
Increasing Large-Scale Data Center
Capacity by Statistical Power Control

Guosai Wang†, Shuhao Wang†, Bing Luo‡, Weisong Shi‡,
Yinghang Zhu^, Wenjun Yang^, Dianming Hu^, Longbo Huang†, Xin Jin⇤, Wei Xu†

†
Institute for Interdisciplinary Information Sciences, Tsinghua University, China

‡
Department of Computer Science, Wayne State University, USA

^
Baidu, Inc., China

⇤
Deparement of Computer Science, Princeton University, USA

Abstract
Given the high cost of large-scale data centers, an important
design goal is to fully utilize available power resources to
maximize the computing capacity. In this paper we present
Ampere, a novel power management system for data centers
to increase the computing capacity by over-provisioning the
number of servers. Instead of doing power capping that de-
grades the performance of running jobs, we use a statistical
control approach to implement dynamic power management
by indirectly affecting the workload scheduling, which can
enormously reduce the risk of power violations. Instead of
being a part of the already over-complicated scheduler, Am-
pere only interacts with the scheduler with two basic APIs.
Instead of power control on the rack level, we impose power
constraint on the row level, which leads to more room for
over provisioning.

We have implemented and deployed Ampere in our pro-
duction data center. Controlled experiments on 400+ servers
show that by adding 17% servers, we can increase the
throughput of the data center by 15%, leading to signifi-
cant cost savings while bringing no disturbances to the job
performance.

Categories and Subject Descriptors C.0 [Computer Sys-
tems Organization]: General - System architectures; C.4
[Computer Systems Organization]: Performance of Systems
- Design studies, Measurement techniques, Modeling tech-
niques.

Keywords power provisioning, data center, power control,
scheduling

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c� 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901338

1. Introduction
Data centers, or warehouse-sized computers, are becoming
the typical way to host interactive Internet applications such
as search engines, social networks and e-commerce sites, all
of which have strict Service Level Agreements (SLAs), es-
pecially on the latency. The same set of machines is also
used to run batch jobs such as analyzing the data generated
from these services, and the overall job throughput is impor-
tant for these tasks [5]. Data centers are extremely expensive
to build. The industry average building cost is about 10,000-
20,000 USD per kilowatt [24].

Given the high cost, it is important to fully utilize the ca-
pacity of data centers to reduce the Total Cost of Owner-
ship (TCO). There are multiple factors constraining the ca-
pacity of a data center. The data center is designed with a
space budget and power budget. With the adoption of high-
density rack designs such as Scorpio [45] and Open Com-
pute Project [36], the capacity of a modern data center is
usually limited by the power budget. The power budget of
a data center is statically partitioned into dozens of row-
level Power Distribution Units (PDUs) and then into about
20 racks per row.

Despite of the power budget in the design specifications,
what matters the most to the software applications is the
computation capacity of a data center, i.e. how much com-
putation resources (CPU cycles, memory, storage space) the
data center can provide without violating the SLAs. In a data
center with fixed power budget, increasing computation ca-
pacity can result in significant cost savings, which is the goal
of this work.

Unfortunately, the power budget in a data center is often
not fully utilized. As studies [14, 24, 32] point out, the typ-
ical power utilization is around only 60% of the provisioned
power, which effectively doubles the cost of data centers. We
found similar utilization numbers in our own data centers.

The main reason for the under-utilization is conservative
server provisioning. People commonly ensure that the sum

of the rated power1 of all equipment does not exceed the
power budget. However, with modern power saving mecha-
nisms, actual power draw from a server depends on its uti-
lization, which seldom reaches the peak level [4, 16, 31].
The low utilization is due to the variations in workload, as
well as trying to guarantee the SLAs for latency-critical ser-
vices. In other words, servers are provisioned according to
the worst case power draw, while they operate at the average
case.

We call the difference between the rated power and the
actual power the unused power. Unused power and the
under-utilized rack space provide an opportunity to add ex-
tra servers to a data center. However, operators hesitate to
use this power due to the concern that power draws ex-
ceeding the power budget can lead to outage. We call the
situation of exceeding the power budget a power violation.
Existing power management technologies such as power
capping [11] alleviate the damage of power violations, but
as we will show in Section 4.3, these approaches may af-
fect the SLAs, preventing operators from adopting them. We
define the over-provisioning ratio rO as P/PM � 1, where
P is the total equipment rated power and PM is the total
provisioned power budget (we use the terms power limit and
provisioned power budget interchangeably in this paper).

It is non-trivial to cultivate the unused power, due to static
power partitions and high variations of workload [14]. As
we will show in Section 2.2, we have a better opportunity to
take advantage of the unused power at a larger scale, but the
physical capacity of the PDUs limits the power partitioning
scheme. We show that using our indirect control, we can
virtually consolidate unused power at a larger scale.

Note that a higher rO does not mean higher computation
capacity. As an extreme case, if the sum of the minimal
idle power of all equipment reaches the power limit, we
cannot run any computation. Similar to [15], we use the
metric Throughput per Provisioned Watt (TPW) (Section 4.1
provides more details) to capture the gain in capacity under
a given power budget.

In this paper, we present Ampere, a new approach to im-
prove TPW by provisioning extra servers. Ampere keeps the
total power under the budget and brings zero performance
disturbance to the existing jobs. Different from existing ap-
proaches that react to an over-committing event by capping
the power draw, Ampere proactively reduces power viola-
tions by driving the workload to other less utilized rows and
consolidating the unused power scattered among them. The
approach is conceptually simple: by scheduling fewer jobs
to rows with less unused power or letting them wait in the
scheduler queue, we can reduce the amount of power in-
crease and prevent power violations. However, we face sev-

1 Following the definition in [14], we use the rated power, or the measured
maximum power draw from equipment, instead of the name plate power
that is often higher.

eral challenges implementing this scheme into a production
data center.

First, the data center job scheduler is a very complicated
system. Different data centers use different scheduling poli-
cies to achieve diverse goals. It is hard to have a general so-
lution that directly adds power scheduling into these already-
over-complicated policies.

To solve this problem, we limit our interface with the job
scheduler to two simple operations: freeze a server and
unfreeze a server. Freezing a server advises the scheduler
not to assign new jobs to the server (the existing jobs are un-
affected), while unfreezing does the opposite. By controlling
the number of frozen servers on a row, we can statistically
affect the number of jobs scheduled there without changing
the scheduling policy.

The second challenge is how to estimate the number of
servers we need to freeze. The goal is to freeze as few
machines as possible to minimize the negative impact on
scheduling and overall computation capacity, while keeping
the row-level power below the budget.

