multiple nodes, due to unsynchronized clocks across many computers.
This ordering might be a problem for diagnosing synchronization-related problems, but it
is still useful in identifying many kinds of anomalies.

In the third step, we use the bag of words model [29] to represent the message group
because: 1) it does not require ordering among terms (message types), and 2) documents
with unusual terms are given more weight in document ranking. In our case, the rare log
messages are indeed likely to be more important.

We gather all the message count vectors to construct message count matrix Ym as
an m × n matrix where each row is a message count vector y, as described in step 3 of
Algorithm 1. Ym has n columns, corresponding to n message types that reported the
identifier (analogous to “terms”). Ym has m rows, each of which corresponds to a message
group (analogous to “document”).

Although the message count matrix Ym has completely different semantics from the
state ratio matrix Ys, both can be analyzed using matrix-based anomaly detection tools
(see Section 4.2). Table 4.1 summarizes the semantics of the rows and columns of each
feature matrix.

4.1.3 Implementing feature creation algorithms

To improve the efficiency of our feature generation algorithms in map-reduce, we tailored
the implementation. The step of discovering state variables and/or identifiers (the first
steps in Section 4.1.1 and 4.1.2) is a single map-reduce job that calculates the number of
distinct values for all variables and determines which variables to include in further feature
generation steps. The step of constructing features from variables is another map-reduce
job with log parsing as the map stage and message grouping as the reduce stage. For the
state ratio vector, we sort messages by time stamp, while for the message count vector, we

37

Feature Rows Columns
Status ratio matrix Ys time window state value
Message count matrix Ym identifier message type

Table 4.1: Semantics of rows and columns of features

sort by identifier values. Notice that the map stage (parsing step) only needs to output the
required data rather than the entire text message, resulting in huge I/O savings during the
data shuffling and sorting before reduce. Feature creation time is negligible compared to
parsing time, as Section 3.5 described.

4.2 Anomaly Detection

After the feature creation step, we convert a single “interleaved” log into many indepen-
dent sequences of related messages, and convert these sequences into a numerical represen-
tation. This transformation enables us to apply different machine learning algorithms. Here
we only focus on anomaly detection algorithms. Anomaly detection is important on console
logs. In a production environment, most of the operations in the systems are correctly
completed and generate normal log messages, so abnormal messages (or more importantly,
abnormal message sequences) best represent problems and thus important to discover.

There are many anomaly detection techniques to choose from. Given the feature matrices
we construct, outlier detection methods can be applied to detect anomalies contained in the
logs. Notice that since the matrix structure of both message count vector and state ratio
vector features are identical, the same algorithm can be applied to both features.

We have investigated a variety of methods, including one-class Support Vector Machine
(SVM) [43] and mixture models [43], and have found that Principal Component Analysis
(PCA) [23, 58] combined with term-weighting techniques from information retrieval [78, 83]
yields excellent anomaly detection results on both feature matrices with little parameter
tuning.

4.2.1 PCA-based anomaly detection

Principal Component Analysis (PCA) is a statistical method that captures patterns in
high-dimensional data by automatically choosing a set of coordinates—the principal com-
ponents—that reflect covariation among the original coordinates. We use PCA to separate
out repeating patterns in feature vectors, thereby making abnormal message patterns easier
to detect. The time complexity of PCA is linear in the number of feature vectors; therefore,
detection can scale to large logs.

We apply PCA to the feature matrix Y2, treating each row y as a point in R
n. The set

of n principal components, {vi}n
i=1

, are defined by

2To calculate the principal components, we assume that Y is normalized by subtracting the column
mean.

38

0 20 40 60 80 100
0

50

100

150

ACTIVE trasactions per sec

C
O

M
M

IT
T

IN
G

 t
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

A
B

a
y

C
O

M
M

IT
T

IN
G

 /
se

c

ACTIVE per sec

y

Figure 4.1: The intuition behind PCA detection with simplified data. We plot only two
dimensions from the Darkstar state variable feature in the original coordinates. It is easy
to see high correlation between these two dimensions. PCA chooses the new coordinates
Sd and Sa, which reflect covariation among the original coordinates. PCA determines the
dominant normal pattern, separates it out, and makes it easier to identify anomalies.

vi = arg max
‖x‖=1

‖(Y −
i−1
∑

j=1

Yvjv
T
j)x‖.

In fact, the vi’s are the the n eigenvectors of the estimated covariance matrix

A :=
1

m
YTY

and each ‖Yvi‖2 is proportional to the variance of the data measured along vi.

Intuition behind PCA anomaly detection.
By construction, dimensions in our feature vectors are highly correlated, due to the

strong correlation among log messages within a group. We aim to identify abnormal vectors
that deviate from such correlation patterns. Figure 4.1 illustrates a simplified example using
two dimensions (number of ACTIVE and COMMITTING per second) from Darkstar state ratio
vectors. We see most data points reside close to a straight line (a one-dimensional subspace).
In this case, we say the data have low effective dimensionality. The axis Sd captures the
strong correlations between the two dimensions. Intuitively, a data point far from Sd (such
as point A) shows unusual correlation, and thus represents an anomaly. In contrast, point
B, although far from most other points, resides close to Sd, and is thus normal. In fact,

39

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

V
ar

ia
nc

e
C

ap
tu

re
d

Principal Component

Figure 4.2: Fractional of total variance captured by each principal component.

Feature data sets n k
Darkstar - message count 18 3
Darkstar - state ratio 6 1
HDFS - message count 28 4
HDFS - state ratio 202 2

Table 4.2: Low effective dimensionality of feature data. n = Dimensionality of feature vector
y; k = Dimensionality required to capture 95% of variance in the data. In all of our data,
we have n ≫ k, exhibiting low effective dimensionality.

both ACTIVE and COMMITTING are larger in this case, which simply indicates that the system
is busier.

Indeed, we do observe low effective dimensionality in the feature matrices Ys and Ym

in many systems. Figure 4.2 shows that in HDFS, most of the variance is captured by a
small number of principal components, even if the original vector has almost 30 dimensions.
Table 4.2 shows k, the number of dimensions required to capture 95% of the variance in
data3. Intuitively, in the case of the state ratio vector, when the system is in a stable state,
the ratios among different state variable values are roughly constant. For the message count
vector, as each dimension corresponds to a certain stage in the program and the stages are
determined by the program logic, the messages in a group are correlated. The correlations
among messages, determined by the normal program execution, result in highly correlated
dimensions for both features.

3The choice of using 95% is a common heuristic for determining k in PCA detectors [51]; we use this
number in all of our experiments.

40

In summary, PCA captures dominant patterns in data to construct a (low) k-dimensional
normal subspace Sd in the original n-dimensional space. The remaining (n− k) dimensions
form the abnormal subspace Sa. By projecting the vector y onto Sa (separating out its
component on Sd), it is much easier to identify abnormal vectors. This forms the basis for
anomaly detection [23, 58].

Detecting anomalies.
Intuitively, we use the “distance” from the endpoint of a vector y to the normal subspace

Sd to determine whether y is abnormal. This intuition can be formalized by computing the
squared prediction error SPE ≡ ‖ya‖2 (the squared length of vector ya), where ya is the
projection of y onto the abnormal subspace Sa, and can be computed as

ya = (I −PPT)y (4.1)

where
P = [v1,v2, . . . ,vk] (4.2)

is formed by the first k principal components chosen by PCA algorithm.
As Figure 4.1 shows, abnormal vectors are typically far away from the normal subspace

Sd. Thus, the “detection rule” is simple: we mark y as abnormal if

SPE = ‖ya‖2 > Qα, (4.3)

where Qα denotes the threshold statistic for the SPE residual function at the (1 − α)
confidence level.

Automatically determining the detection threshold.
To compute Qα we make use of the Q-statistic, a well-known test statistic for the SPE

residual function [48]. The computed threshold Qα guarantees that the false alarm probabil-
ity is no more than α under the assumption that data matrix Y has a multivariate Gaussian
distribution. However, as pointed out by Jensen and Solomon [48], and as verified in our
empirical work, the Q-statistic is robust even when the underlying distribution of the data
differs substantially from Gaussian.

The choice of the confidence parameter α for anomaly detection has been studied in
previous work [58], and we follow standard practice in choosing α = 0.001 in our experiments.
We found that our detection results are not sensitive to this parameter choice.

4.2.2 Improving PCA detection results

Applying TF/IDF.
Our message count vector is constructed in a way similar to the bag-of-words model, so

it is natural to consider term weighting techniques from information retrieval. We applied
Term Frequency / Inverse Document Frequency (TF/IDF), a well-established heuristic in
information retrieval [78, 83], to pre-process the data. Instead of applying PCA directly to

41

the feature matrix Ym, we replace each entry yi,j in Ym with a weighted entry

wi,j ≡ yi,j log(n/dfj) (4.4)

where dfj is total number of message groups that contain the j-th message type. Intuitively,
multiplying the original count with the IDF reduces the weight of common message types
that appear in most groups, which are less likely to indicate problems. We found this step
to be essential for improving detection accuracy.

TF-IDF does not apply to the state ratio feature. This is because the state ratio matrix
is a dense matrix that is not amenable to interpretation as a bag-of-words model. However,
applying the PCA method directly to Ys gives good results on the state ratio feature.

Using better similarity metrics and data normalization.
We also mine our data with a more powerful variation of PCA – kernel PCA [84], which

allows us to specify a desired similarity metric (i.e. kernel function) for feature vectors. We
experiment with a variety of kernel functions, and get the best results with the cosine kernel
with

K(x,y) =
x · y√

x · x√y · y , (4.5)

which can be interpreted as a similarity metric between vector x and y. In fact, cosine
similarity is widely used in information retrieval to analyze document matrices. Cosine sim-
ilarity is not affected by the total number of terms (log messages) in a particular document
(message group). The document length problem is especially significant in our case because
some hot blocks are accessed many more times than rare ones, thus generating many more
log messages.

With cosine kernel, kernel PCA is (mathematically) equivalent to linear PCA when each
message count vector y is normalized by its length

‖y‖ =
√

y · y (4.6)

Thus in practice we can avoid the computation and memory complexity to compute the
kernel matrix while still achieving the good results of kernel PCA.

Both improvements apply to our case because the message count vector is constructed
by analogy to the bag-of-words model, thus having many common properties as the vec-
tor representation of regular documents. Therefore, many information retrieval techniques
(e.g. clustering/classification) might also apply to this feature. We discuss the accuracy
improvement of using TF/IDF and the cosine distance in Section 4.3.2.

Before presenting our visualization step, we first summarize the anomaly detection re-
sults on both cases using both message count vector and state ratio vector features. We
believe the understanding of anomaly detection results makes the discussion on decision tree
visualization (in Section 4.4) more concrete.

42

1000 1500 2000 2500
0

2

4
L
a
te

n
c
y
 (

s
e
c
) (a) Client latency

← Disturbance starts

← Disturbance ends

Latency

1000 1500 2000 2500
0

500

R
e
s
id

u
a
l

(b) Status ratio vector detection Residual

Threshold

Alarms

1000 1500 2000 2500
0

10

20

Time since start (sec)

R
e
s
id

u
a
l

(c) Message count vector detection Residual

Threshold

Alarms

Figure 4.3: Darkstar state ratio vector detection results. (a) shows that the disturbance
injection caused a huge increase in client response time. (b) shows PCA anomaly detection
results on the state ratio vector created from message variable state. The dashed line shows
the threshold Qα. The solid line with spikes is the SPE calculated according to Eq. (4.3).
The circles denote the anomalous vectors detected by our method, whose SPE values exceed
threshold Qα. (c) shows detection results with the message count vector. The SPE value of
each vector (the solid line) is plotted at the time when the last message of the group occurs.

4.3 Evaluation and Visualization

We evaluated our log mining techniques using two real-world systems. We discussed log
parsing accuracy and scalability in Section 3.5, and here we focus on the effectiveness of
feature extraction and anomaly detection.

We began our experiments of problem detection with Darkstar, in which both features
give simple yet insightful results (Section 4.3.1). Satisfied with these results, we applied our
techniques to the much more complex HDFS logs. We also achieve high detection accuracy
(Section 4.3.2).

As we will see in this section, although PCA anomaly detection provides highly accurate
results, these results are less intuitive to system operators and developers. In Section 4.4 we
discuss our decision tree visualization method, which summarizes the PCA detection results
in a single, intuitive picture that is more operator-friendly because the tree resembles the
rule-based event processing systems operators tend to use [42].

4.3.1 Darkstar experiment results

As mentioned in Section 2.3, we observed high variability in performance (i.e., client side
response time) when deploying the Darkstar server in a cloud-computing environment such
as Amazon’s Elastic Computing Cloud (EC2) [3] during performance disturbances, especially

43

for CPU contention. We wanted to see if we could understand the reason for this high
performance variability solely from console logs. Indeed, we were unfamiliar with Darkstar,
so our setting was realistic as the operator often knows little about system internals.

In the experiment, we deployed an unmodified Darkstar 0.95 distribution on a single node
(because the Darkstar version we use supports only one node). Darkstar does not log much
by default, so we turned on debug-level logging. We deployed a simple game, DarkMud,
provided by the Darkstar team, and created a workload generator that emulated 60 users
in the DarkMud virtual world performing random operations such as flipping switches and
picking up and dropping items. The client emulator recorded the latency of each operation.
We ran the experiment for 4800 seconds and injected a performance disturbance by capping
the CPU available to Darkstar to 50% of the normal level during time 1400 to 1800 seconds.

Detection by state ratio vectors.
The only state variable chosen by our feature generation algorithm is state, which is

reported in 456, 996 messages (about 28% of all log messages in our data set). It has 8
distinct values, including PREPARING, ACTIVE, COMMITTING, ABORTING and so on, so our state
ratio matrix Ys has 8 columns (dimensions). The time window (automatically determined
according to Section 4.1.1) is 3 seconds; we restricted the choice to whole seconds.

Figures 4.3 (a) and (b) show the results between time 1000 and 2500, where plot (a)
displays the average latency reported by the client emulator, which acts as a ground truth for
evaluating our method, and plot (b) displays the PCA anomaly detection results on the state
ratio matrix Ys. We see that anomalies detected by our method during the time interval
(1400, 1800) match the high client-side latency very well; i.e., the anomalies detected in the
state ratio matrix correlate very well with the increases in client latency. Comparing the
abnormal vectors to the normal vectors, we see that the ratio between number of ABORTING
to COMMITTING increases from about 1:2000 to about 1:2, indicating that a disproportionate
number of ABORTING transactions are related to the poor client latency.

Generally, the abnormal state ratio may be the cause, symptom, or consequence of the
performance degradation. In the Darkstar case, the ratio reflects the cause of the problem:
when the system performance gets worse, Darkstar does not adjust transaction timeout
accordingly, causing many normal transactions to be aborted and restarted, resulting in
further load increase to the system.