We solve this challenge with a data-driven approach.
We collect data from production data centers, and derive a
statistical model on the effects of freezing servers on the
power consumption. We compute the number of servers to
freeze at each time interval based on the model. Obviously
the model is not perfect, and we use Receding Horizon
Control (RHC) techniques [26] to continuously adjust the
number of frozen servers to compensate for the inaccuracy
of the model.

We have deployed Ampere in a production data center
with tens of thousands of servers running millions of jobs
per day. In this paper, we present results on a number of
controlled experiments with 400+ machines to demonstrate
the performance of Ampere. We demonstrate that even with
a conservative strategy, we can add 17% more servers into
the fleet and get a 15% improvement in the effective compu-
tation capacity comparing to the provisioning based on rated
power without any violation. This ratio translates to tens of
thousands of extra server spaces across our fleet.

In summary, our major contributions are

• A new system, Ampere, that increases the computation
capacity in large-scale data centers with fixed power bud-
get by cultivating the otherwise unused power at a large
scale;

• A new effective method to indirectly control the data
center power by statistically influencing the amount of
jobs scheduled to a row;

• A simple yet powerful interface to connect the power
controller with the job scheduler, without modifying the
job scheduler logic;

• A large-scale empirical evaluation of Ampere in a real
data center with production workload, and detailed per-
formance measurement using controlled experiments.

In the remainder of the paper, Section 2 introduces the
background on data center power characteristics. We show
our system design, focusing on the controller model in Sec-
tion 3 and evaluate the system performance empirically in
Section 4. We review the related work in Section 5 and con-
clude in Section 6.

2. Background on Data Center Power
Provisioning

In this section, we provide some background information on
the data center power supply architecture, job management
and some important observations of data center power uti-
lization, which lead to the Ampere design.

2.1 Data center power provisioning and job scheduling

Row-level power provisioning. The power budget of a data
center is normally partitioned into a number of PDUs, each
of which serves about 20 racks. Each rack has a power
budget of 8-10KW. As the typical rated peak power of a
server is about 250W, we can have 40 servers per 10KW
rack. This translates to 800 servers per PDU, which we call
a row of servers. The partitioning is due to the physical limits
of commercial power equipment, such as Uninterruptible
Power Supply (UPS) and PDUs.

Servers are provisioned according to the power budget
at each level. The provisioning is often based on the rated
power and we will show that it leads to significant under-
utilization of the provisioned power budget.

Power capping. The row-level power budget is enforced
by physical circuit breakers (fuses) in each PDU, in order
to protect the PDU from overloading. Since it would cause
catastrophic service disruptions to cut down the power of
hundreds of servers at the same time, power capping is
used when the total power utilization of servers in a row is
over the row budget. Power capping uses Dynamic Voltage
and Frequent Scaling (DVFS) features provided by modern
server hardware, and slows down the servers to reduce the
power draw [17]. The recently proposed DVFS technique,
running average power limit (RAPL) [11], reacts in a very
short period of time (< 1ms) to avoid triggering the circuit
breaker at the higher level. The downside of DVFS is that
it slows down a server without informing applications or
the scheduler, which may cause unpredictable performance
disturbances and SLA violations (details in Section 4.3). We
have DVFS enabled in our data centers, but using Ampere,
we dramatically reduce the cases where DVFS is triggered.

Job scheduling. Independent of the statically-partitioned
power budget, jobs in a data center are scheduled by a cen-
tralized scheduler using the entire data center as a single re-
source pool. Data center job schedulers, such as Borg [51],
Omega [44], Mesos [18] and YARN [48] track the utiliza-
tion of various resources including CPU, memory and stor-
age, and allocate them to different applications. Modern job

0.7 0.75 0.8 0.85 0.9 0.95 1
0.9

0.92

0.94

0.96

0.98

1

Power

C
D

F

Data Center

Row

Rack

Figure 1. The CDF of the power utilization normalized to
the provisioned power budget on rack, row and data center
levels.

schedulers allow complex and application-specific schedul-
ing policies, and apply advanced optimization algorithms to
achieve a variety of scheduling objectives.

The scheduler in our data center is a custom system sim-
ilar to Omega [44]. It is a two-level scheduler. The low level
tracks the status of resources, bundles them into abstract
resource containers and provides the containers to the up-
per level. The upper level is application-specific and decides
how to efficiently allocate containers to jobs.

Freeze and unfreeze are two APIs provided by the
lower level of the job scheduler. Freeze makes a server un-
available (frozen), so that the lower level can no longer add
it to the candidate list. On the contrary, unfreeze makes a
frozen server available again. In Ampere, these APIs enable
us to control power indirectly by workload scheduling. We
believe both APIs are simple enough to implement in any
scheduler, making our approach generally applicable.

2.2 Characteristics of data center power utilization
We have the following important observations of data center
power utilization, which directly lead to our design.

First, the average power utilization is low in the data
center. Specifically, the utilization is lower at a larger scale.
Figure 1 shows the cumulative distribution function (CDF)
of the observed power utilization in one of our production
data centers for a week at rack, row and data center levels.
The servers are provisioned based on the rated power. We
can see that the average power utilization at the data center
level is only 70%, wasting almost one third of the available
power budget. We emphasize that the under-utilization is
not due to lack of workload demand, as there are often
jobs waiting in the scheduler queue and the company is still
building out new data center facilities to meet the increasing
demand.

Intuitively, like in many systems with statistical multi-
plexing, it would be desirable to consolidate, rather than stat-
ically partition the power at the data center level as a single

Figure 2. Row power of five randomly chosen rows during
a two-hour period. The grayscale represents the power uti-
lization. We can see both temporal and spatial variations.

pool [14]. Our system helps to indirectly achieve the consol-
idation.

To show the source of the unused power, we provide a
formal notation of the power at level X 2 {row, rack}.
Assume that there are n homogenous servers at X level
and the rated power of each server is Pm, and PM is the
provisioned power budget of X , as defined in Section 1,
then we have PM = nPm. At runtime, it is unlikely that
all servers are at their rated power simultaneously, and the
total runtime power of the level will generally be lower than
nPm. Thus we define the unused power P

X

t of level X at
time t as

P

X

t = PM �
nX

i

Pit (1)

where Pit is the realtime power of the i-th server in level
X at time t. Obviously the unused power at row level
is always no lower than that at rack level, as P

row

t =P
rack2row P

rack

t .
The second observation is that there are large variations

on power utilization at the row level. The variations are both
temporal (over time) and spatial (across different rows), and
Figure 2 shows the variations. We see that the power draw
across different rows is highly unbalanced. The reason for
this imbalance is that different rows mainly focus on running
different sets of products. Also the power across these rows
shows weak correlations over time (80% of the correlation
coefficients are under 0.33). The variations and imbalance
in workload provide us with opportunities to dynamically
schedule power to where it is required.