Notice that a traditional grep-based method does not help in this case for two reasons:

1. For a Darkstar operator without much knowledge about its internals, the transaction
states are obscure implementation details. Thus, it is difficult for an operator to
choose the most useful state variable values from many variables. In contrast, we
systematically discover and analyze all state variables.

2. ABORTING happens even during normal operations, due to the optimistic concurrency
model used in Darkstar, where aborting is used to handle access conflicts. It is not a
single ABORTING message, but the ratio of ABORTING to other values of the state variable
that captures the problem.

Detection by message count vectors.

44

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

Block sequence

N
or

m
 o

f R
es

id
ua

l v
ec

to
r

Residual
Threshold
Alarms

Figure 4.4: PCA detection on message count vector in Hadoop dataset with residual component
ya, the projection on the abnormal subspace. The figure plots a random selection of 2000 blocks
out of the entire data set of 575, 139 blocks. The dashed line shows the threshold Qα. The solid
line with spikes is the SPE calculated according to Eq. (4.3). The circles denote the anomalous
message count vectors detected by our method, whose SPE values exceed threshold Qα.

From Darkstar logs, Algorithm 1 automatically chooses two identifier variables, the
transaction id and the asynchronous channel id. Figure 4.3(c) shows detection results on
the message count vector constructed from the transaction id variable. There are 68,029
transaction ids reported in 18 different message types. Thus, the dimension of matrix Ym

is 68,029 × 18. By construction, each message count vector represents a set of operations
(message types) occurring when executing a transaction. PCA identifies the normal vectors
corresponding to a common set of operations (simplified for presentation): {create, join
txn, commit, prepareAndCommit}. Abnormal transactions can deviate from this set by missing
a few message types, or having rare message types such as abort txn instead of commit and
join txn. We detected 504 of these as abnormal. To validate our result, we augmented each
feature vector using the timestamp of the last message in that group, and we found that
almost all abnormal transactions occur when the disturbance is injected. We see that the
anomalies continue to appear (with a smaller frequency) for a short time period after the
disturbance stopped, due to queueing effects as the system recovered from the disturbance.
Notice that the state ratio vector method did not mark the recovery period as abnormal,
demonstrating that the message count vector method was more sensitive because it modeled
individual operations while state ratio vector method captured only aggregate behavior.

There were no anomalies on the channelID variable during the entire experiment, sug-
gesting that the channelID variable is not related to this performance anomaly.

This result is consistent with the state ratio vector detection result. In console logs,
it is common that there are several different pieces of information that describe the same
system behavior. This commonality suggests an important direction for future research:
exploiting multi-source learning algorithms, which combine multiple detection results to
further improve accuracy.

45

4.3.2 Hadoop experiment results

Compared to Darkstar, HDFS is larger scale and its logic is much more complex. In
this experiment, we show that we can automatically discover many abnormal behaviors in
HDFS. We generated the HDFS logs by setting up a Hadoop cluster on 203 EC2 nodes and
running sample Hadoop map-reduce jobs for 48 hours, generating and processing over 200
TB of random data. We collected over 24 million lines of logs from HDFS.

Detection on message count vector.
From the HDFS logs, Algorithm 1 automatically chooses one identifier variable, the

blockid, which is reported in 11,197,954 messages (about 50% of all messages) in 29 message
types. Also, there are 575,139 distinct blockids reported in the log, so the message count
matrix Ym has a dimension of 575,139 × 29. Figure 4.4 shows that the PCA detector
gives very good separation between normal and abnormal row vectors in the matrix: Using
an automatically determined threshold (Qα in Eq. (4.3) in Section 4.2), it can successfully
detect abnormal vectors corresponding to blocks that went through abnormal execution
paths.

To further validate our results, we manually labeled each distinct message vector, not
only marking them as normal or abnormal, but also determining the type of problems for
each vector. The labeling was done by carefully studying HDFS code and by consulting
with local Hadoop experts. We show in the next section that the decision tree visualization
helps both ourselves and Hadoop developers to understand our results. We emphasize that
this labeling step is done only to validate our method—it is not a required step when using
our technique. Labeling half a million vectors is possible because many of the vectors are
exactly the same. In fact, there are only 680 distinct vectors, confirming our intuition that
most blocks go through a common execution path.

Table 4.3 shows the manual labels and detection results. We see that the PCA de-
tector can detect a large fraction of anomalies in the data, and significant improvement
can be achieved when we preprocess data with TF/IDF, confirming our expectations from
Section 4.2.

Throughout the experiment, we experienced no catastrophic failures; thus, most prob-
lems listed in Table 4.3 only affect performance.

The first anomaly in Table 4.3 uncovered a bug that has been hidden in HDFS for a long
time. In a certain (relatively rare) code path, when a block is deleted (due to temporary
over-replication), the record on the namenode is not updated until the next write to the
block, causing the file system to assume the presence of a replica that no longer exists, which
causes subsequent block deletion to fail. Hadoop developers have recently confirmed this
bug. This anomaly is hard to find because there is no single error message indicating the
problem. However, we discover it because we analyze abnormal execution paths.

We also notice that we avoid a problem that causes confusion in traditional grep based
log analysis. In HDFS datanode logs, we see many messages of the form #:Got Exception

while serving # to #:#. According to Apache issue tracking (jira) HADOOP-3678, this
is a normal behavior of HDFS: the HDFS data node generates the exception when a HDFS
client does not finish reading an entire block before it stops. These exception messages have

46

Anomaly Description Actual Raw TF-IDF

1 Namenode not updated after deleting block 4297 475 4297

2 Write exception client give up 3225 3225 3225

3 Write failed at beginning 2950 2950 2950

4 Replica immediately deleted 2809 2803 2788

5 Received block that does not belong to any
file

1240 20 1228

6 Redundant addStoredBlock 953 33 953

7 Delete a block that no longer exists on data
node

724 18 650

8 Empty packet for block 476 476 476

9 Receive block exception 89 89 89

10 Replication Monitor timedout 45 37 45

11 Other anomalies 108 91 107

Total 16916 10217 16808

False Positive Description Raw TF-IDF

1 Normal background migration 1399 1397

2 Multiple replica (for task / job desc files) 372 349

3 Unknown Reason 26 0

Total 1797 1746

Table 4.3: Detected anomalies and false positives using PCA on Hadoop message count
vector feature. Actual is the number of anomalies labeled manually. Raw is PCA detection
result on raw data, TF-IDF is detection result on data preprocessed with TF-IDF and
normalized by vector length (Section 4.2).

confused many operators, as indicated by multiple discussion threads on the Hadoop user
mailing list. While traditional keyword matching (e.g., searching for words like Exception
or Error) would have flagged these as errors, our message count method successfully avoids
this false positive because this happens too many times to be abnormal.

Our algorithm does report some false positives, which are inevitable in any unsupervised
learning algorithm. For example, the second false positive in Table 4.3 occurs because
a few blocks are replicated 10 times instead of 3 times for the majority of blocks. These
message groups look suspicious, but Hadoop experts told us that these are normal situations
when the map-reduce system is distributing job configuration files to all the nodes. It is
indeed a rare situation compared to the data accesses, but is normal by the system design.
Eliminating this type of “rare but normal” false positive requires domain expert knowledge.
An interesting future direction would be to investigate semi-supervised learning techniques
that can take operator feedback and further improve our results.

Detection on state ratio vectors.
The only state variable chosen in HDFS logs by our feature generation algorithm is the

node name. Node name might not sound like a state variable, but as the set of nodes (203

47

total) are relatively fixed in HDFS, their names meet the criterion of state variable described
in Section 4.1.1. Thus, the state ratio vector feature reduces to per node activity count, a
feature well-studied in existing work [45, 61]. As in this previous work, we are able to detect
transient workload imbalance, as well as node reboot events. However, our approach is less
ad-hoc because the state ratio feature is chosen automatically based on information in the
console log, instead of manually specified.

4.4 Visualizing Detection Results with Decision Trees

From the point of view of an operator, the transformation underlying PCA is a black
box algorithm: it provides no intuitive explanation of the detection results and cannot be
interrogated. Human operators need to manually examine anomalies to understand the root
cause, and PCA itself provides little help in this regard. In this section, we show how to
augment PCA-based detection with decision trees to make the results more easily under-
standable and actionable by operators. The decision tree result resembles the (manually
written) rules used in many system-event-processing programs [42], so it is easier for non-
machine learning experts to interpret. This technique is especially useful for features with
many dimensions, such as the message count vector feature in HDFS.

Decision trees have been widely used for classification. Because decision tree construction
works in the original coordinates of the input data, its classification decisions tend to be
easy to visualize and understand [98]. Constructing a decision tree requires a training set
with class labels. We use the automatically generated PCA detection results (normal vs.
abnormal) as class labels, in contrast to the normal use of decision trees. Our decision tree
is constructed to explain the underlying logic of the detection algorithm, rather than the
nature of the dataset.

Figure 4.5 is the decision tree generated using RapidMiner [72] from the anomaly de-
tection results of the HDFS log. It clearly shows the most important message types. For
example, the first level shows that if blockMap (the data structure that keeps block loca-
tions) is updated more than 3 times, which is abnormal. This indicates the over-replication
problem (Anomaly 4 or False Positive 1 in Table 4.3). The second level shows that if a block
is received 2 times or less, the block not correctly written; this anomaly indicates under-
replication or block-write failure (Anomaly 2 and 3 in Table 4.3). Level 3 of the decision
tree is related to the bug we discussed in Section 4.3.2.

Figure 4.6 shows the result of applying the same decision tree visualization technique
to the Darkstar dataset. It is short and simple because the data from Darkstar is simpler
(i.e. fewer dimensions and fewer anomaly types). However, the simple decision tree does
provide the correct explanation of anomalous cases, read incomplete when a transaction is
aborted.

In summary, the visualization of results with decision trees helps operators and devel-
opers notice types of abnormal behaviors instead of individual abnormal events, which can
greatly improve the efficiency of finding root causes and preventing future alarms.

48

4.5 Summary

In this chapter, we introduced the last three steps of in our four-step log analysis method-
ology: feature creation, anomaly detection, and visualization. Although we use two case
studies to make the introduction concrete, our methodology does not use any application-
specific information and thus can be generalized to many different systems. Unlike existing
work, our feature creation techniques take advantage of the accurate message parsing, and
use the message variables to help group logs to capture execution sequences (message count
vector) or snapshot of system state (state ratio vector). This grouping process results in
high-quality features that allow efficient machine learning algorithms such as PCA to yield
accurate detection results. We used decision tree visualization to provide intuitive explana-
tions to system operators.

However, there is an unrealistic assumption used throughout this chapter that we have
logs for the entire time period of program execution. In real production systems, execution
can last weeks or even months, which makes the offline techniques less useful for operator
who wants to discover problems quickly. In the next chapter, we discuss how we can perform
near-real-time problem detection. We will show that the state ratio vector feature is easy
to use in an online setting, as it segment logs by time, but we need to refine the message
count vector creation process to make it applicable in an online setting.

49

0

1

1

1

1

0

0

0

blockMap updated: # is added to # size #

Received block # of size # from #

Unexpected error trying to delete block # …

Redundant addStoredBlock request received…

Receiving empty packet for block #

starting thread to transfer block # to

… But it does not belong to any file …

Adding an already existing block #

1
<=3

>=3

0

0

0

0

0

<=1

>=4

<=2

>=1

>=1

>=1

>=1

>=1

>=2

1

1

1

Figure 4.5: The decision tree visualization of Hadoop message count vectors. Each node is the

message type string (# is the place holder for variables). The number on the edge is the threshold

of message count, generated by the decision tree algorithm. Small boxes contain the labels from

PCA, with number 1 for abnormal and number 0 for normal.

50

1

(#) read complete (#):(#)

(#) read incomplete (#):(#)

1
=0

>=1

0

=0 >=1

Figure 4.6: The decision tree visualization for Darkstar message count vector detection results.
Small boxes contain the labels from PCA, with number 1 for abnormal and number 0 for normal.

51

Chapter 5

Problem Detection in Online Log
Streams

Compared to offline approaches discussed in Chapter 4, the fundamental problem of on-
line analysis is that we cannot see the complete event trace at once. The anomaly detection
techniques discussed in the previous chapter assume we have the knowledge of the entire
execution trace and thus are only useful in an offline setting. Although the detection pro-
vides insightful information on potential bugs and other performance problems, it remains
important to continuously monitor a production system and detect problems in near real-
time. Quick detection of problems not only allows system operators to reduce expensive
downtime, but also reduce the amount of storage space required to monitor data.

Whether we can trivially adapt an offline detection method to an online detection setting
depends on the feature vector construction, and in particular on whether we can create the
feature without seeing the entire log. For example, the state ratio vector can be constructed
from events within a limited time window, so it works in an online setting without changing.

On the other hand, the message count vector is based on multiple overlapping sequences
of messages. In the previous chapter, we assumed post-mortem analysis on complete traces.
In a continuously generated log stream, it is not obvious when we can declare that an
execution sequence on a particular identifier has completed, thus it is nontrivial to construct
the feature vector.

In this chapter, we discuss our novel two-stage online log processing approach that com-
bines frequent pattern mining with PCA anomaly detection for runtime problem detection.
In particular, we show how to trade off time-to-detection vs. accuracy in the online set-
ting by augmenting frequent-sequence information with timestamp information. Like offline
detection, online detection is completely automatic.

We evaluated our technique on the same labeled Hadoop dataset described in the previ-
ous chapter. In nearly all respects, we match or exceed the detection accuracy of the offline
approach with small detection latencies.

52

Frequent patterns OK

PCA Detection

ERROR

Non-pattern
Normal cases

Real anomalies

Parsing Pattern

Stage 1: Frequent pattern based filtering

Stage 2:PCA anomaly detection

OK
Raw log stream

Figure 5.1: Overview of the two stage online detection systems.

5.1 Two-Stage Online Anomaly Detection

5.1.1 Challenges in online detection

The fundamental problem of online analysis is that we cannot see all log messages at
once. A straightforward solution is to segment the log stream into time windows, and
perform detection at the end of each time window. The correct time window strikes a
balance between accuracy and timeliness in the detection. At one extreme, if we wait to
see the entire trace before attempting any detection, our results should be as accurate as
offline detection but with excessive time to detection. At the other extreme, if we try to
make a determination of anomalous behavior as soon as a single event appears, we lose the
ability to perform anomaly detection based on sequences of messages, which is the key to
achieve high accuracy. We emphasize that detection time is determined only by how long
the algorithm has to wait before making a decision. The computation time of the detection
algorithm is negligible compared to this wait.

How to choose the time windows depends on the nature of the feature, but the time
window should allow most of the related messages to be contained in a single time window
so that the features can capture the correlations.