3. Ampere Design and Implementation
In this section, we first discuss the important design choices
and an overview of the Ampere architecture. Then, we focus
on the controller, introducing the variable under control and

its effects on the power, as well as the control algorithm.
Finally we provide details about our controller model.

3.1 Design choices and rationales
We have the following four important design choices.
Managing power at the row level. We decide to manage
power at the row level because (1) it matches the row-PDU
physical fuse configuration in our hardware; (2) there is a
larger amount of unused power at the row level than at the
rack level, as discussed in Section 2.2; (3) there are abundant
servers and tasks at row level, enabling our probabilistic con-
trol mechanism; (4) we can leverage the unbalanced power
draw across different rows, and statistically direct jobs to dif-
ferent rows with optimal power conditions.
Minimal interface with the scheduler. To implement power-
aware scheduling, one straightforward design would be mak-
ing the scheduler power distribution aware. However it is
not practical mainly due to the complexity of incorporating
the information into different scheduling policies, especially
those application-specific schedulers.

Thus, Ampere does not read any data from the scheduler
and only requires the freeze/unfreeze interface. This en-
ables Ampere to easily integrate with different schedulers
and scheduling policies.
Power control with statistical influence on new job place-
ment. Using the freeze/unfreeze API, we can affect the
probability of placing new jobs to specific rows, and thus
control the power usage. This has no impact on the perfor-
mance of existing jobs. Furthermore, by driving away job
assignments from a row, we leave the choice of where to put
such jobs to the scheduler, allowing it to take advantage of
the existing policies. This is equivalent to creating a virtual
pool of unused power for the scheduler.
Using simple system model and tolerating inaccuracy
with control. We use data-driven predictive models to char-
acterize the potential impact on realtime power of our con-
trol activities. Given the statistical nature of our control in-
put, we observe high variations on the effects of the control
input. Instead of demanding a very precise model as most
power capping approaches do, we use RHC to periodically
obtain optimized control decisions and correct the random
errors in our system model.

3.2 Ampere architecture
Figure 3 shows the architecture of Ampere. An in-house
developed power monitor collects and aggregates the power
utilization at the server, rack and row level. The centralized
controller implements most functionality of Ampere. For
each minute, the controller reads the data from the database,
computes the number of servers to freeze in the next time
period, and uses the freeze/unfreeze interface to advise
the scheduler to freeze them. The data center operator can
set a control target for the maximum allowed power budget,
which can be lower than the physical limit, to provide an

Row
#1

Row
#2

Row
#n

Scheduler

Power Monitor Controller

...

...

freeze/unfreeze

scheduling actions

aggregated power

Figure 3. System architecture of Ampere.

extra safety margin. Note that the controller is stateless,
and thus if the controller fails, we can easily switch to a
replacement.

3.3 Power monitoring
We implement our own power monitor, which collects
server-level power utilization, among other metrics through
the intelligent platform management interface (IPMI). We
leverage our in-house streaming computation framework to
aggregate the data to provide the row-level power. We store
the history data in a MySQL database and export a RESTful
API for efficient query against these data. The power moni-
tor samples the power from every server at every minute, and
stores the numbers in a time series database. We rely on the
time series database to provide data persistence and failover.
Our power monitoring service remains stateless for easy re-
covery. We believe one minute is a good tradeoff between
measurement accuracy and monitoring overhead.

3.4 Interface to the job scheduler
We use the freeze/unfreeze API to indirectly control job
scheduling. When we freeze a server, it has two effects: (1)
the power of frozen servers will go down over time, because
the existing jobs will finish; (2) there will be statistically
fewer jobs scheduled to the row with frozen servers, so the
power increase will slow down.

To examine the first effect, we randomly select a group
of about 80 servers with relatively high power utilization,
freeze them for a period of time, and observe their power
drop. Figure 4 displays the average power change over time.
We can see the power gradually drops to the minimum (close
to the idle power) after about 35 minutes.

As for the second effect, the number of jobs scheduled
to a row is roughly proportional to the number of avail-
able servers of the row, assuming that there are multiple
rows with different workloads. As we have discussed in Sec-

0 10 20 30 40 50
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Time/min

N
o

rm
a

li
z
e

d
 S

e
rv

e
r

P
o

w
e

r

Figure 4. Power drops over time when a server is frozen.
The figure shows the average power normalized to the rated
power of about 80 servers at different time points after being
frozen. The noises on the curve are due to the randomness of
the workload on the servers.

tion 2.2, the assumption is generally true for our case. Thus,
freezing a percentage of servers will likely reduce the num-
ber of new jobs assigned to the row, lowering the power in-
crease during the next time period.

These two effects impact the row-level power jointly.
We define the freezing ratio ut as the percentage of frozen
servers in the total number of servers in a row at a given
time t. We want to identify a function f(ut) given a specific
over-provisioning ratio rO to quantify the effect of freezing
ut servers.

We empirically identify the impact of ut on the row
power using a controlled experiment. We will describe the
detailed setup in Section 4.1. We denote the power of the
control group and the experiment group at time t as PC

t and
P

E
t respectively. We set up the experiment so that PC

t = P

E
t

without power control. In other words, the only cause of the
difference between P

C
t and P

E
t is the control input ut. With

this setup, we can express f(ut) as f(ut) = P

C
t+1 � P

E
t+1.

In order to collect data to evaluate f(ut) using a regres-
sion model, we set ut to a variety of different values over a
period of 24 hours, and measure the power of the experiment
group and the control group in the controlled experiment on
a cluster with about 400 servers. Figure 5 shows the mea-
surement result. We approximate f(ut) using a linear func-
tion y = krx where kr is a parameter dependent on rO. We
can use this simple model because our RHC mechanisms can
help correct errors in the model over time.

We also want to point out that the linearity assumption of
f(ut) helps us simplify our controller model greatly, as we
will discuss in Section 3.6.

3.5 Controller
With the freeze/unfreeze API, we implement a controller
that periodically adjusts the power draw of a single row so
that it stays under the power budget.

Figure 5. The effects of freezing ratio u on the power
change f(u). We plot the 25th, 50th and 75th percentile for
f(u) under different u. f(u) is rO-dependent, so we plot the
normalized values.

Algorithm 1 shows the control logic. At each interval
(one minute in our implementation), we obtain the power
utilization from the power monitor, and compute the unused
power (as defined in Section 2.2). Then we compute how
many servers of each row to freeze, using the control
model we will discuss in Section 3.6. Finally, we select a
set of servers to freeze or unfreeze.

We prefer to freeze servers with highest power draw
mainly because servers with lower power utilization may
have more computation capacity left and thus freezing them
may result in a higher cost. To avoid freezing and unfreezing
a server too frequently, we introduce the rstable parameter to
the algorithm. The algorithm will only unfreeze a server
and freeze another one if the server’s power drops by at
least (1� rstable). We find that the value of rstable does not
affect the performance much, and we choose rstable = 0.8

in all of our experiments.
We take a control action every minute, which is an inter-

val matching our power monitoring frequency. Note that the
controller cannot monitor or control any power fluctuation
within a minute, imposing a risk of short-term power viola-
tions. This is why we still have DVFS-based hardware power
capping on as a safety-net against these rare cases.

3.6 Computing the percentage of frozen servers
The most important decision of the controller is the num-
ber of servers to freeze. We want to freeze enough servers to
avoid power violations, and in the mean time, freeze as few
as possible to minimize the negative impact on computation
capacity. We discuss how we obtain the number of servers to
freeze in this section. We first formulate the problem of com-
puting the optimal number of servers to freeze in a general
form of a receding horizon control (RHC) problem [26], and
then use heuristics based on data-driven observations to re-
duce the RHC problem to a simplified version. Table 1 sum-
marizes the key notations we use in the problem formulation.

Input:
– PM : Power limit
– rthreshold: Threshold ratio
– rstable: Stable ratio
– Pk: Current power of row k

– ps: Current power of server s
– Sf [k]: The set of frozen servers at row k

– nk: The number of servers in row k

– F (·): The function from row power to freezing ratio
Output: Updated Sf [k] for each row k

1: procedure POWER CONTROLLING
2: for k 1, N do . N is the number of rows
3: create set S . candidate servers for freezing
4: if Pk/PM > rthreshold then
5: nfreeze bF (Pk/PM) · nkc
6: S nfreeze servers with highest power
7: pthreshold rstable ·mins2S ps

8: for all s s.t. s is in row k, s 62 S do
9: if p(s) > pthreshold then

10: S.add(s) . for stability
11: for all s 2 Sf [k]� S do
12: unfreeze s, update Sf [k]

13: if |Sf [k]| > nfreeze then
14: unfreeze arbitrary |Sf [k]| � nfreeze

servers, update Sf [k]

15: else if |Sf [k]| < nfreeze then
16: freeze nfreeze � |Sf [k]| servers with

highest power in S � Sf [k], update Sf [k]

17: else
18: unfreeze all servers, Sf [k] ;

return Sf

Algorithm 1: Power controlling algorithm

The general model. The idea of controlling power using
RHC is as follows. At each time t, we calculate an optimal
control Ut = {ut, ut+1, · · · , uN�1} on a finite fixed hori-
zon, starting at time t, say [t, t + N � 1] (N is a parameter
representing how much time ahead we want to predict). We
only carry out the first control ut, that is, freezing ut servers.

Symbol Description
Ut The control actions obtained at time t.
ut The percentage of servers to be frozen at time t.
Pt The normalized row power draw at time t.
PM The normalized provisioned row power budget (= 1.0).
Et The normalized power increase at time t.
f(ut) The relative reduction of power by the control ut.
C(Ut) The cost function of Ut.
kr The gradient of the function that fits f(ut).

Table 1. Key notations in problem formulation. All power
metrics used in the problem formulation is normalized to
PM .

We repeat this computation at each time t, and the “horizon”
of the control recedes as the time proceeds.

Suppose Pt is the row-level power at time t. We intro-
duce Et to denote the power demand increase, which is a
predicted value that indicates the first order difference of
row-level power. Say the predicted power for time t + 1 is
P

predict
t+1 , then Et = P

predict
t+1 � Pt. The change of power

is basically affected by the temporal variation of workload.
Instead of implementing a predictor, we show how we use
heuristic method to estimate Et in the later part of the sec-
tion.

We use the function f(ut), as we have described in Sec-
tion 3.4, to model the effect of frozen servers on row power.
Thus we have Pt+1 = Pt + Et � f(ut).

We use C(Ut) to denote the cost function, which indi-
cates the degradation of computing capacity or other per-
formance metrics due to freezing servers. We use a simple
linear combination of ut and model the cost function as

C(Ut) =

X

tkt+N�1

uk. (2)

Therefore, we formulate the Power Control Problem (PCP)
as

min C(Ut) =
P

k uk (3)
s.t. Pk+1 PM (4)

Pk+1 = Pk + Ek � f(uk), (5)
0 uk 1 (6)

k = t, · · · , t+N � 1 for (3)-(6).

PCP is a typical RHC problem. Note that we do not need
to assume f(ut) linear. Section 3.4 provides the method to
empirically evaluate f(ut). Given a series of predicted Ek,
there are many methods and tools to compute the solution of
this RHC problem if a solution exists [1, 23, 26, 39].

Control model simplification. Instead of solving the gen-
eral problem directly, as in our case, the function f(ut) is
close to linear, we can reduce PCP to a much simpler prob-
lem. Using the empirically obtained f(ut) that can be ap-
proximated by a linear function y = krx, we get

f(ut) = krut. (7)

In this way, we replace Eq. (5) by

Pk+1 = Pk + Ek � krut. (8)

With the linear function f(ut) we define a simplified
PCP (SPCP) as follows:

min C(ut) = ut (9)
s.t. Pt+1 PM (10)

Pt+1 = Pt + Et � krut (11)
0 ut 1. (12)

Figure 6. The control function F from Pt to ut. The thresh-
old rthreshold is defined by PM � Et. Note the curve varies
for different Et and kr.

This is a special case of RHC problem in that the distance
to horizon is 1. Assuming there is a feasible solution, the
constraints and the object function are all linear so it is very
easy to obtain the optimal solution, which is

ut = max{min{(Pt + Et � PM)/kr, 1.0}, 0}. (13)

Empirically, Et � 1.0 · kr 0, which means that if
all servers are frozen, the row-level power will not rise.
Assuming PCP has feasible solutions (and thus SPCP also
has feasible solutions), and denoting the optimal solution of
SPCP as u0

t0 (Eq. (13)), we prove the following lemma:

Lemma 3.1. U

0
t0 = {u0

t0 , u
0
t0+1, · · · , u0

t0+N�1} is the opti-
mal solution of PCP, where u

0
i (i = t0, · · · , t0 + N � 1) is

the optimal solution of SPCP in which t = i, Et = Ei, and
Pt = Pt0 +

P
k<i(Ek � kru

0
i).