It is trivial for some features. For example, the state ratio vector discussed in the
previous chapter is easy to construct and use in online detection, as it is naturally defined
by time windows and captures aggregated behavior. To perform the same PCA detection
as discussed in the last chapter, we simply keep a running count for a single state ratio
vector and send the vector to PCA detection on the expiration of each time window. The
detection is fast: we only need to apply Equation 4.3 to compute SPE and compare it to
the threshold Qα. We can compute the transformation matrix (I−PPT) and the threshold
Qα used in PCA detection (defined in Section 4.2) from a short history and update the
model periodically from most recent history.

In contrast, message count vectors are not easy to construct as it depends on traces of
individual messages. In offline detection, a trace may be marked as abnormal because an
event is missing; if a write operation to a file fails, its trace may lack a “closing” message.
In online analysis, there is no way to know, other than waiting until the end of the run,

53

if the missing event will ever come, yet the whole point of online detection is to make an
assessment in a timely manner. If we fail to put the “closing” message and the previous
messages in the same window, the detection algorithm will believe the sequence is not
correctly completed, resulting false positives. Notice that in this case, we need to segment
every sequence correctly, in contrast to the state ratio case, where we only need to make
sure the aggregate behavior is preserved in a window.

As we will discuss later in this chapter, there can be large variations in the durations
of each sequence. In other words, each sequence requires its own “time window”. In our
experiments, and we suffer over 80% false positives when we choose a fixed time window on
HDFS data set.

Even worse, due to the current mechanisms in which console logs are generated and
collected, there are some console-log-specific problems. The most important one is message
reordering due to unsynchronized clocks. In a distributed system, such as HDFS, a single
sequence might involve multiple nodes. The clocks among different nodes are not always
synchronized. Thus it is not always possible to have the exact ordering among messages from
different nodes. Previous work suggested ways to preserve causal ordering for tracing [28].
However, all these approaches require extra bookkeeping and communications among nodes,
defeating our purpose of leveraging the simplicity of built-in console logs.

We designed a two stage detection method, which uses frequent patterns to determine
the detection time for each individual sequence. We tolerated reordering problem using
frequent sequences, which effectively eliminated noise due to reordering. We also model the
tail distribution of sequence durations in order to know the correct time window for each
sequence.

5.1.2 Our solution: two-stage detection

We make this tradeoff by designing a two-stage detection method. The first stage uses
frequent pattern mining to capture the most common (i.e., normal) session, that is, those
traces with a high support level. The patterns include both frequent-event set and time
information. This information can be used to determine when a trace is “probably complete”
and ready to be made available for anomaly detection. The second stage considers only non-
pattern events that make it through the first stage, applying PCA-based anomaly detection
to them. In each stage, we build a model based on archived history and update it periodically
with new data, and use it for online detection. Both model estimation and online detection
involve domain-specific considerations about console logs.

Figure 5.2 shows clearly why a two-stage approach is needed. The histogram of the
50 most frequent event traces in our data shows that some traces clearly occur extremely
frequently while others are extremely rare. It is reasonable to mark the dominant traces
as “normal” behavior and the rare outliers as “anomalous”, but this leaves a large middle
ground of traces that are neither obviously dominant nor obviously anomalous. These
traces in the middle ground are sometimes normal ones with added random noise such as
interleavings. We want our detection method to tolerate the random noise. If we reduce
the minimal support level to include more of these middle-ground cases, random noise (e.g.

54

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5x 10
5

Trace types

C
ou

nt

AnomaliesPatterns

Middle ground

Figure 5.2: Histogram of 50 most frequent traces. Some traces are extremely frequent, and some are
extremely rare, but there is a large “middle ground” which is neither pattern nor anomaly for sure.

overlapping or incorrect ordering) will be introduced into the patterns, reducing the quality
of the patterns.

Instead, we pass the middle-ground cases to a PCA-based anomaly detector as non-
pattern events. Since PCA is a statistical method that is able to match “inexact” patterns,
it is more robust to random noise than the frequent-pattern mining used in stage 1 and can
detect rare events among the middle-ground cases. Intuitively, the pattern-based method
provides timely detection for the majority of events, minimizing the time to wait for the
complete trace, while subsequent PCA-based detection handles the false alarms generated
by the first stage and greatly improves detection accuracy. An additional benefit to the
two-stage approach is that the frequent patterns from stage 1 can help operators to better
understand the behavior of their systems and tune the detection to include domain-specific
knowledge.

Although PCA is more robust to random noise than pattern mining and thus a suitable
method for dealing with the noisy middle-ground events, frequent pattern mining has the
advantage of capturing time information among events and providing an intuitive repre-
sentation of dominant patterns. Our two-stage approach integrates the advantages of both
methods. We now describe each stage in detail in the following two sections.

More advanced methods, such as n-gram, Hidden Markov Models (HMMs), and proba-
bilistic context free grammars, were applied to model the ordered sequences [99, 17]. They
do not work well in the console log case due to unsynchronized timestamps. These methods
are also vulnerable to overfitting with workload dependent data. We discuss more about
these methods in Chapter 7.

5.2 Stage 1: Frequent Pattern Mining

Frequent pattern mining is well studied by data mining researchers, and many efficient
algorithms have been proposed [1, 41, 88, 102, 79]. We further discuss these algorithms in
Section 7.3. There are two major challenges with console logs that are not usually addressed

55

1 00:00:00 allocating blk_1

2 00:00:05 receiving blk_1

3 00:00:06 receiving blk_1

4 00:00:20 received blk_1

5 00:00:36 received blk_1

6 00:00:36 registering blk_1 on name node

7 01:22:34 reading blk_1

8 04:22:34 reading blk_1

9 20:20:21 start deleting blk_1

10 20:20:25 deleted blk_1

Figure 5.3: Sample sessions. Although the log segment looks like a single event stream, it
represents multiple independent sessions on blk 1.

in existing work: 1) Frequent pattern mining algorithms usually assume that the data are
divided into separate “transactions”. In contrast, log is a continuous message sequence and
the boundaries between different “transactions” are not clear. 2) Existing sequenced-based
pattern mining algorithms assume exact ordering in data, however, in our case, we only
observe partially-ordered log messages.

Following conventions in online system management work [45, 67, 46], we use the term
event to refer to a parsed log message. Specifically, we define an event to be a tuple consisting
of a timestamp, the event type (the message type in the previous chapter), and a list of
message variables. In an online setting, the streaming console log becomes an event stream
after the parsing step. In the previous chapter, we focused on properties of the entire trace.
For the online detection we need to analyze part of the traces. Thus, we further define a
session to be a subset of closely-related events in the same event trace that has a predictable
duration. The duration of a session is the time difference between the earliest and latest
timestamps of events in the session. For example, Figure 5.3 shows a simplified segment of
HDFS log showing events happening on blk 1. From a human operator’s perspective, the
first six lines represent a session that writes blk 1. Line 7 is a read session on the block
(notice that this session only generates a single event in the log). Line 8 is a separate read

session, and the last two lines are from the same delete session. Logically, these sessions are
independent from each other, and each session has a different duration. For example, the
duration of the write session is the time difference between the first event and the sixth event,
which is 36 seconds. The main goal of the frequent pattern mining step is to automatically
discover these sessions, and model the session durations without using semantics of the log
messages.

We define a frequent pattern to be a session and its duration distribution such that:

1. The session occurs frequently in many event traces;

2. Most (e.g., 99.95th percentile) of the session’s duration is less than Tmax, a user-
specified maximum allowable detection latency. The detection latency is the time

56

between an event occurring and the decision of whether the event is normal or abnor-
mal.

Condition (1) guarantees that the pattern covers common cases so it is likely to be a normal
behavior. Condition (2) guarantees that the pattern can be detected in a bounded time.
We mine the archived data periodically for frequent patterns. These patterns are used to
filter out normal events in the online phase.

We cannot apply generic frequent sequence mining techniques for two reasons. First,
sessions may interleave in the event traces (e.g. two reads happen at the same time) thus
“transaction” boundaries are not clear. We need to simultaneously segment an event trace
into sessions and mine patterns. However, because the durations of sessions can have large
variations, fixed time windows will not give satisfactory segmentation, which suggest that
we shall model the distribution of durations. Second, events can be reordered in the traces
because of unsynchronized clocks in a distributed system, which precludes the use of tech-
niques requiring total ordering of events. In our algorithm described below, we use frequent
patterns to tolerate the poor time-based segmentation accuracy resulting from random ses-
sion interleavings. The frequent patterns, once discovered, can be used to de-interleave the
events to estimate a clean duration model.

5.2.1 Mining frequent event patterns

Our novel approach combines time and event sequence information for accurate pattern
detection using a 3-step iterative method. In a nutshell, we first use time information to
inaccurately segment an event trace into sessions and then mine these inaccurate segments
to identify the most frequent pattern. We then go back to the original data and find out
the actual time distribution of the sessions of the most frequent pattern. Finally, we remove
all events that match this frequent pattern from original data and iterate on the remaining
data to find the next most frequent pattern.

1. Use time gaps to find first session coarsely in each execution trace. In this step,
for each execution trace, we first scan through each event until we find an event followed by
a time gap more than 10 times the duration since the start of the execution sequence1. We
treat all events preceding the gap as a session and represent these events as message count
vectors (MCVs). This segmentation can be very inaccurate; due to interleaving sessions,
irrelevant events might be included in the session and due to the randomness in session
duration, events may be missing from the session. The inaccuracy is tolerated by the next
step when finding most frequent patterns.

2. Identify the dominant session.We want to find a pattern that contains all events in
a session. This requirement is satisfied in most cases due to the way sessions get segmented:
with high probability, if not always, events that happen close together in time often represent
a single logical operation, especially when the support level is high (recall the definition of
sessions at the beginning of this section).

We use two criteria to select the dominant pattern.

1The time gap size is a configurable parameter.

57

(1) We start with the medoid of all sessions, which are represented by MCVs. The
medoid is defined as the minimal aggregated distance from all other data points, which
indicates that it is a good representative of all data points. Intuitively, a medoid is similar
to the centroid or mean in the space, except that the medoid must be an actual data point.
Criterion 1 guarantees that the selected dominant session is a good representative of the
sessions examined.

(2) We require the session to have a minimal support. If the medoid does not meet this
minimal support, we choose the next closest data point that does. Criterion 2 guarantees
that the selected session is in fact dominant, in addition to being a good representative.
Currently we choose to set the minimal support to 0.2M from all M event traces. The
selection criteria are robust over a wide range of minimal support values because the normal
traces are indeed in the majority in the log. In fact, in our experiments, various support
values between 0.1M and 0.5M all resulted in the same selection results.

3. Refine result using the frequent session and compute duration statistics.
Notice that the pattern from step 2 is based on coarsely segmented sessions, and may not
reflect the correct duration distribution of all sessions of that type. Because we know the
events we are expecting to complete a session, we can go back to the original data and find
all events that match the frequent session and then estimate the duration distribution from
the matching sessions (detailed in Section 5.2.2). Using the duration distribution, we can
compute a cutoff time Tcut representing the time that most sessions of the pattern “should”
complete, for the pattern as the ηth percentile of the distribution. We show in Section 5.4.2
that this step significantly improved detection results. We also remove all matching events
from the original traces, preparing the data for the next iteration. Notice that Tcut can
be very long, due to large dispersion in durations in some operations. In the case that
Tcut > Tmax, the pattern is discarded and not used in the detection stage.

We then return to step 1 and iterate until no patterns with the minimal support level
remain. Since step 3 always removes something from the dataset, the iteration is guaranteed
to terminate. The remaining events are used to construct the PCA model.

The dominant patterns are expected to be stable. However, in order to accommodate
changes in the operation environment, we update patterns used in the detector as a periodic
and infrequent offline process; that is, the detector uses the patterns discovered but never
updates them online. In this way, we can both keep the online detector simple and avoid
poisoning the patterns with transient abnormal periods.

5.2.2 Estimating distributions of session durations

To enable timely online detection, we need to know how long any given pattern “should”
take to complete. To this end, we estimate the distribution of session durations for each
pattern. Based on this distribution, we compute the cutoff time Tcut as the 99.95th percentile
of the distribution for each pattern, after which most sessions of this pattern would complete.

To choose a distribution to fit our data, we observe that within each pattern, the his-
togram of session durations has both dominant values and fat tails. We use the first two
patterns in in Table 5.1 of Section 5.4.1) as examples. Figures 5.4 (a) and (b) show the

58

2 4 6 8 10
0

0.5

1

1.5

2

x 10
4

F
re

qu
en

cy

Duration+1

(a) Pattern1

5 10 15 20 25 30
0

1

2

3

x 10
4

F
re

qu
en

cy

Duration+1

(b) Pattern2

10
0

10
1

10
210

−5

10
−4

10
−3

10
−2

10
−1

10
0

Duration+1

P
r(

X
 ≥

 x
)

(c) Pattern1

Empirical Distr.
Power−Law Fitting

10
0

10
1

10
210

−5

10
−4

10
−3

10
−2

10
−1

10
0

Duration+1

P
r(

X
 ≥

 x
)

(d) Pattern2

Empirical Distr.
Power−Law Fitting

Figure 5.4: Tail of durations follow power-law distribution.

duration distribution of these two patterns. The power-law distribution are widely used to
model data with long tails for its unique mathematical properties [27, 65]. We choose it to
model our data, and a log-log plot confirms that the tails of our data approximately follow
the power-law distribution (Figures 5.4 (c) and (d)).

To estimate the parameters of the distribution, we adopt the approach proposed in [18],
which combines maximum-likelihood fitting methods with goodness-of-fit tests based on the
Kolmogorov-Smirnov (KS) statistics [14]. In real applications, few datasets obey power-laws
for all values. More often, the power-law applies only to values greater than some minimum
xmin > 0, i.e. to the tail of the distribution. For samples below this threshold, we use the
histogram as its empirical distribution. So we essentially use a mixture distribution with
two components to model the duration values: a power-law distribution for the tail (values
above xmin), which has weight w, and a histogram for values below xmin, which has weight
(1 − w).

For durations that take only integer values, we consider the case with a probability
distribution of the form p(x) = Pr(X = x) = Cx−β . It is not difficult to show that the

59

normalizing constant is given by:

C(β, xmin) =

(

∞
∑

i=0

(i + xmin)−β

)−1

. (5.1)

Assuming xmin is known (the way to estimate xmin is discussed later), the Maximum
Likelihood Estimator (MLE) of the scaling parameter β is approximately

β̂ ≈ 1 + n

[

n
∑

i=1

ln
xi

xmin − 0.5

]−1

, (5.2)

where xi, i = 1 . . . n are the observed duration values that xi ≥ xmin.
To estimate xmin, we choose a value that makes the probability distributions of the

measured data and the best-fit power-law model as similar as possible above xmin. We use
KS statistics to measure the distance between two distributions, and estimate x̂min as the
value of xmin that minimizes the KS statistics between the empirical CDF of the data for
the observations with value at least xmin and the fitted power-law model that best fits the
data in the region with all xi ≥ xmin.