Proof. Without the loss of generality, we assume that Ek �
0 (k = t, · · · , t +N � 1) and Pt +

P
k Ek > PM . We can

easily verify U

0
t0 is a feasible solution to PCP. Assuming

that U⇤
t0 = {u⇤

t0 , · · · , u
⇤
t0+N�1} is an optimal solution to

PCP, by applying Eq. (8) iteratively for all k, we get

Pt0 +

X

k

Ek � kr

X

k

u

⇤
k = Pt0+N PM . (14)

Therefore

C(U

⇤
t0) =

X

k

u

⇤
k � (Pt0 +

X

k

Ek � PM)/kr � C(U

0
t0). (15)

Thus, U 0
t0 is the optimal solution of PCP.

This reduction greatly simplifies the problem: we only
need to optimize the freezing ratio for a horizon at a distance
of 1 at each time t.

In the optimal control strategy, the predicted power de-
mand Et defines a safety margin [1.0 � Et, 1.0]. That is, if

the power Pt is below a threshold rthreshold = 1.0 � Et,
we do not need any control as there is unlikely a imminent
power violation. However, if Pt > rthreshold, the closer the
current power is to the power limit, the more servers we will
freeze. We call rthreshold the threshold ratio. Figure 6 shows
the intuition and relationship among rthreshold, PM and Et.

Estimate the power change Et. In order to avoid power
violation due to a sudden power surge, we need to leave a
safety margin. The estimated Et determines the margin, as
it indicates the expected power increment during the next
minute. We use a data-driven approach to estimate Et. We
would like to keep Et small to improve the power utilization.

We monitor the power of all rows in our data center for a
long time, and collect the power increase for every minute.
We discover that the distribution of power increase varies for
different hours in a day, so we calculate the 99.5-percentile
power increase for each hour and use the one matching the
hour of t to estimate Et. By experiments we find that Am-
pere’s performance is not sensitive to Et. Nevertheless, our
Et estimation is conservative as we are preparing for almost
the largest change in observed history (99.5th percentile).
We can use a better online power prediction model to get a
better estimation, which we leave for future work.

4. Evaluation
In this section, we present the evaluation results from a pro-
duction data center. We first introduce the experiment setup
and characterize the workload. Then we show the effective-
ness of Ampere and its advantage over existing power cap-
ping methods. Finally we evaluate the effects of various pa-
rameter choices in Ampere.

4.1 Experiment setup
In this section, we briefly introduce the cluster setup, the pro-
duction workload properties and our controlled experiment
setup that allows us to perform experiments on a production
cluster.

4.1.1 Cluster setup and workload
We have implemented Ampere in one of our production data
centers. Here we present results on a single row with 400+
homogeneous servers. All servers in this row are part of
a datacenter-wide resource pool managed by a single job
scheduler as described in Section 2.1. We only focus on
the power draw from servers, as other devices like network
switches consume only a negligible fraction of the total
power.

All servers run production workload comprised of mainly
batch jobs (e.g., Map-reduce tasks). We add interactive jobs
to the cluster to evaluate the effectiveness of Ampere, and we
show the results in Section 4.3. The durations of these batch
jobs vary and Figure 7 shows the CDF of the job durations.
The average job duration is about 9 minutes, and about 40%
jobs finish in 2 minutes. The arrival rate of jobs in the cluster

Figure 7. The CDF of batch job durations in the production
cluster.

Figure 8. The power of a row in 24 hours, normalized
to the maximum power. The values on the X-axis do not
correspond to actual wall clock.

also varies a lot over time, and usually the rate is 400-600
jobs per minute. The variations of job durations and arrival
rate make our probabilistic control more effective, as there
is a good chance that some job will finish on some frozen
machine, reducing the power utilization.

As we describe in Section 2.2, the row level power that
is directly affected by the workload on the row, also varies
significantly over time. Figure 8 shows the power utilization
in a twenty-four hour period with a reading every minute.
There are two observations:

1) At a larger time scale (hours), we observer high vari-
ations. This larger-scale variations leave us with room at
many time periods to over-provision servers and keep the
power below the daily peak.

2) At a smaller time scale (a few minutes), we can see
many spikes and valleys on power utilization. It is hard to
predict these spikes. To better characterize these spikes, we
plot the CDF of the first order differences of the power (the
power changes at 1-minute scale) in Figure 9. We can see
that within a single minute, the power change is generally
small (smaller than +-2.5% for 99% of the time), but it can
be a change as large as 10%. We design the approach de-
scribed in Section 3.6 to handle these relatively large spikes.
Section 4.2 shows the results.

Figure 9. The CDF of the power changes of the control
group on various time scales. For the k-minute scale, we
compute a sequence of the maximum power for every k

minutes, and then plot the CDF of the first order differences
of the power sequence. The power changes are normalized
to the provisioned power budget.

Considering some operational maintenance issues of the
scheduler, we limit the maximum ratio of freezing servers to
50%. This limitation causes a few power violations, as we
will show later in the section.

4.1.2 Controlled experiment design
As we cannot isolate a large number of servers to conduct
trace-based experiments to compare the system performance
with or without Ampere, we perform a controlled experi-
ment. We partition the servers into two virtual groups, the ex-
periment group and the control group. Specifically, we par-
tition them based on the parity of the server IDs and thus
a server is assigned to a group in a uniformly random way.
Both groups accept jobs from the same scheduler and thus
statistically they should have similar workload. We verify
the fact by calculating the average power and the correlation
coefficients of power of the experiment and control groups
(with Ampere turned off) over five days. The difference be-
tween the average power is less than 0.46%, and the corre-
lation coefficient of the power is 0.946. Thus, we can safely
assume that any differences between these two groups are
results of the control actions from Ampere.

We turn off the power capping so we can observe the
real power demand. In order not to cause real-world power
violation, we emulate the power violation events by scaling
down the power budget of these servers. Consider we set
the power budget to P

0
M instead of the actual PM , with Nr

servers per rack, we can emulate the case where in each rack,
bP 0

M/Pmc of the servers are designed to be provisioned, and
the other Nr�bP 0

M/Pmc servers are over-provisioned. Thus
we can calculate the over-provisioning ratio rO as

rO = Nr/bP 0
M/Pmc � 1 = PM/P

0
M � 1. (16)

We use the scaling-based emulation differently in our evalu-
ations. In Section 4.2, we scale down the power budgets of

both groups to compare the power of two over-provisioned
groups and show the effectiveness of our control. In Sec-
tion 4.4, we only scale down the power budget of the experi-
ment group so that we can observe the impact on throughput.
We emphasize that we only use the scale-based emulation to
provide more insights into how Ampere works, and it is not
part of the production system.

We set the over-provision ratio to 0.25, a very high value,
in most of our experiments to demonstrate the effectiveness
of Ampere under extreme conditions. As we will show later
in Section 4.4, we choose r = 0.17 as the optimal value for
real production.

4.1.3 Key performance metrics
We focus on the following three key performance metrics:

1) The number of power violations. Given the power
capping mechanism (Section 1), the user may choose to
allow a few power violations, and small violation number
shows the effectiveness of Ampere;

2) The ratio of frozen servers (ut). Obviously, a smaller
frozen ratio can help minimize the impact on the overall
performance of the cluster;

3) The gain in throughput per provisioned watt (TPW).
We define TPW as:

TPW =

Total throughput during a time interval T
PM · T (17)

where PM is the total provisioned power budget, and the
throughput is the number of jobs accepted during the time
period T . We simply choose the job count as the throughput
indicator because with large number of jobs, each job has
similar average resource requirements.

The Gain in TPW, GTPW , is the increase of TPW by
over-provisioning. We use this metric to evaluate the balance
between the computation capacity gain from adding more
servers, and the capacity loss from freezing some servers.
We discuss the evaluation of GTPW in Section 4.4.

4.2 The effectiveness of Ampere’s control
We first provide evaluation results using two extreme types
of workload in our cluster - heavy and light. We fix the over-
provision ratio at 0.25 for both experiments in this section.

Table 2 shows a few performance metrics of Ampere. We
observe a smaller maximum power draw from the experi-
ment group. Meanwhile, under the heavy workload, in the
control group without any power control, we observe 321
power violations, while we observe only one violation us-
ing Ampere’s control, and this violation is due to the 50%
freezing ratio limitation. These observations have proved the
effectiveness of Ampere’s power control ability.

Taking a closer look at the control actions with different
workload, Figure 10 plots the power draw and control ac-
tions over a period of 24 hours under heavy and light work-
load. Figure 10(a) shows the light workload case, i.e., the
power draw mostly under the power limit. In this case, we

(a)

(b)

Figure 10. The freezing ratio ut and its effects on the power utilization, on both light (a) and heavy (b) workload over 24 hours.
The control group does not have power control and thus the power differences between the control group and experiment group
are approximately the effects of the power control.

Workload Light Heavy
Group Exp Ctr Exp Ctr
umean 1.5% 0% 24.7% 0%
umax 44.1% 0% 50.0% 0%
Pmean 0.857 0.860 0.948 0.970
Pmax 0.967 0.997 1.002 1.025

V iolations 0 0 1 321

Table 2. Controller effectiveness under light / heavy work-
load. The experiment runs for 24 hours and the measure-
ments are taken every minute. umean and umax are the
mean/max freezing ratio. Pmean and Pmax are the mean/-
max power draw. V iolations is the total number of power
violations.

only take control actions occasionally, and thus cause little
impact on the overall power or throughput. In contrast, Fig-
ure 10(b) shows the heavy workload situation, during which
the power draw would exceed the power budget quite often
without control. We can see from the figure (purple/dotted
lines) that Ampere freezes a significant number of servers
at many time periods and successfully avoids power viola-
tions. Table 2 shows the statistics for a 24 hour period for
light workload and heavy workload.

Note that because we limit the maximum freezing ratio
of servers to 50%, we get many saturation on the control
input in Figure 10(b). This limitation effectively reduces
how much we can react to a power surge and thus makes it
more vulnerable to power violations. We will try to remove
this scheduler limitation in our future work.

Figure 11. The 99.9th percentile normalized latency of var-
ious operations in the Redis-benchmark, using either power
capping or Ampere as power controller.

4.3 Advantage over power capping approach
Power capping, as we have already mentioned, may cause
performance disturbances. In this section, we compare the
performance disturbances, and demonstrate that Ampere has
big advantage in this aspect.

We deploy a Redis [41] cluster on a row with over-
provision ratio rO set to 25%. We repeatedly run a Redis-
benchmark [42] on a number of clients located in another
cluster that does not have any power control. We compare
the performance of the Redis cluster under power capping
and under Ampere, respectively. We report the 99.9th per-
centile latency observed on the client side. Figure 11 shows
the results.

We can see power capping reduces the performance of
the Redis, almost doubling the 99.9th percentile latency in
almost all benchmarks. This is because Redis servers are
CPU-bound, and reducing CPU frequency on a busy server
slows down request processing, causing significant queuing
effects that lead to longer latency. In comparison, with the
control of Ampere, we rarely trigger power capping, and
freeze/unfreeze operations do not affect existing jobs.
Thus Ampere results in a much smaller latency for interac-
tive applications like Redis.

Without the control of Ampere, power capping is very
common in the cluster. To quantify this fact, we collect 8640
power utilization records (one per minute) on all servers over
several days. Among these records, 1306 are over power
budget. For each of these 1306 minutes, we check each
individual server to see if it is power capped. Our data
shows that on average, 54.34% servers are power capped
for roughly 15% of the total time, which is quite unaccept-
able for latency-sensitive jobs. In comparison, Ampere has
no impact on running jobs, and thus is applicable to both
interactive and batch jobs.

4.4 Factors that affect the TPW
The goal of our work is to increase the computation capacity
given a fixed power budget, and thus TPW is an important
metric. Two parameters affect TPW, the over-provision ratio
rO and the throughput ratio rT . The throughput ratio rT is
in turn affected by the workload. In this section, we provide
some quantitative analysis on the rO choice and its effect on
TPW under different workload.

Over provision, workload and the gain in TPW. The in-
crease on TPW is obvious from the number of extra servers
provisioned. To evaluate the throughput loss due to control,
we compare the number of jobs accepted in the experiment
group thru

E and the control group (with the same num-
ber of servers, but with Ampere turned off) thru

C during
the same time period. We define the throughput ratio rT as
thru

E
/thru

C . Generally rT 1.0 as freezing servers re-
duces the throughput.