Figure 5.4 (c) and (d) show the empirical distributions (circles) and the fitted power-
law models (solid lines) for patterns 1 and 2, respectively. With the model, the CDF
Pp(x) = Pr(X < x) of the power-law distribution is

Pp(x) = 1.0 − C(β, x)/C(β, xmin), (5.3)

where C(β, x) is defined in Eq. (5.1). Then, for η ≥ 1.0−w, the ηth percentile of the mixture
distribution is the value of xη that satisfies the following equation:

Pp(xη) = (η − (1.0 − w))/w, (5.4)

where Pp(x) is defined in Eq. (5.3). We show the estimated 99.90th, 99.95th and 99.99th

percentiles of the mixture distributions of Patterns 1 and 2 and the improvements to the
detection precision in Section 5.4.

5.2.3 Implementation of Stage 1

The pattern-based detector receives the event stream from the log parser. If an event is
part of some execution traces we are monitoring because it contains an identifier, the detector
groups it with other events with the same identifier and checks if any subset of the event
group matches a frequent pattern. If a subset matches, all matching events are removed
from the detector’s memory, although there might still be some non-matching events left in
the queue. Removing matched events keeps the size of in-memory event history small and
greatly improves the efficiency of the detector.

Logically, we try matching all event sets to all patterns. We used a näıve method that
attempts each one. We believe the näıve method is good enough in many systems because

60

the number of patterns is usually small and the traces are short because developers only
log the most important stages on the execution path. However, in cases where many long
patterns are used, we can use more advanced data structures such as suffix trees [81] to
improve the matching efficiency.

If we do not find any matching pattern, the event is added to the queue with a timeout
number To based on the event timestamp T . If the event matches one or more patterns,
we choose the one with the largest cutoff time (Tcut) and set To = T + Tcut; if the event
does not match any pattern (because the event is not frequent enough to be included in any
pattern), we set To = T +Tmax. Notice that because Tcut is usually much smaller than Tmax,
we can achieve fast detection on the majority of events.

The detector periodically checks all traces. Currently, the period is set to 1 second—
this parameter has a small effect on detection time, but no effect on accuracy. When it
finds events that have reached their timeout, it constructs their message count vectors, as
described in Section 4.1, and sends them to the second stage PCA-based detector.

The intuition behind this approach is that an event is passed through to the PCA-based
detector as soon as we can be reasonably sure that it does not “belong to” any of the
frequent patterns being monitored. We call these non-pattern events.

5.3 Stage 2: PCA Detection

The vectors representing the non-pattern events emitted from Stage 1 are significantly
noisier than the frequent patterns. The noise comes from uncaptured interleaving, high
variations in duration and the true anomalies. To uncover the true anomalies from this
noisy data, we use the same PCA detector, which is shown to be accurate in offline problem
detection in last chapter.

The PCA detector works essentially the same way as the offline case in Section 4.2.
The model used in PCA, the transformation matrix and the threshold, can be updated
periodically. Note that because of the noisier data in this phase and the workload-dependent
nature of the non-pattern data, the model update period for PCA is usually shorter than
that for frequent pattern mining.

We want to emphasize that although the structures of vectors and the detection are
similar to the offline case, the semantic meanings are different. In the offline case, the
vector represents a complete processing sequence that an identifier went through. In the
online case, each vector represents a collection of uncommon or non-pattern operations on
an identifier within a small time window.

5.4 Evaluation

To compare our online approach directly against the offline algorithm proposed in Sec-
tion 4.3, we replayed the same set of logs, containing over 24 million lines of log messages
with an uncompressed size of 2.4GB. Recall that the log contains 575,319 event traces, cor-
responding to 575,319 distinct HDFS file blocks. We also re-used the manual labels from

61

No. Frequent sessions
Duration in sec (%ile)

Events
99.90 99.95 99.99

1 Allocated block, begin write 11 13 20 20.3%
2 Done write, update block

map
7 8 14 44.6%

3 Delete block - - - 12.5%
4 Serving block — 3.8%
5 Read Exception (see text) — 3.2%
6 Verify block — 1.1%

Total 85.6%

Table 5.1: Frequent patterns discovered from Hadoop logs. Pattern 3’s duration cannot
be estimated because the durations are too small to capture in training set. Patterns 4–6
consist of only a single event each and thus have no durations.

the experiments described in the last chapter as ground truth for evaluating our results.
Notice that the labeling process does not take into account the durations of any traces. We
show the effects of this omission later in this section.

To mimic how a system operator would use our technique, we evaluate our method with
the following 2-step approach. First, we randomly sample 10% of the execution traces, on
which we construct the detection model, including the frequent patterns, the distributions
of pattern durations, and the PCA detector. Then we replay the entire trace and perform
online problem detection using the derived model. This whole procedure is unsupervised,
since we use the labels only for evaluation and not for building the model. We varied the
subset of sampled data for building the model many times, and got identical detection
results. The result is robust against random sampling mainly because the patterns we
identify are frequent enough in the data set.

There are two parameters that we need to set. The maximum detection latency Tmax

(defined in Section 5.2) was set to 60 seconds, meaning the operator wants to be notified of a
suspected anomaly at most 60 seconds after the suspect event trace appears in the log. The
PCA threshold parameter α, described in Section 5.3, was set to 0.001, meaning that we
are accepting fewer than 0.1% of all data points as abnormal under assumptions described
in Section 4.2 and [48]. These baseline values are likely choices with no understanding of
the data, but in Section 5.4.2 we show that our detection results are insensitive to these
parameters over a wide range of values.

5.4.1 Stage 1 pattern mining results

Recall that the goal of Stage 1 is to remove frequent patterns that presumably correspond
to normal application behavior. Table 5.1 summarizes the frequent patterns found in the
test data using our baseline parameter value Tmax = 60 seconds. Note first that the patterns
identified encompass 85.6% of all events in the trace, so at most 14.4% of all events must
be considered by Stage 2 (PCA anomaly detection).

62

The table shows, for example, that pattern 1 is the sequence of events corresponding to
“Allocate a block for writing”. 20.3% of the events in the trace are classified as belonging
to an instance of this pattern and so will be filtered out and not passed to Stage 2. The
duration of this pattern has a distribution whose 99.9, 99.95, and 99.99th percentiles are
11, 13 and 20 seconds, respectively. We choose these high percentile values because we
want most normal sessions to complete within these intervals. Notice that even the 99.99th
percentile of the pattern durations is significantly smaller than Tmax. The short pattern
durations are important since detection latency is based on the these durations or Tmax,
whichever is less. To be succinct, we only present detection results with Tcut set to the
99.95th percentile values for each pattern. Results with other values are similar.

Patterns 1 and 2 are both related to writing a file block. They logically belong to the same
operation, but a write session can be arbitrarily long; the application that writes the file may
wait an arbitrary amount of time after the “begin write” before actually sending data. Since
we are trying to keep detection latency below a certain threshold, we separate the beginning
and ending sessions into two different patterns for timely detection. Obviously, there are
certain limitations related to this separation, which we discuss in detail in Section 5.5.

Patterns 4 to 6 contain only individual events. These events were used to report some
numbers and do not contribute to event trace based detection, so a single event completes
the operation. For example, reads, deletions and block verifications are all single-event
patterns.

Pattern 5 consists of an event that reports an exception, but as we discussed in Sec-
tion 4.4, this is indeed normal operation and the message text represents a bad logging
practice that has confused many users. Just as the offline detection case, because we use
pattern frequencies for detection, we easily recognize these exception messages as normal
operation.

In addition to providing a shortcut for normal operations in our detection, the patterns
themselves are interesting also because they can provide valuable insight to operators and
help them understand the “normal” behavior of their system.

5.4.2 Detection precision and recall

Recall that a session is a subset of a trace. Since our technique is based on sessions,
we determine a trace is abnormal if and only if it contains at least one abnormal session,
allowing direct comparison using the original labels. We use the standard metrics of precision
and recall to evaluate our approach. Let TP, FP, FN be the number of true positives, false
positives, and false negatives, respectively. We have

Precision = TP/(TP+FP)

and
Recall = TP/(TP+FN)

63

(a) Varying α while holding Tmax = 60
α TP FP FN Precision Recall
0.0001 16,916 2,444 0 87.38% 100.00%
0.001 16,916 2,748 0 86.03% 100.00%
0.005 16,916 2,914 0 85.31% 100.00%
0.01 16,916 2,914 0 85.31% 100.00%

(b) Varying Tmax while holding α = 0.001
Tmax TP FP FN Precision Recall
15 2,870 129 14,046 95.70% 16.97%
30 16,916 2,748 0 86.03% 100.00%
60 16,916 2,748 0 86.03% 100.00%
120 16,916 2,748 0 86.03% 100.00%
240 14,233 2,232 2,683 86.44% 84.14%

Table 5.2: Hadoop online detection precision and recall.

100% recall means that no actual problems were missed; 100% precision means there are no
false alarms among those events identified as problems. Recall that in our data set, there
are 575,319 event traces of which 16,916 are labeled as anomalies.

Table 5.2(a) varies the PCA confidence level α to show its effect on our precision and
recall results, while Table 5.2(b) varies the maximum detection delay Tmax. The boldface
rows of each table represent the baseline values α = 0.001 and Tmax = 60. The results show
100% recall over a wide range of values of α and Tmax, meaning the algorithm captures every
anomaly in the manual labels. The precision and recall are largely insensitive to the choice
of α, consistent with the observations in both the offline case and [58]. The good recall is
mainly due to strong patterns in the data: the event traces are direct representations of the
program execution logic, which is likely to be deterministic and regular, as reflected by log
printing statements. The strong patterns allows better tolerance to random noise, especially
in the frequent pattern mining stage, where we can use a high support requirement to filter
out random interleavings and reorderings.

The precision is not perfect due to false positives and some ambiguous cases. We review
the false positives in detail when we compare with offline results in Section 5.4.4.

Table 5.2(b) shows that precision and recall are insensitive to the maximum detection
latency Tmax over a certain range, but setting it outside this range (first and last rows of
Table 5.2(b)) adversely affects recall or precision. The intuition is that when Tmax is too
small, many logical sessions, especially those not covered by the dominant patterns, are cut
off randomly, and when Tmax is too large, many unrelated sessions are combined into the
same message count vector, introducing too much noise for the PCA detector. Either effect
degrades precision and recall.

64

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Detection Latency (sec)

C
D

F

0 2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

Number of events in memory

C
D

F

Figure 5.5: Detection latency and number of events kept in detector’s buffer

As we described in Section 5.2.2, we used a fairly sophisticated model to estimate the
duration of sessions. If we had instead assumed a simple Gaussian distribution, the 99.95th
percentile of Tcut would be estimated as 5.3 seconds for Pattern 1 and 4.0 seconds for Pattern
2 in Table 5.1—less than half as long as the Tcut estimated by our distribution-fitting. Using
the Gaussian-derived cutoff time, the number of false alarms increases by 45%, and precision
falls to 80% from 86%. Therefore the small added complexity for duration distribution
estimation in Section 5.2.2 results in much better recall and precision.

5.4.3 Detection latency

Detection latency, defined in Section 5.2, captures timeliness of detection, a key goal of
our online approach. Recall that the difficulty of minimizing detection latency arises from
the fact that it is not always possible to mark a trace “abnormal” until a specific event or
set of events occurs. For example, the “allocate block” message in Pattern 1 of Table 5.1
simply indicates the start of a sequence of operations; the detector has to buffer the event
and wait for further events. The final decision for this message is not reached until the last
event of Pattern 1; that is, the last of the three expected “receiving” messages. Then the
detection time for the trace containing this “allocate block” event is the time elapsed from
the “allocate block” event being emitted to the time the detection result is made.

Figure 5.5 on the left shows the cumulative distribution function (CDF) of detection
times over all events. As expected, over 80% of the events can be determined as normal
or abnormal within a couple of seconds. The short detection latency is because we use
the cutoff time Tcut to stop waiting for more events instead of the max latency Tmax for
most events. Events that do not match any pattern require the maximum allowed detection
latency: To defaults to (T +Tmax). By definition, these events are rare, so the overall impact
of their longer detection time is limited.

Figure 5.5 on the right shows the CDF of the number of events buffered in detector at
every second. Because the detection time is low, most events are processed and removed
from the buffer quickly. Thus, as expected, the typical number of events in the buffer is
small.

65

No. Anomaly Description Actual Offline Online
1 Namenode not updated after deleting block 4297 4297 4297
2 Write exception client give up 3225 3225 3225
3 Write failed at beginning 2950 2950 2950
4 Replica immediately deleted 2809 2788 2809
5 Received block that does not belong to any

file
1240 1228 1240

6 Redundant addStoredBlock 953 953 953
7 Delete a block that no longer exists on data

node
724 650 724

8 Empty packet for block 476 476 476
9 Receive block exception 89 89 89
10 Replication monitor timedout 45 45 45
11 Other anomalies 108 107 108

Total 16916 16808 16916

False Positive Description Offline Online
1 Normal background migration 1397 1403
2 Multiple replica (for task / job desc files) 349 368

Total 1746 1771

Ambiguous Case Offline Online
(see Section 5.4.4) 0 977

Table 5.3: Detection accuracy comparison with offline detection results. Actual is the
number of anomalies labeled manually. For fair comparison, we reused labels from Table 4.3
in Section 4.3. Offline is PCA detection result presented in Section 4.3 and online is our result
using our two stage detection method in an online setting, with the baseline parameters.

5.4.4 Comparison to offline results

Table 5.3 compares the offline detection results from the last chapter to our online
detection results using baseline parameter values α = 0.001 and Tmax = 60. The error
labels in the first column of the table were obtained directly from Table 4.3. The online
method has an even higher recall than the offline method. The reason is that for online
detection, we segment an event trace into several sessions based on time duration, and
base the detection on individual sessions rather than whole traces. Thus, the data sent to
the detector is free of noise resulting from application-dependent interleaving of multiple
independent sessions (e.g., some blocks are read more often than others).

The two types of false positives in Table 5.3 are both “rare but normal events”. For
example, false positive #2 (over-replicating) is due to a special application request rather
than a system problem. These are indeed rare events, as there are only 368 occurrences
across all traces. These cases are hard to handle with a fully unsupervised detector. As

66

Table 5.4: Add caption

Experiments Precision Recall
Online with ambiguous cases 86% 100%
Online excluding ambiguous cases 89% 100%
Offline 91% 99.3%

Table 5.5: Precision and recall comparison between online and offline detection results. The
offline result is from Chapter 4, while the two online results represent counting ambiguous
cases as false positive or not. See text in Section 5.4.4 for details.

we discussed in the previous chapter, in order to handle these cases, we allow operators to
manually add patterns to encode domain-specific knowledge. Note that the patterns are
much easier to write than PCA models. This is a beneficial side effect of the two-stage
method over the offline method.

Table 5.3 lists ambiguous cases arising from the unclear definition of “anomaly”. For
example, our online algorithm marks some write sessions abnormal because one of the data
nodes takes far longer to respond than all others do, resulting an unusually long writing
session2. From the system administration point of view, these cases probably should be
marked as anomalies, because although these blocks are eventually correctly written, this
scenario effectively slows down the entire system to the speed of the slowest-responding node.
Table 5.5 summarizes the precision and recall comparing to the offline detection algorithm.

In the offline experiments (Section 4.3), however, an event trace is labeled as normal if
it contains all the events of a given pattern, without regard to when the events occur. Since
they do not consider time information such as the durations of sessions, a scenario in which
one data node takes a long time (but eventually responds) is no different from a scenario in
which all nodes respond in about the same amount of time. We consider session durations
because we need to do so in order to bound the time to detection, but here we see that this
additional information potentially improves the value of the online approach for operators
in another way as well—by labeling as anomalous those event traces that are “correct but
slow.” If we consider slow operations problematic, at least some of these false alarms would
instead be counted as a new type of anomaly not detected by the offline approach.

To determine how many of the 977 ambiguous cases fall into this category, we would have
to examine all event traces manually to evaluate duration lengths, in contrast to examining
only distinct traces without considering time information as was done in the offline case
discussed in the last chapter. However, we did an informal evaluation to estimate the
number of cases that are probably due to this problem. We forced Tcut to 600 seconds for all
patterns, which forces the detector to wait a long time for any incomplete patterns. Under
these circumstances, the detection results approximate the results achieved by the offline
detection algorithm when ignoring time information: the number of ambiguous cases drops
to 314, which suggests at least 2/3 of these types of false alarms are fair to count as real
anomalies. Nonetheless, to keep a fair comparison with the offline result, we stick to the

2The write durations of these ambiguous cases ranges from 13 seconds to hundreds of seconds, while the
median duration for all sessions of this type is less than 1 second.

67

original labels in all our evaluations. Table 5.5 compares the precision and recall in either
case when these ambiguous cases are counted as false positives vs. when they are not.

5.5 Discussion

5.5.1 Limitations of online detection

An obvious limitation of online detection is that we cannot capture correlations across
events over very long time periods. For example, as discussed in Section 5.4.1, there is a
large and unpredictable time gap between Patterns 1 and 2 in Table 5.1, so we must separate
them into two patterns. However, a consequence of this separation is that we lose the ability
to observe correlations between events in Pattern 1 and “matching” events in Pattern 2,
which would potentially allow us to capture a new category of operational problems. For
example, events in Pattern 1 indicate how many data nodes begin a write; each such node
should have a corresponding “end write” event in Pattern 2.

It is an inherent limitation that online detection cannot capture patterns with long du-
rations, because of the detection latency requirement. This problem could be solved by
remembering a longer history, which may be stored in a more compact/aggregated form
to reduce overhead, though that complicates the design of the detector. Thus we propose
a different approach: by leveraging relatively cheap computing cycles, we can perform of-
fline detection periodically on archived data to find anomalies violating such uncaptured
constraints.

5.5.2 Use cases

In addition to showing individual anomaly alarms, our technique lets operators link
each alarm back to the original logs and even the related source code segments, using the
parsing and visualization techniques described in Section 4.4. In addition, since we detect
performance anomalies quickly, operators have more time to prevent them from causing
more serious errors. Anomalies due to deterministic bugs can recur frequently even over
short timescales, as occurs with Anomaly 1 in Table 5.3, which is due to a deterministic bug
in the Hadoop source code. Since setting off alarms on each occurrence would overwhelm
the operator’s attention, we cluster the anomalies hierarchically and report the count of
each anomaly type and a count of the occurrences of each type.

5.6 Summary

In this chapter, we show how to use a two-stage data mining technique to identify
and filter out common, normal operational patterns from free-text console logs, and then
perform PCA-based anomaly detection on the remaining patterns to identify operational
problems within minutes of their occurrence as represented by information in the console
logs. Our evaluation shows that the two stage detection method can achieve or even exceed
the detection accuracy of the offline algorithm described in the previous chapter.

68

In the next chapter, we will discuss a large scale case study of applying these methods
on console logs from production systems from Google. Similar to the previous datasets,
the Google data contains both identifiers and state variables so our methods still apply.
However, the scale and complexity of such data brings unique challenges. We focus on the
observation of these datasets and our approaches to deal with these challenges in the next
chapter.

69

Chapter 6

Real world application

Although both case studies in the previous two chapters, Hadoop and Darkstar, are real
open source systems, the logs we used came from experimental deployments. In this chapter,
we discuss our experience applying our log analysis methodology to Google’s production
logs. The logs come from a distributed storage system consisting of thousands of nodes in a
Google production cluster, which we call GX in this chapter. There are several independent
monitoring systems built into GX, and the console log is one of them. GX console logs are
collected as plain text files on local disks on each node. Our data set contains most of the
log messages in a two-month period1.

We show that we can easily adapt our console log analysis framework to process these
logs, and find interesting information about the system. Most of the methods we used are
exactly the same as previous chapters. However, there are some new challenges in this data
set:

Data size. The data set is five orders of magnitudes larger than the Hadoop data set. In
contrast to Hadoop, which logs each write/read operation, GX only logs significant
events, such as errors and periodic background tasks. Even omitting per-operation
logs, a single node can generate over half a million messages per day, and thus thou-
sands of nodes in the system generate over a billion messages per day. Our entire data
set contains tens of billions of messages, with a size about 400 GB uncompressed. We
have to parallelize the parsing and feature creation steps onto thousands of nodes so
that we can process all the logs within a couple of hours.

Large variety of message types and message variables. Because of the complexity of
GX and its extensive interactions with other infrastructure components, there are hun-
dreds of different message types in the logs. In fact, our source code analysis shows
that there are over 20,000 different possible message types in GX, compared to only
about 1000 in Hadoop. Most of these types never appear in the log because of the
logging level settings. There is a wide variety of message variables (both identifiers and
state variables) as well. Though we could apply our methods on each identifier and

1As the logs are collected on local disks only, there are several corruptions due to disk/node failures or
software errors.

70

each state variable, it would cost more computationally than we could afford. Thus,
we heuristically choose the message variables that are likely to indicate problems.

Longer time period with multiple versions. Unlike other data sets we discussed be-
fore, we have almost two months worth of data. Due to the longer time period, we
need to use the sequence segmentation techniques discussed in Chapter 5 for online
processing, even if we perform an offline analysis.

Two limitations prevent us from formally evaluating the analysis result. First, console
logs in GX are not regularly used by system operators, and thus there are no manual labels
explaining the logs. With an unclear “ground truth”, it is not possible to evaluate metrics
such as true/false positives. Second, due to confidentiality issues, all human readable string
constants are removed (details in Section 6.1), rendering it impossible to understand the
semantics of patterns and anomalies discovered. Due to these limitations, we only evaluate
our results qualitatively and show that they are still potentially useful to the developers and
operators of system GX.

6.1 The art of log sanitization

GX is written in C++, and our C++ parser can achieve highly accurate parsing results
on the data set. We discussed the parsing performance in Section 3.5.

In this section, we highlight how parsing helps remove sensitive data from the free text
logs while preserving enough information for our analysis. We call the process log saniti-
zation. Sanitizing console logs is not scientific as we cannot quantify the effectiveness of
sanitization, nor is it a major goal of this research. However, it is a necessary step to obtain
the data for research and an interesting application of our log parsing technique.

There are potentially two separate types of sensitive information in console logs: 1)
program logic and 2) sensitive data, such as internal entity names. Due to their free text
nature, console logs may reveal this sensitive information in any message. Hashing each
English word does not work because many identifiers are hierarchical (e.g. a path or a
URL), and the naive hashing would destroy these hierarchies and make the identifier-based
grouping impossible.

Our message parsing makes the sanitization easier and more effective. Figure 6.1 illus-
trates major steps to sanitize a message. The message parser first identifies string constants
in the message, and then replaces these constants with a unique message type ID. This
step removes semantic meanings of messages, making it hard for adversaries to guess the
internal program logic. Note that this step is reversible as long as the message templates
are available, making it possible for Google’s internal operators to reconstruct the original
message.

The next step is to apply a one-way secure hash function to all message variables (or
parts of the variables) containing sensitive information. In this step, our goal is to preserve
as much information as possible while removing all sensitive data.

Selecting which variables to hash can be difficult. One simple scheme is to obtain a list
of “sensitive terms”, look for variables containing these terms and hash them. This scheme

71

Hide program logic/semantics Hide sensitive dataHide program logic/semantics Hide sensitive dataHide program logic/semantics

R C t t St i St t b d iti tiK d b dRemove Constant Strings Structure!based sanitizationKey word basedRemove Constant Strings Structure based sanitizationKey word based

(E t t t) (h h l t d)iti ti(Extract message type) (hash selected message vars)sanitization(Extract message type) (hash selected message vars)sanitization

Figure 6.1: Log sanitization overview. We need to sanitize two separate types of sensitive
information: 1) program logic, and 2) sensitive data. Our sanitization is based on structures
of log messages as well as a list of sensitive words.

does not work well enough because 1) it is not possible to obtain an exhaustive list of all
sensitive terms, and 2) some of these sensitive terms are phrases instead of single words.
Arbitrary string concatenations, especially when constructing hierarchical names, make it
hard to identify all phrases from a long string variable. Solving the general problem of string
segmentation is a hard problem in information retrieval [56, 100]. Fortunately, we have data
type information for each variable from the message parser, so we can specify sanitization
rules for each data type, rather than each word. For example, if we know many variables
are of URL type, we only need to specify a rule to handle URLs, rather than specifying
each variable. Although GX contains almost 2000 different variables, there are only about
20 different data types. Using data-type-based rules significantly reduces the manual work
in the sanitization process.

There are exceptions to the data-type-based rules. For example, we want to keep some
integer-typed variables (e.g. performance counters) while removing other integers revealing
machine configurations. We developed a scripting engine that allows us to specify these
exceptions.

We applied all sanitization methods discussed above to GX logs. To informally evaluate
the effectiveness of such methods, we generated a random sample of 100,000 lines of sanitized
logs and manually examined them. We did not find any sensitive information. After the
data set was sanitized, we were ready to try our techniques to detect anomalies in the
system.

6.2 State-based detection

Most important anomalies are those related to problems affecting a large part or the
entire system. We find the state ratio vector feature, introduced in Section 4.1.1, especially
suitable in detecting such anomalies.

We used the message type ID obtained from the parsing step as a special state variable.
This is a reasonable choice because most of the messages in GX logs are generated by
background tasks reorganizing the data storage. The performance and correctness impact
of such tasks can be significant. Thus, which background task is running at a given time
is an important system state to capture. As each background task always generates a fixed

72

500 1000 1500 2000 2500
0

2

4

6

8

10

12

x 10
11

Time (10 min. time window, showing 2 month data)

S
P

E

SPE

Threshold

Anomalies

2 alarms [“user error”]

3 alarms [“transient”/”unknown”]

2 alarms [“known bug”]

1 alarm [“transient”]

Time (10 min. time window, showing entire 2-month data)

Figure 6.2: GX problem detection results using message type counts on the entire two-
month period. Norm is calculated using Equation 4.3 in Chapter 4. Texts with arrows are
automatically generated alarms as well as operators’ comments on these alarms. The arrows
points to the time when the alarms happen.

set of message types that are distinct from those types from other tasks, capturing message
type IDs is equivalent to capturing the current state of running background tasks.

We count the number of each different message type occurring in the entire system in
every 10-minute time window. There are over 400 different message types, so the resulting
state ratio vector has over 400 dimensions.

We then applied PCA detection to these vectors, and Figure 6.2 plots the squared
prediction error (SPE, defined in Equation 4.3 in Chapter 4) for each time window. We
see that the state ratio vectors stay normal during most of the time windows, indicating
that the relative rate for each message type remains constant, matching our assumption
that the relative frequency of different background tasks remains constant.

There are a few anomalous time windows, shown as spikes in Figure 6.2. Because we do
not have access to semantic information of each message type, nor do we understand the
internals of GX, it is not possible to interpret these anomalies. Instead, to verify that these
anomalies did affect system performance, we checked performance alarm data. There is a
monitoring system that periodically probes GX and raises alarms to operators if there is a
significant performance decrease. The operators then investigate these alarms and attach
their comments. The text comments with arrows in Figure 6.2 show these alarms with com-

73

ments. Each arrow points to the time when the alarms are generated. We can easily see that
these alarms happen at almost the same time as the anomalies detected by PCA, suggesting
changes in state ratio vector feature may be correlated with performance problems. Note
that there is a complex logic in the alarm system to suppress unnecessary/duplicate alarms
in order to reduce the operator’s manual tasks. Due to this fact, the alarms and the anoma-
lies we detected are not likely to form a one-to-one correspondence. Thus, these alarms are
different from the manual labels we had in the Hadoop and Darkstar cases, preventing us
from accurately evaluating the false positive/negative rates.

With the alarm system built-in, detecting anomalies becomes a less important goal for
our log analysis. On the other hand, it is not easy for the operators to determine the cause of
the performance problems just by looking at the alarms, as the alarms provide no information
other than a long latency. In Figure 6.2, half of the alarms are not clearly marked with
the actual cause. Abnormal log patterns, on the other hand, contain information about
internal states, and thus can be useful supplements for operators to better diagnose these
performance anomalies.

6.3 Sequence-based detection

In GX, storage is partitioned onto multiple nodes. Each partition goes through a similar
life cycle: it is first created, then migrates among multiple nodes, and finally is terminated
by a re-partition or deletion operation. A partition is manipulated by background tasks,
which generate sequences of log messages. In fact, the majority of console log messages are
generated by such background tasks.

Each partition is identified by a partition identifier, which is a complex string of arbitrary
length and format. Grouping messages by such identifiers, we can capture all messages about
events happening on a partition. Each message sequence can last a long time, some even
spanning the entire two-month period. In this case, the offline approach, which builds
message count vector features from the entire sequence, becomes less useful. We need to
segment each sequence into sessions, as we did in our online approach.

Therefore, we directly applied the frequent pattern mining methods discussed in Chap-
ter 5. This pattern mining step results a set of intuitive patterns. For example, when a
partition is migrated to a node, the original node normally prints five messages for unload-
ing the partition, while the receiving node prints six messages for loading the node. Our
pattern mining technique is able to accurately capture these sequences, as well as the time
distribution for each sequence to complete. We discovered nine different patterns, each of
which contains two to six events and represents a common background task in the system.
There are some less frequent tasks, such as repartitioning, not captured as frequent pat-
terns. Although we could have lowered the minimal support requirement during the pattern
mining, we decide to leave these less frequent patterns to the PCA model in the second
stage.