Given rT and the over-provision ratio rO, we estimate
GTPW by

GTPW =

TPW

E

TPW

C
� 1 =

thru

E
/(P

0
M ⇤ t)

thru

C
/(PM ⇤ t)

� 1

= rT · (1 + rO)� 1. (18)

For example, if the over-provision ratio is 0.25, i.e. we
add 25% more power budget (and thus 25% more servers)
to the row. With sufficient power budget, we should get
an increase of capacity by 25% and the throughput should
increase by 25% with enough workload. The power control
of Ampere reduces the throughput. We measure the loss
by comparing the experiment group throughput with the
control group. For example, if we observe a 10% decrease

Figure 12. The effect of Ampere on power and throughput.
The box highlights the effect: the control actions effectively
reduces both the power and the throughput of the experiment
row. Ampere only applies the control action when the power
is above the threshold, leaving other regions unaffected.

in throughput in the experiment group, then the overall TPW
gain is GTPW = (1� 0.1) ⇤ (1 + 0.25)� 1 = 0.125.

Note that GTPW is workload dependent. Under a light
workload, adding servers just cause more servers to stay idle
without any positive effects. With a fully utilized cluster al-
ready taking the entire power budget, we cannot run new
jobs even with more servers. However, as we show in Sec-
tion 2.2, when the workload shows high variation, we have
plenty of opportunities to get a good GTPW .

An intuitive example. We illustrate that TPW does not
increase monotonically with the over-provisioning ratio rO.

Figure 12 shows an example of how rO affects TPW.
During this experiment, we set rO = 0.25 and run the
experiment for four hours. The boxed area on the left shows
the time period when power utilization is high. Comparing
to the control group, we observe a throughput decrease by
about 20% in the experiment group, as expected. Thus we
have rT = 0.8 and GTPW = (1 + 0.25) ⇥ 0.8 � 1, which
is close to zero. Intuitively, as we are already using all the
power without over-provisioning, adding more servers do
not bring in extra capacity for jobs due to the power limit.
It is even worse that the extra servers consume idle power,
eventually hurting the overall throughput. Thus, we need to
avoid this situation in production.

If we choose a smaller rO = 0.17, under the same heavy
workload in Figure 12, we are under the power budget most
of the time, and thus rT is close to 1.0, making TPW gain
close to the over-provision ratio GTPW = (1 + 0.17) ⇥

1.0� 1 = 0.17, indicating that we can fully utilize the over-
provisioned resource even at a high workload.

Of course, workload varies over time. During the four
hour period shown in Figure 12, the average rT is 0.95,
a higher number than 0.8. Therefore, we can estimate that
when rO = 0.25, we can get a gain in TPW, GTPW =

(1 + 0.25) ⇤ 0.95/1.0� 1 = 0.19, a better number than the
case with high workload.

From the example, we see that both rO and the average
workload have a high impact on the gain in TPW.

Evaluation on different over-provision ratio and workload.
Over an experiment period of 20 days, we run Ampere using
different over-provisioning ratio under varying production
workload. Table 3 captures representative results from 13
days. Note that the workload is from real production that
we have no control over, and it is the reason why we show
different workload in different cases. We have the following
two observations.

First, with a given rO, GTPW is directly affected by the
control input umean. It is intuitive that the more servers we
freeze on average, the smaller the capacity is, and so is the
GTPW . A deeper analysis of Table 3 shows that umean is
largely affected by the average power demand Pmean

2. With
similar Pmean, occasional spikes on P trigger large ut at
certain times, also affecting GTPW . For example, #4 shows
worse GTPW mainly due to the high maximum workload.

Second, the over-provisioning ratio rO also has a large
impact on GTPW . For example, #4 and #7 have very close
Pmean (scaled by rO), but rT and GTPW are both better
with a smaller rO. It is due to the same reason as we have
discussed earlier: rO = 0.25 is too high an over-provision
ratio, causing ut to be high quite often. As another extreme,
rO = 0.13 is too low, because GTPW is upper bounded by
rO, the gain is only 0.13, making it a less attractive choice.

Choosing the optimal rO. Given the observation above,
we want to choose a moderate rO. There are two metrics
to consider: (1) We want to choose a rO so that we can
maximize GTPW under the typical workload; (2) Choosing
rO is also a tradeoff between safety (fewer power violations)
and performance (higher TPW).

In our experiments in Table 3, we find that 0.17 is a
safe and effective choice. From our observation over a
month, the 85th and the 95th percentile power is 0.909 and
0.924 (scaled to match rO), which means most of the time
GTPW will be at least 15%. Thus both GTPW and over-
provisioning efficiency are relatively higher compared to
other rO choices. In conclusion, we choose 0.17 as our over-
provisioning ratio considering safety, GTPW and efficiency.

2 We estimate the power demand using the control group power, which
is unaffected by the control. To show the effect of over-provisioning, we
normalize the power of the control group to the scaled power budget of the
experiment group. That’s why Pmax may exceed 1.0 in some cases.

rO Pmean Pmax umean rthru GTPW

1

0.25

0.903 1.028 0.019 0.953 19.70%
2 0.931 1.062 0.134 0.941 17.60%
3 0.936 1.062 0.152 0.885 10.60%
4 0.927 1.061 0.196 0.835 4.30%
5

0.21

0.786 0.913 0 1.0 20.70%
6 0.835 0.982 0.0016 1.0 20.70%
7 0.894 1.000 0.009 0.979 18.20%
8 0.903 1.036 0.11 0.88 6.20%
9

0.17

0.836 0.931 0 1.0 17%
10 0.839 0.926 0 1.0 17%
11 0.908 0.992 0.07 0.984 14.90%
12 0.938 1.004 0.12 0.904 5.50%
13 0.13 0.847 0.969 0 1.0 13%

Table 3. GTPW under different over-provision ratio rO and
workload condition. Pmean and Pmax are the mean and max
power of the control group, respectively, which are good in-
dicators of the power demand. umean is the average freezing
ratio. Bold rows represent results under typical workload.

5. Related Work
Fan et al. did the first quantitative study on large-scale data
center power consumption [14]. They showed that there
were wide gaps between the average power utilization on
rack, PDU, and cluster levels. They pointed out the potential
opportunities of using power over-provisioning to increase
data center capacity, and proposed a theoretical approach
to implement over-provisioning with power capping mech-
anisms. Wang et al. [52] further characterized the power
utilization. In particular, they focused on the power peaks
and valleys. Many projects on power optimization, including
ours, confirmed the observations in these work, and designed
control mechanisms based on these observations.