The PCA detection stage marked less than 0.1% of over 200 million sequences as anoma-
lies. Most of the anomalies either contain rare message types (probably error messages), or
take too long to complete. Without a deep understanding of GX internals, we were not able

74

to determine the performance/correctness impact of each anomaly, nor could we estimate
the false positive rate. However, informal communications with GX operators show that
these anomalies could help GX developers to understand corner cases better and further
improve the performance and reliability of the system.

6.4 Summary

In this chapter, we summarized our experience of applying the console log mining
methodology to a production system at Google. Despite the size and complexity of the
log, we show that the parsing, feature creation, pattern mining, and anomaly detection
techniques are easy to adapt to system GX and yield promising results. Lacking of even
basic knowledge about GX prevents us from formally evaluating our results, but informal
communications with operators show that the results can be very useful. Global-state-
based detections help find causes for performance problems, while sequence-based-detection
is useful for finding hard-to-notice corner error cases, helping developers further improve the
system.

GX collects other monitoring information besides console logs. These monitoring data
are collected from different layers in the software/hardware stack. Much work has been
done analyzing monitoring data of different granularity, in addition to console logs. In the
next chapter, we review existing work focusing on mining console logs, as well as projects
in system monitoring in general.

75

Chapter 7

Related Work

In the Section 7.1, we first review existing work around system monitoring and problem
detection with methods other than console logs. We focus on identifying the spectrum of
such work based on how much and at how fine a granularity. Then in Section 7.2, we review
projects on analyzing textual logs. We group these works based on their way of modeling
console logs: as raw text, as a single time series, or as separate program execution traces. We
also discuss different methods of parsing console logs. Finally in Section 7.3, we summarize
techniques and building blocks used in this dissertation.

7.1 System Monitoring and Problem Detection

Detecting and diagnosing problems in computer systems are useful are many contexts,
especially in data centers. Obviously, problem detection requires collecting a certain amount
of monitoring data. Collecting and analyzing monitoring data are both important research
topics. Existing work differs fundamentally in the granularity of monitoring data required.
In this section, we review previous work in system monitoring without using console logs,
and we delay reviewing of console log analysis work to Section 7.2.

We present these projects as a spectrum. At one end of the spectrum, there are tools
collecting coarse granularity data, such as performance counters and raw logs, and using
such simple data to detect or describe problems. These kinds of tools incur the least amount
of performance or maintenance overhead, but they provide the least insight into the problem
itself. At the other end of spectrum, one can use source code or binary instrumentation to
collect very fine grained data. These methods, though they sometimes carry high perfor-
mance overhead and require significant developer efforts to implement, can help discover
and diagnose subtle problems. Of course, many tools try to find a good tradeoff between
the amount of data to collect and the power in diagnosing problems.

76

7.1.1 System monitoring tools

Passive, out-of-the-box data collection

Many data are collected by built-in mechanisms during system operation without special
configurations. These data typically include performance counters, such as CPU/memory
utilization, request rate, I/O statistics, as well as various types of logs (e.g. request logs,
binary logs, and console logs).

Although many systems dump such traces into a text file on local disks, many other tools
support distributed data collection. Simple Network Management Protocol (SNMP) [13] is
the most widely deployed protocol to collect structured traces from a variety of software and
devices. It supports a hierarchical name space and can be used to collect both numerical
traces and less structured event traces. There are many commercial or open source tools for
analyzing and visualizing SNMP data, most notably, HP OpenView (and its successors) [46],
IBM Tivoli [47] and Microsoft System Center Operation Manager [71]. The predefined
hierarchical namespace makes SNMP traces easy to handle, but they do not always provide
the flexibility for programmers to track all data they want. This lack of flexibility is an
important reason why console logs are still widely used.

OS and framework-level instrumentations

Though generic metrics such as CPU and I/O statistics can sometimes reveal interesting
problems, some situations demand more detailed monitoring information. The instrumen-
tation can be at different layers of the system, for example, at virtual machine level, OS
level, programming framework level, or application level. Of course, application level in-
strumentation provides end-to-end detection power, but also involves significant developer
or runtime overhead. In this section, we review OS and framework level instrumentation,
leaving application instrumentation to the next section.

Existing work aims at replaying program execution for debugging. The tracing can be
done either at virtual machine level [55] or at framework level [34]. Replay-based systems
are especially useful for dealing with synchronization bugs. However, the amount of data
required for replay is large, making it infeasible to keep a long history. Although recent
work [2] shows that replay can be done with partial data, the performance overhead is still
significant (over 5%). Another drawback is that it is often hard to know which time point
during the reply really reveals “interesting” system behavior, which is essentially the same
problem as finding abnormal patterns in console logs.

Modern operating systems provide mechanisms to collect both OS and process level
metrics. Windows provides a large number of performance counters through the registry
interface [70], while Solaris provides DTrace [12, 91], a configurable and extensible instru-
mentation framework. Like console logs, these data are multi-dimensional, but unlike console
logs, these counters capture lower OS-level information, which sometimes do not provide
enough information to detect application layer problems.

Some data requires specialized monitoring infrastructure. For example, Fonseca et al.
developed XTrace [31], a framework for collecting execution path data in a distributed
system. XTrace can be built into the runtime environment, such as application servers or

77

libraries, using source code instrumentation. In contrast to the execution traces we created
from console logs, the ordering of events in XTrace is guaranteed to be correct even across
multiple nodes.

Stack traces and memory dumps are also widely used in debugging software. These data
can be collected periodically or during a system crash. For example, Windows crash dumps
are very effective in identifying common bugs in Windows [36].

Application level instrumentation

The most straightforward method of collecting application layer metrics is instrumenting
the source code. Many language runtime environments provide dynamic assertions or pred-
icate support. Predicates can be added automatically or manually. Manually added predi-
cates are similar to console logs in the sense that they capture developers’ expert knowledge.
An obvious drawback of adding these predicates is increased developer overhead. Though
predicates can also be generated automatically [103], generated predicates tend to be less
targeted and result in a huge amount of useless data, which implies sophisticated sampling
or other preprocessing to reduce the amount of data.

It is generally less desirable to tightly couple monitoring instrumentations with the source
code. There are tools providing better flexibility and maintainability of instrumentation.
Aspect Oriented Programming tools, such as AspectJ [5], allow operators to implement
instrumentation at configurable cut points, such as function entrances and exits, during
program execution.

Sometimes it is useful to instrument applications running on machines not easily ac-
cessible, such as thin-client applications running in a browser. Kiciman et al. proposed
AjaxScope [54], a proxy-based solution to provide runtime-configurable instrumentation,
including dynamic predicates, for JavaScript-based applications.

In summary, all existing tools described above provide developers and operators with
a large selection of methods to collect monitoring data from different layers with different
granularity. Like console logs, as more traces are collected, they quickly become infeasible
to process manually. These problems all call for automated problem detection tools.

7.1.2 System problem detection with structured data

System monitoring frameworks provide information with different resolution and volume.
Accordingly, there is a spectrum of existing work that makes use of the monitoring data to
detect, categorize, or even debug problems. In this section, we review these projects using
structured traces, in the order of increasing amount/granularity of data.

Simple numerical metrics become powerful when their correlations are considered. On
the anomaly detection problem, Lakhina et al. analyzed package count data on individual
links, and used a PCA based method to detect network-wide traffic anomalies [58]. Interest-
ingly, the anomaly is only obvious when analyzing the traffic correlations on multiple links.
Correlations among numerical metrics are also used to categorize similar failures.

Cohen et al. and Bodik et al. use a large collection of metrics, from OS level to
application level, such as CPU, I/O and request rate and response time. They correlate

78

these metrics with alternatively identified problematic periods (e.g. high response time or
user-visible errors) in order to discover a subset of metrics whose changes best describe the
root cause of the problem. As a by-product, the changes of such metrics can also be used
as a description of each type of problems [19, 8].

Timestamps are also widely used in problem detection, especially in system event data
or SNMP traces. Uncommon periodicity of certain event types is often a good indication of
problems. Hellerstein et al. developed a novel method to mine important patterns such as
message burst, message periodicity and dependencies among multiple messages from SNMP
data in an enterprise network [45, 67]. There are two limitations of these kinds of methods:
1) they require accurate detection of event type, which is not always possible; 2) sometimes
the periodicity is less obvious in noisy workloads, and often require ad hoc filtering.

Execution-path-based methods are very powerful. The execution paths can be obtained
either through custom instrumentation or frameworks such as XTrace [31]. Path-based
analysis is able to review anomalies down to individual operation level. For example, Chen
et al. used clustering [17] and probabilistic context free grammars [16] to analyze execution
paths in several custom instrumented systems. Our idea of message count vector feature
comes from the path-based methods. In contrast, we construct execution path information
solely from console logs. We do not always have correct ordering or as detailed information
as traditional trace collection. We showed that with our feature design we can tolerate such
inaccuracies.

Lower level performance counters can sometimes reveal high level application problems.
Yuan et al. use patterns in traces of system calls to capture application layer behaviors,
and are able to classify application failures, even if these failures exhibit the same symptom
(e.g. slowdown) from the application perspective [101].

Many projects use periodic snapshot of system states, most notably configurations, in
addition to performance traces, to diagnose problems. For example, PeerPressure [97] uses
Windows Registry data to detect problems, while Dunagan et al. use changes in configura-
tion as supplements to OS counters to detect potential security problems [22]. Kandula et
al. use system configuration snapshots to capture dependencies of various components in a
network system to determine the root cause of runtime anomalies [52].

When the luxury of application specific instrumentation is possible, more powerful tech-
niques such as distributed predicate evaluation can be used. D3S [63] demonstrated a
combination of static analysis and runtime evaluation of distributed predicates to detect
hard-to-find bugs in many distributed systems.

Statistical debugging [103] is a tradeoff between the large number of predicates and
overhead of collecting debugging traces. It tests and collects randomly generated predicates
as well as execution sequence from instrumented programs. Through many runs of the same
program, abnormal executions paths can be found together with the cause of the anomaly
(e.g. the abnormal predicates).

79

7.2 Console Log Analysis

While all console logs are collected with a very simple mechanism, which is passively
collecting text streams, the analysis on console logs spans a spectrum, depending on the
level of detail of information contained in logs. In this section, we first review tools for
generating and collecting console logs, and then we discuss previous work in parsing console
logs. In Section 7.2.3, we discuss different methods for analyzing console logs, based on
different models used.

7.2.1 Console generation and collection

Traditionally, console logs are generated with standard printing statements, such as
printf in C or cout stream in C++.

Because of the wide deployment of console logs, many projects target improved console
log generation. Advanced logging frameworks such as log4j [39] or SLF4j [86] are developed
to support flexible (or even runtime configurable) formatting, improved I/O performance
and allow multiple repositories. The development of these tools decoupled log generation
from collection, and greatly improved manageability of logging in large scale systems. In this
project, we assume programmers use such frameworks for log generation instead of using
printing statements directly, so we can get additional information such as timestamps and
thread IDs associated with each message. We do not modify the framework or the logger
configuration.

Console logs are typically collected using syslog [64]. Notice that syslog, besides requiring
a timestamp and the module name where log is generated, does not require any specific
format for the free text part of the log message, and thus to operators it is the same as
console logs. Syslogs are traditionally collected using syslogd, either on the local node or
over the network. More sophisticated implementations focus on improving availability and
security [7]. On the other hand, as syslog implementation requires each log message to be
sent to the syslog server through remote procedure call (RPC) as they are generated, it is
hard to scale to a very large scale cluster.

Chukwa [10] implemented a decentralized log collecting system that stores log archives on
Hadoop File System. This design not only provides reliability to log archives, but also makes
accessing historical logs efficient with map-reduce programming tools [9]. Our problem
detection framework can directly handle logs stored in Chukwa.

The large variety of tools discussed reflects the fact that console logs are still widely used
in practice. On the other hand, the lack of analysis tools makes the vast amount of textual
logs less useful, which is the major problem we aim to solve in this project.

7.2.2 Console log parsing

Almost all existing automated console log analysis work uses concepts similar to message
types and variables discussed in our project. A questionable assumption in previous work is
that message types can be detected accurately. Both [45, 67] use manual type labels from
SNMP data, which are not generally available in console logs.

80

Most projects use simple heuristics—such as removing all numeric values and IP-address-
like strings—to detect message types [99, 61]. These heuristics are not general enough. If
the heuristics fail to capture some relevant variables, the resulting number of message types
can be in the tens of thousands [61].

Several efforts use frequent item set mining, a technique from data mining, to find
frequently appearing string segments in order to detect message type [95, 89, 96]. In order
to improve accuracy, many heuristics are added to normal frequent item set algorithms,
such as considering the position of a certain word. The authors of [30] use more advanced
clustering and association rules as well as scoring methods from information retrieval to
extract message templates for log parsing. IPLoM [68] uses a series of heuristics to iteratively
capture the differences of similar log messages to determine message types. Fu et al. use a
similar iterative method to find message types [32].

This class of methods works well on messages types that occur many times in log, but it
cannot handle rare message types that are likely to be related to the runtime problems we
are looking for in this research. In our approach, we combine log parsing with source code
analysis to get accurate message type extraction, even for rarely seen message types.

7.2.3 Using console logs for problem detection

Console logs as free text

Traditionally, operators use grep or write ad-hoc scripts (mostly in Perl or Python) for
console log monitoring and analysis.

One popular improvement to these ad-hoc scripts is rule-based systems. The most pop-
ular ones include Logsurfer [80], Swatch [42], and OSSEC [76]. In these systems, operators
need to specify two types of rules: regular expressions that extract certain textual patterns
from log messages, and rules that perform simple aggregations on the patterns extracted.

The problem with rule-based systems is that the rules, like scripts, are usually hard
devise, and even harder to maintain. Previous research [75] shows that most of the naive
rules either do not reveal the real problem or have too many false alarms.

Another direction of improving ad hoc scripts is adopting full text search tools, such as
Splunk [87], a commercially available tool. Although these tools bring significant improve-
ments in terms of speed and ease-of-use over scripting, they still require operators to provide
key words for searching, even though unfortunately the key word selection process is often
beyond operators’ knowledge.

There is no fundamental difference between either rule-based systems or Splunk and
traditional ad hoc scripting in that all of them models logs as collections of English words
and only consider the textual properties of logs. As [75] suggests, however,the semantics
of words are not reliable indicators of system problems, which is also shown in the “read
exception” example discussed in Section 4.3. Recall that in that example the “exception”
was actually normal behavior. In contrast, our approach extracts information about program
objects from log messages, and our detection is based on event traces related to those objects,
rather than on textual properties.

81

Console logs as event streams

Using only message type information, existing work treats the entire log as a single
sequence of events and applies time series analysis methods.

One focus of analyzing temporal properties is to reduce repeated alarms in monitoring
systems. Liang et al. greatly reduced number of repeated alarms on hardware failures
from a supercomputer by correlating similar messages from multiple components that occur
around the same time [60]. Lim et al. analyzed a large scale enterprise telephony system
log with multiple heuristic filters, such as number of messages in a time window and change
rate of the message count, to reduce the number of alerts before actual failures [61]. These
methods reduce the number of repeating events that humans must read, but do not reduce
the number of types of events humans need to handle manually, which is the focus of our
project.

Another focus for analyzing temporal properties of console logs is finding temporal cor-
relations of some message types. Yamanishi et al. model syslog sequences as a mixture
of Hidden Markov Models (HMM) in order to find messages that are likely to be related
to critical failures [99]. However, treating a log as a single time series does not perform
well in large scale clusters with multiple independent processes that generate interleaved
logs. The model becomes overly complex and parameters are hard to tune with interleaved
logs. Our analysis leverages additional information such as identifiers to recover the original
sequences, resulting much cleaner feature vectors.

Console logs as program state transitions

Recent work, including ours, models console logs as a number of interleaving execution
traces. Fu et al. compute a finite state machine (FSM) from console log stream, each
message type representing a (somewhat abstract) program state [32]. The expected sequence
of messages (state transitions) is captured by the FSM, and the model is augmented with
expected transition times. Comparing to our method, though FSM is able to capture more
information than the message count vector, it is highly sensitive to noise (such as the
random reordering, inaccurate timestamps and high variations in durations, as described in
Section 5.1), especially in a large scale system with highly variable workloads.

7.3 Techniques Used in This Project

We get many of our ideas and techniques from existing research in systems, machine
learning, and information retrieval, although to the best of our knowledge our technique
represents the first time these methods are applied to console log analysis.

Anomaly detection

PCA-based anomaly detection method was originally developed in multivariate process
control [23], and has been applied to many areas. The most relevant one is network anomaly

82

detection. Lakhina et al. analyzed package count data on individual links, and used PCA
based method to detect network-wide traffic anomalies [58]. This method works both on
networking data and in our console log data because both types of data share intrinsic low
dimensionality, which we discussed in Section 4.2. To the best of our knowledge, our project
is the first time PCA method was used on system logs and execution paths in general.

Kernel methods have been used in many areas in machine learning such as classifica-
tion, clustering, regression as well as anomaly detection to handle non-linear patterns in
data. Kernels capture the similarity of multiple kinds of data, including discrete and struc-
tured data [33, 49]. We do not explicitly use a kernel method. Instead, we pre-process
message count vectors with term frequency / inverse document frequency (TF/IDF), a well-
established method in information retrieval [83, 78], and we use cosine similarity to nor-
malize the vectors. We show that it is similar to the multinomial product kernel discussed
in [49]. This normalization improves results significantly because it is a better and more
accurate way of capturing differences among message count vectors.

Frequent pattern mining

Within the vigorous research area of frequent pattern mining [40], which has been an ac-
tive research field in data mining for over a decade, a variety of efficient algorithms has been
proposed in different research frontiers [1, 41, 88, 102, 79]. We are particularly interested in
sequential pattern mining techniques, which mine frequently occurring ordered subsequences
as patterns. For example, Generalized Sequential Patterns (GSP) [88] is a representative
Apriori-based algorithm; SPADE [102] is a vertical format-based mining method; PrefixS-
pan [79] is a pattern-growth approach to sequential pattern mining. We extend the tech-
niques to address the unique challenges of our problem described in Section 5.2. The major
difficulties for us, which are not addressed in these general algorithms, are: 1) “transactions”
(sessions) interleave in our data. Thus we need to simultaneously segment a sequence into
sessions and mine patterns. 2) We only observe partial orders of the events in the sequences.

Frequent pattern mining techniques have also been used to analyze words in messages to
understand the structure of console logs [95, 96] and to discover recurring runtime execution
patterns in the Linux kernel [59]. In contrast, we use frequent pattern mining to message
types that frequently appear together, rather than patterns of individual words.

Using textual information in software development

Software development involves textual information other than console logs. Previous
work demonstrated that by leveraging source code information, the best maintained and
structured, one can make the unstructured text much easier to handle. The Javadoc system
explicitly allows developers to link the API documentation to the corresponding source
code segments [57]. This connection enables tools leveraging source code information to
help developers better browse or search [25], validate and evaluate [74], and share [21] API
documentation. Combining natural language processing techniques with static source code

83

analysis, Tan et al. proposed a novel approach to detect inconsistencies between textual
comments and program logic [93].

Our idea is similar in that we can make textual information machine understandable
by leveraging source code. The “link” between console log message and the source code is
implicitly defined (by the string constants), rather than explicitly specified as in the Javadoc
case. For this reason, a significant part of our approach is to automatically recover this link.
Also, console log messages are far less meaningful to human reader than documentation,
which is why we use them as execution sequences rather than natural language sentences.

System building

From the system design perspective, our system is built on many open source tools.
We used Eclipse Java Development Tooling (JDT) [82] and C++ Development Tooling
(CDT) [38] to implement our source code analyzer and Lucene [44] to match message tem-
plates to actual messages. We used Hadoop map-reduce [9] to scale our experiment to many
nodes. We used RapidMiner [72], a machine learning and data mining framework to gen-
erate the decision trees. In the online detection implementation, we also employed basic
streaming database concepts, such as stream filtering, aggregation and group-by [6, 15] and
implemented each components in our system as a stream processor.

7.4 Summary

Monitoring and diagnosing problems in distributed systems is such an important and
difficult topic that much work has been done in collecting monitoring data, as well as
automatically discovering problems. Traditionally, the methods used on console log analysis
are quite different from those methods used on other system diagnosis work, due to the free
text nature of console logs. Our work, in contrast, uses source code analysis to parse console
logs as the first step, which transforms the free text logs into semi-structured representation.
This representation potentially makes many of these techniques applicable on these rich
sources of information.

In the next chapter, we discuss potential research directions in analyzing console logs and
applying similar techniques to different kinds of data in system development and operation
in general.

84

Chapter 8

Future Directions

In this dissertation, we show that the widely-used but commonly-ignored console logs
can be automatically turned into a powerful source of information for system problem diag-
nosis. Specifically, the parsing and feature creation techniques allow many machine learning
algorithms to be applied to console logs.

As future work, we first discuss challenges in allowing anomaly detection algorithms to
use extra information and become more robust. Then we show the necessary changes to
current logging frameworks to make console logging more useful for debugging. Finally, we
discuss potential applications of our methodology to other aspects of program development.

8.1 Anomaly Detection and Beyond

The anomaly detection techniques discussed in previous chapters can be further improved
by analyzing additional information sources, such as structured traces, logs from related
applications, and operator feedback.

One interesting direction is to analyze logs from multiple layers or subsystems of the en-
tire application stack. In a large scale Internet service consisting of multiple independently
developed (e.g. open source) subsystems, the logs from each subsystem can be completely
different. However, they are implicitly correlated because of the application logic. Dis-
covering the implicit correlations is the key to discovering many hard-to-debug, cross-layer
problems.

It is also interesting to bring human operators back into the debugging loop by allowing
operators to give feedback to the detector and incorporating this feedback to refine the
detection. It is especially challenging to design a human-friendly interactive learning process.

Combining console log information with other structured traces is also an interesting
future direction. It is especially useful to find the messages that could explain some “mys-
teries” in changes of structured traces. Our Darkstar case study is a successful application,
but discovering correlations other than co-occurrence in time requires more research on
anomaly detection algorithms.

Another direction is to make the anomaly detection algorithm more robust in handling
incomplete logs. Sometimes it is impossible to collect and archive a perfect set of logs from

85

a very large scale system consisting of tens of thousands of nodes. Some messages might be
corrupted. Unlike the noise we discussed in Chapter 5, these corruptions cause messages to
be missing or become completely unrecognizable. The corruption can be random (e.g. due
to software/disk errors) or deterministic (e.g. due to physical failure of nodes or network
connection) [75]. Tolerating these corruptions while and still providing an accurate problem
detection result is a challenging machine learning problem.

Beyond problem detection, we can use console log data to support other important
tasks in data center management such as resource planning and job scheduling. Of course,
these tasks would require different sets of features and machine learning algorithms, but the
general methodology is similar and the methods of transforming the free-text console log to
the structured features are still applicable.

With some improvement to the logging framework, we can do even more with machine
learning. In the next section, we first discuss our proposed improvement to the logging
framework and then discuss more potential machine learning applications.

8.2 Tools to Improve Console Log

Up until this point, our method has assumed using existing console logs “as is”. Though
this assumption is convenient for developers and operators, the power of problem detection
is limited by the information contained in the console logs. As a vital future direction,
we believe it is important to provide automatic or semi-automatic tools to help developers
create better console logs that can be more useful in problem diagnosis.

We describe potential improvements to both the mechanism and policy for generation
and collection of console logs.

Mechanism: Improving console log generation

The console log provides a highly flexible way to report monitoring data in a wide
range of granularity, but the flexibility comes at a cost. Compared to well-defined binary
logging formats, one needs to serialize and concatenate message variables into a text string.
Even worse, certain logging libraries require the construction of the log message even if the
particular message is suppressed by the logging level configuration [39].

The other problem is that the runtime control of which messages to print is not flexible
enough. It is only possible to configure logging by levels (e.g. WARNING, FATAL), or by
program modules, while a fully automatic problem detection system would benefit from the
ability to control each individual message type. Programming language and runtime-system
level support can address these two problems.

We can build our log parsing techniques discussed in Chapter 3 directly into the compiler
to help the compiler understand message types and message variables. With this informa-
tion, the compiler can emit optimized code to avoid the expensive and unnecessary string
concatenations. The compiler can even emit code so that the console logs are collected in
a raw binary format instead of text. This improvement also eliminates the computation
overhead of the log parsing step.

86

In addition, if the compiler has knowledge about message types, it is possible to support
mechanisms to turn on/off any individual message type at runtime in an efficient way, tradi-
tionally not possible in logging libraries. Even better, it is easy to dynamically reconfigure
the destination of each individual message such as in memory buffer, local disk, or an event
processing system. With multiple destinations of different overhead, the automated problem
detector can keep a short but detailed log history at a relatively low cost.

In practice, it might take a long time to deploy a new mechanism into popular program-
ming languages such as Java. To support incremental deployment, we can implement such
mechanisms with binary transformation [77], or higher abstractions such as Aspect Oriented
Programming [5].

Another improvement to console logs is to capture concurrency-related bugs. Console
logs are not designed with concurrency-support in mind. Though many recent logging li-
braries are thread-safe, the thread-safety only guarantees that two messages do not interleave
with each other. With the increasing importance of implementing parallel applications, logs
should record necessary metadata to help reveal concurrency-related bugs.

Policy: What should we log?

Improving log generation efficiency is not enough. The major “overhead” of logging is
the cost of generating and archiving a vast amount of messages that are completely useless.
Operators often run into the dilemma of accepting the overhead versus risking not being
able to capture certain problems. Two most difficult questions when designing a logging
system are 1) how detailed the monitoring data should be, and 2) how long a history to
keep.

Online machine learning techniques combined with the improved logging mechanisms can
help solve these two problems. We can use online machine learning techniques to capture
and filter out the normal patterns (thus the unimportant parts of the log), and automatically
turn off messages/traces that are highly unlikely to indicate any problems. On the other
hand, once a potentially anomaly is detected, the detector could turn on related message
types, or change the destination of certain message types, such as dumping in-memory log
segments to disk. As we discussed earlier, the ability to quickly detect potential problems
and reconfigure logging can be very useful to capture bugs that occur only on certain inputs:
we can avoid logging normal operations while providing detailed logging for problematic
situations.

8.3 Beyond Console Logs

Looking beyond console logs, our techniques of combining program analysis, information
retrieval and machine learning are also useful in managing other information related to
software development and operation.

The goal of software engineering is to develop and operate high-quality software. During
this process, there is a lot of information generated and designed to be used by different
roles in the process. For example, the developers usually use comments, documentation,

87

version control logs, makefiles, unit tests, and continuous build tools, while operators are
more familiar with operational documentation, deployment scripts, trouble tickets, console
logs, and various monitoring tools.

In a modern Internet service, the distinction between developers and operators is be-
coming less obvious, and the amount of information can quickly become hard to manage
as the system gets more complex. Existing solutions use an information retrieval system to
manage these data; however, the lack of structured information usually makes such systems
hard to use, and even harder to automate. Since source code is the best maintained and
easiest to analyze information in the entire cycle, we believe that by leveraging source code
information, we can make many powerful machine learning algorithms applicable to these
unstructured data and provide much better tools for both developers and operators.

For example, an interesting future direction is to design a tool to help maintain documen-
tation, especially operator-oriented documentation, while source code can change rapidly.
We can use machine learning algorithms to capture the “patterns” of misconfigurations or
bad inputs that caused problems. These patterns can provide insights to developers so they
can produce better documentation to avoid confusing operators. We could also suggest
under-tested cases to developers based on problems discovered in large scale deployments.

88

Chapter 9

Conclusion

Despite the fact that console logs are a rich information source for system monitoring
and diagnosis, they are not fully utilized by system operators today. In this dissertation,
we present a general approach to automatically process console logs to detect problems in
large scale Internet service systems.

Our basic assumption is to work on console logs as is, without changing the system
under study. Comparing to other system monitoring data, there are two major challenges
working on console logs: the size and the unstructured free text form. We address these
two challenges with a general four-step methodology: log parsing, feature creation, machine
learning, and visualization. Each step reduces the amount of data to process, and more
importantly, each step explores the intrinsic structures and statistical properties of console
logs and makes logs more structured.

• The message parsing step automatically captures the structure of individual messages
by analyzing the print statements in program source code. By transforming a free text
message into a semi-structured form—the message type and message variables—we can
eliminate all complexities of dealing with free text in further steps.

• Designing features by grouping relevant messages, we explore the structure of multiple
messages. There are different ways to group console logs. In this dissertation, we
discussed two types of features: state ratio vectors describing the global state of the
system, and message count vectors capturing sequences of operations.

• The number of feature vectors can still be overwhelming for human operators to ex-
amine. We use data mining and machine learning techniques to find the statistical
patterns from the vast amount of data and detect anomalies automatically. This step
reduces the amount of data an operator needs to examine by more than 99%.

• Finally, we put the numerical features and detection results back into the context of
logs, and create an intuitive diagram to allow operators not familiar with machine
learning techniques to easily interpret the result. The visualization step reduces the
amount of alarm information to a single page, a more human friendly form.

89

As a design philosophy, we focus on leveraging domain knowledge about distributed
systems to design meaningful features and reduce noise, rather than relying on complex
machine learning algorithms to tolerate unnecessary noise. For example, instead of trying
to “guess” the structure of log messages statistically, we make use of program analysis tools
to extract them accurately from program source code or even machine binaries (Chapter 3).
As another example, by grouping relevant message using identifers, we can eliminate all
the complexities dealing with concurrent events, allowing us to use simple and efficient
algorithms such as PCA (Chapter 4). As another example, we observed that in production
systems, most of the identifiers go through a similar execution path. This observation greatly
simplifies the online problem detection algorithm, allowing us to use the two-stage design
(Chapter 5).

Console log analysis is a very practical problem, and all data sets used in our evaluations
come from real-world programs. The size of these data sets ranges from a few megabytes to
hundreds of gigabytes. All of our implementations are able to scale up and down to handle
logs from a single node to a cluster of thousands of nodes. There are two implementations
for most of our processing steps: as a batch job or as an online stream processor.

Our experiments show that we can extract new and useful insights from all systems we
studied. The detection results can be useful for system operators and developers in two
ways.

1. In some cases, the anomalies are otherwise hard to discover without using console logs.
For example, one type of anomaly in Hadoop, which indicates a software bug, is very
hard to discover without analyzing sequences of log messages (Section 4.3.2).

2. Sometimes it is easy to notice a problem, but console log analysis is still useful to
help find the cause of the problem. In the case studies on Darkstar and Google’s
production logs, it is easy to notice the performance degradation, but not until the
logs are analyzed can we discover the likely source of the problem (Section 4.3.1 and
Section 6.2).

Console logs have been used since the dawn of programming, and generations of pro-
grammers rely on the logs to monitor and debug their systems. By exploring the intrinsic
structures and patterns in console logs, our work turns console logs into a powerful moni-
toring system for problem detection, even in very large systems.

90

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of the 1994 international conference on very large data bases (VLDB94), Santiago,
Chile, 1994.

[2] G. Altekar and I. Stoica. ODR: output-deterministic replay for multicore debugging.
In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, New York, NY, 2009.

[3] Amazon Web Services. Amazon elastic compute cloud developer guide. http://aws.
amazon.com/, 2008.

[4] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,
second edition, 2002.

[5] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble, and
M. Verbaere. Semantics of static pointcuts in AspectJ. In POPL ’07: Proceedings of
the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, 2007.

[6] S. Babu and J. Widom. Continuous queries over data streams. In Proceedings of
International Conference on Management of Data (SIGMOD 2001), Sept. 2001.

[7] Balabit.com. Distributed syslog architectures with syslog-ng premium edition. http:
//www.balabit.com.

[8] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen. Fingerprinting
the datacenter: Automated classification of performance crises. In Proceedings of
EuroSys’10, Paris, France, 2010.

[9] D. Borthakur. The hadoop distributed file system: Architecture and design. http:

//hadoop.apache.org, 2007.

[10] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang. Chukwa: a
large-scale monitoring system. Chicago, IL, Oct. 2008.

[11] E. Bruneton. Asm 3.0: A Java bytecode engineering library. http://download.fr.

forge.objectweb.org/asm/asm-guide.pdf.

91

[12] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of pro-
duction systems. In Proceedings of USENIX Annual Technical Conference(ATEC’04),
Boston, MA, 2004.

[13] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Rfc 5343: Simple network management
protocol. http://tools.ietf.org/html/rfc5343, Aug. 1988.

[14] I. Chakravarti, R. Laha, and J. Roy. Handbook of Methods of Applied Statistic, vol-
ume I. John Wiley and Sons, 1967.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. TelegraphCQ:
continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data (SIGMOD’03), San Diego, CA, 2003.

[16] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer.
Path-based failure and evolution management. In NSDI’04: Proceedings of the 1st
conference on Symposium on Networked Systems Design and Implementation, San
Francisco, CA, 2004.

[17] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem deter-
mination in large, dynamic internet services. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN’02), Washington, DC, 2002.

[18] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions in empirical data.
SIAM Review, 2009.

[19] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing,
indexing, clustering, and retrieving system history. In Proceedings of the twentieth
ACM symposium on Operating systems principles (SOSP’05), Brighton, UK, 2005.

[20] M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison-Wesley, 3rd
edition, 2002.

[21] U. Dekel. eMoose: a memory aid for software developers. In Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications (OOPSLA Companion ’08), Nashville, TN, 2008.

[22] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-ray: combating identity snow-
ball attacks using machinelearning, combinatorial optimization and attack graphs. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP ’09), Big Sky, MT, 2009.

[23] R. Dunia and S. J. Qin. Multi-dimensional fault diagnosis using a subspace approach.
In Proc. of American Control Conference (ACC’97), Albuquerque, NM, 1997.

[24] C. Eagle. The IDA Pro Book: the unofficial guide to the world’s most popular disas-
sembler. No Starch Press, San Francisco, CA, 2008.

92

[25] Eclipse.org. Eclipse integrated development environment. http://www.eclipse.org,
Jan 2010.

[26] Edgewall.org. Trac: integrated SCM and project management. http://trac.

edgewall.org/, Jan 2010.

[27] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In Proceedings of SIGCOMM’99, Cambridge, MA, 1999.

[28] E. Farchi, G. Kliot, Y. Krasny, and A. Krits. Effective testing and debugging tech-
niques for a group communication system. In Proceedings of Proceedings of the 2005
International Conference on Dependable Systems and Networks (DSN’05), Washing-
ton, DC, 2005.

[29] R. Feldman and J. Sanger. The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge Univ. Press, 12 2006.

[30] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels: fully automatic
tool generation from ad hoc data. In POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, San
Francisco, CA, 2008.

[31] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. Xtrace: A pervasive net-
work tracing framework. In Proceedings of Symposium on Networked Systems Design
and Implementation (NSDI’07), Cambridge, MA, 2007.

[32] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed
systems through unstructured log analysis. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining (ICDM’09), Washington, DC, 2009.

[33] T. Gärtner. A survey of kernels for structured data. SIGKDD Explor. Newsl., 5(1),
2003.

[34] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging for distributed ap-
plications. In Proceedings of the annual conference on USENIX ’06 Annual Technical
Conference (ATEC’06), Boston, MA, 2006.

[35] G. Giuseppini. Microsoft log parser toolkit. Syngress Publishing, 2005.

[36] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols, D. Grant,
G. Loihle, and G. Hunt. Debugging in the (very) large: ten years of implementation
and experience. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, Big Sky, MT, 2009.

[37] Google Inc. Google App Engine SDK. http://code.google.com/appengine/, Jan
2010.

93

[38] E. Graf, G. Zgraggen, and P. Sommerlad. Refactoring support for the C++ develop-
ment tooling. In OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, Montreal, Canada,
2007.

[39] C. Gulcu. Short introduction to log4j, March 2002. http://logging.apache.org/

log4j.

[40] J. Han, H. Cheng, D. Xin, and XifengYan. Frequent pattern mining: current status
and future directions. Data Mining and Knowledge Discovery, 15(1), 2007.

[41] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the 2000 ACM SIGMOD international conference on management
of data (SIGMOD’00), Dallas, TX, 2000.

[42] S. E. Hansen and E. T. Atkins. Automated system monitoring and notification with
Swatch. In LISA ’93: Proceedings of the 7th USENIX conference on System adminis-
tration, Monterey, CA, 1993.

[43] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics.
Springer, 2nd edition, September 2010.

[44] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning Publications Co., Green-
wich, CT, 2004.

[45] J. Hellerstein, S. Ma, and C. Perng. Discovering actionable patterns in event data.
IBM Sys. Jour, 41(3), 2002.

[46] HP. HP OpenView performance manager. http://www.managementsoftware.hp.

com/, Jan 2010.

[47] IBM. Tivoli software. http://www.ibm.com/software/tivoli/, Jan 2010.

[48] J. E. Jackson and G. S. Mudholkar. Control procedures for residuals associated with
principal component analysis. Technometrics, 21(3), 1979.

[49] T. Jebara, R. Kondor, and A. Howard. Probability product kernels. Journal of
Machine Learning Res., 5, 2004.

[50] W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and Y. Zhou. Understanding
customer problem troubleshooting from storage system logs. In FAST ’09: Proccedings
of the 7th conference on File and storage technologies, San Francisco, CA, 2009.

[51] I. Jolliffe. Principal Component Analysis. Springer, 2002.

[52] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl. Detailed
diagnosis in enterprise networks. In SIGCOMM ’09: Proceedings of the ACM SIG-
COMM 2009 conference on Data communication, Barcelona, Spain, 2009.

94

[53] B. W. Kernighan. The C Programming Language. Prentice Hall Professional Technical
Reference, 1988.

[54] E. Kiciman and B. Livshits. AjaxScope: a platform for remotely monitoring the client-
side behavior of web 2.0 applications. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, Stevenson, WA, 2007.

[55] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems with time-
traveling virtual machines. In ATEC ’05: Proceedings of USENIX Annual Technical
Conference, Berkeley, CA, 2005.

[56] C. Kit, H. Pan, and H. Chen. Learning case-based knowledge for disambiguating
chinese word segmentation: a preliminary study. In Proceedings of the first SIGHAN
workshop on Chinese language processing, Morristown, NJ, 2002. Association for Com-
putational Linguistics.

[57] D. Kramer. API documentation from source code comments: a case study of Javadoc.
In SIGDOC ’99: Proceedings of the 17th annual international conference on Computer
documentation, New Orleans, LA, 1999.

[58] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In
Proc. ACM SIGCOMM, Portland, OR, 2004.

[59] C. LaRosa, L. Xiong, and K. Mandelberg. Frequent pattern mining for kernel trace
data. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
Fortaleza, Brazil, 2008.

[60] Y. Liang, A. Sivasubramaniam, and J. Moreira. Filtering failure logs for a Blue-
Gene/L prototype. In DSN ’05: Proceedings of the 2005 International Conference on
Dependable Systems and Networks, Washington, DC, 2005.

[61] C. Lim, N. Singh, and S. Yajnik. A log mining approach to failure analysis of enterprise
telephony systems. In Proceedings of the 2008 International Conference on Dependable
Systems and Networks (DSN’08), June 2008.

[62] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[63] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek, and
Z. Zhang. D3S: debugging deployed distributed systems. In NSDI’08: Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation, San
Francisco, CA, 2008.

[64] C. Lonvick. RFC3164 - the BSD syslog protocol. http://www.faqs.org/rfcs/

rfc3164.html, August 2001.

[65] P. Louridas, D. Spinellis, and V. Vlachos. Power laws in software. In ACM Transac-
tions on Software Engineering and Methodology (TOSEM), volume 18, 2008.

95

[66] M. Lutz. Programming Python. O’Reilly Media, Inc., 2006.

[67] S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown
periods. In Proceedings of the 17th International Conference on Data Engineering
(ICDE’01), Washington, DC, 2001.

[68] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. Clustering event logs using
iterative partitioning. In KDD ’09: Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, Paris, France, 2009.

[69] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[70] Microsoft. Consuming counter data. http://msdn.microsoft.com/en-us/library/
aa371903(VS.85).aspx, Jan 2010.

[71] Microsoft. System center operation manager. http://www.microsoft.com/

systemcenter/operationsmanager, Jan 2010.

[72] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: rapid pro-
totyping for complex data mining tasks. In KDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, Philadel-
phia, PA, 2006.

[73] MoinMoin Team. The MoinMoin wiki engine. http://moinmo.in/, Jan 2010.

[74] S. N. I. Mount, R. M. Newman, R. J. Low, and A. Mycroft. Exstatic: a generic static
checker applied to documentation systems. In SIGDOC ’04: Proceedings of the 22nd
annual international conference on Design of communication, Memphis, TN, 2004.

[75] A. Oliner and J. Stearley. What supercomputers say: A study of five system logs.
In Proceedings of the 2007 International Conference on Dependable Systems and Net-
works (DSN’07), Edinburgh, UK, 2007.

[76] OSSEC.org. OSSEC Manual, 2008.

[77] OW2 Consortium. ASM website. http://asm.ow2.org/, Apr 2010.

[78] K. Papineni. Why inverse document frequency? In NAACL ’01: Second meeting
of the North American Chapter of the Association for Computational Linguistics on
Language technologies, Pittsburgh, PA, 2001.

[79] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.
PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth.
In ICDE ’01: Proceedings of the 17th International Conference on Data Engineering,
Heidelberg, Germany, 2001.

96

[80] J. E. Prewett. Analyzing cluster log files using logsurfer. In Proceedings of Annual
Conference on Linux Clusters, 2003.

[81] K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similarity measures for
sequential data using generalized suffix trees. In Advances in Neural Information
Processing Systems 19. MIT Press, Cambridge, MA, 2007.

[82] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer. Detecting similar java classes
using tree algorithms. In MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, Shanghai, China, 2006.

[83] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Technical report, Cornell, Ithaca, NY, 1987.

[84] B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal component analysis. In
Advances in kernel methods: support vector learning. MIT Press, 1999.

[85] E. Siever, S. Figgins, and A. Weber. Linux in a Nutshell. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2003.

[86] SLF4j Team. SLF4J user manual. http://www.slf4j.org/, 2008.

[87] Splunk Inc. Splunk user guide. http://www.splunk.com/, Sept 2008.

[88] R. Srikant and R. Agrawa. Mining sequential patterns: generalizations and perfor-
mance improvements. In EDBT ’96: Proceedings of the 5th International Conference
on Extending Database Technology, Avignon, France, 1996.

[89] J. Stearley. Towards informatic analysis of syslogs. In LUSTER ’04: Proceedings
of the 2004 IEEE International Conference on Cluster Computing, Washington, DC,
2004.

[90] Sun Microsystems. Project darkstar. http://www.projectdarkstar.com, 2008.

[91] Sun Microsystems. Solaris dynamic tracing guide. http://docs.sun.com/app/docs/
doc/817-6223, 2008.

[92] J. Tan and et al. SALSA: Analyzing logs as StAte machines. In Proceedings of USENIX
Workshop on Analysis of System Logs (WASL’08), 2008.

[93] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs or bad comments?*/.
In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, Stevenson, WA, 2007.

[94] TIOBE Software. Tiobe programming community index. http://www.tiobe.com/

index.php/content/paperinfo/tpci/index.html, April 2010.

97

[95] R. Vaarandi. A data clustering algorithm for mining patterns from event logs. Pro-
ceedings of the 2003 IEEE Workshop on IP Operations and Management (IPOM’03),
2003.

[96] R. Vaarandi. A breadth-first algorithm for mining frequent patterns from event logs.
In INTELLCOMM, volume 3283. Springer, 2004.

[97] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic misconfigura-
tion troubleshooting with peerpressure. In OSDI’04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation, San Francisco, CA,
2004.

[98] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 2000.

[99] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for network failure monitor-
ing. In KDD ’05: Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, Chicago, IL, 2005.

[100] Y. Yao and K. T. Lua. Splitting-merging model of chinese word tokenization and
segmentation. Nat. Lang. Eng., 4(4), 1998.

[101] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma. Automated
known problem diagnosis with event traces. SIGOPS Operating System Review, 2006.

[102] M. J. Zaki. Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, 42, 2004.

[103] A. Zheng and et al. Statistical debugging: Simultaneous isolation of multiple bugs.
In ICML ’06: Proceedings of the 23rd international conference on Machine learning,
2006.