There are two major approaches to manage power: using
hardware features like DVFS, and using power-aware work-
load scheduling [35, 37]. We introduce related work in both
categories and describe the uniqueness of our approach.

5.1 Controlling power by hardware power capping
Simple mechanisms directly control the hardware power
states (sleep, off, on). PowerNap [33] and Anagnostopoulou
et al. [2] target to minimize idle power and transition time
within different power states. PowerNap turns several com-
ponents into power saving states when the server is idle, and
wakes them up upon a user request. Given the time it takes to
switch between states, people have proposed different ways
to minimize the impact to SLAs during transitions [34]. Liu
et al. showed that it is possible to exploit the best power
policy for a given SLA constraint on a single node, and pro-
posed SleepScale, a runtime power management tool to effi-
ciently apply power control [29].

More advanced mechanisms use hardware features like
power scaling. Power capping by DVFS imposes an effective
power control over CPU and DRAM [14]. The challenge is
to lower the system speed while keeping the job SLA vi-

olations as few as possible. Sharma et al. implemented a
feedback-based power management protocol that can pro-
vide some SLA guarantees when DVFS is enabled [46]. Lo
et al. [30] proposed a more general version called PEGA-
SUS, which works on a data center level. Raghavendra et
al. proposed a theoretical power management proposal [40]
with provable correctness, stability, and efficiency. This pro-
posal is hard to implement in real data centers, as it requires
highly coordinated control on both hardware and software
layers, which is costly to achieve in realtime.

Ampere uses power capping differently. It only uses
power capping as a safety-net in the highly unlikely events.
In normal cases, we do not bring any disturbances to the
existing jobs on the cluster.

5.2 Workload scheduling and power management
Many approaches use server consolidation. They transition
idle servers into low-power or power-off states when the
utilization is low [6, 9, 22, 25, 27, 28, 38, 43, 47, 53].
IBM proposed a realtime power management algorithm for
parallel computers, which uses workload history to predict
short-term workload fluctuations and then decides which
servers to turn on and off [7]. Xu et al. [54] proposed a
technique by adjusting the number of active nodes using
workload information under certain time intervals. However,
turning off servers is a complex process that requires process
migration or restarts, and thus it is very hard to guarantee
the SLA requirements [30]. Freezing servers in Ampere is
different, as it just rejects new jobs and does not affect
existing ones.

Researchers have also proposed ideas on how to integrate
power management into the job scheduler to achieve better
power usage pattern. Chase et al. used a dynamically recon-
figurable switch to control the routing of requests, so they
would use a server that could optimize energy consumption
while satisfying the SLA [8]. Verma et al. built a power-
aware application placement controller for high performance
computing clusters [50]. Facebook built Autoscale to keep
all active servers above a moderate CPU utilization, in order
to achieve better power efficiency [3]. It was tightly cou-
pled with the job scheduler, who chose a subset of servers
as the active pool and automatically adjusted the pool size.
On the other hand, Power aware scheduling policies can also
be integrated into other QoS-aware cluster management sys-
tems [12, 13, 31, 49, 51, 55], which will furtherly complicate
the design and implementation of the cluster schedulers.

Instead of a tight coupling with a scheduler designed for a
simple workload pattern or a scheduler which has been over-
complicated, our loose coupling with scheduler allows Am-
pere to integrate with complex data-center-level job sched-
ulers with unknown custom policies and job patterns.

Govindan et al. used workload power profiles and imple-
mented dynamical power provisioning on the PDU-level us-
ing DVFS [15]. They implemented their technique in a data
center prototype and showed the improvement of the Com-

putation per Provisioned Watt (CPW) for a few types of ap-
plications (e.g. TPC-W). While our work also leverage sta-
tistical multiplexing of jobs, Ampere does not require an ac-
curate workload-power profile that is challenging to obtain
in a data center running a complex mix of workload.

5.3 Commercial power management tools
Commercial data center power management solutions fo-
cus on power monitoring, visualization and reporting. Some
tools provide an interface to implement power capping. At
low level, most tools, including ours, use the IPMI speci-
fications to communicate with the Baseboard Management
Controller (BMC), to monitor power draw, among other in-
formation, from individual servers. The software tools inte-
grate the power at rack, row or data center level.

Common tools include Intel DCM Energy Director [21],
IBM PowerExecutive [20], HP Thermal Logic [19], and
Cisco Unified Computing System [10]. Most of the tools are
vendor specific, and do not handle data centers of our scale,
and thus we build our own power monitoring solution.

6. Conclusion and Future Work
One of the biggest problems in our data centers is insufficient
power budget given the ever increasing demand on compu-
tation. While it is economically attractive to provision more
servers into an existing data center with a fixed budget, it
is a hard tradeoff between the cost saving and other consid-
erations such as power system safety, performance stability
especially for interactive jobs, as well as the complexity it
brings to integrate with existing system.

We design and implement Ampere, and empirically
demonstrate the feasibility of using statistical control to
indirectly manage the power utilization across a cluster.
Specifically, as we use receding horizon control (RHC) to
correct errors over time, we can achieve effective power
control using statistical and inaccurate system models that
are inexpensive to maintain in production. Also, using the
simple freeze/unfreeze API, Ampere can be loosely cou-
pled with complex job schedulers, which greatly simplifies
the system implementation. For evaluation, we conduct con-
trolled experiments with real production workload and pro-
vide detailed insights into the performance of the system. In
production, we deploy Ampere to a data center, allowing us
to provision 17% more servers, leading to a throughput gain
of 15%.

There are two kinds of future work we are pursuing. First,
on the power management side, we are exploring ways to
schedule the jobs to different rows so that there can be a
larger variance in power utilization across different rows,
leading to more unused power to cultivate. Note that even
with the improvement, we can still use the simple interface
of Ampere. Second, we believe the simple statistical inter-
face is a promising design to connect the low-level data cen-
ter infrastructure to the higher-level software components

such as the job scheduler and even applications, and al-
lows cross-layer optimizations. We are building a workload-
sensitive cooling control system based on a similar interface.

Acknowledgments
We would like to thank our colleagues at Baidu Inc. Yuliang
Liu, Bin Zhang, Hao Xu and Yongfeng Ji for help with
Ampere’s implementation, Xiaojing Wang for reviewing the
drafts of this paper, and Jun Liu as well as Jiecheng Guo for
insightful comments on the design of Ampere. We also thank
the students of Tsinghua University Cheng Yang and Hao
Xue for helpful comments on the early drafts of this paper.
Finally, we thank the anonymous reviewers from EuroSys
2016 for their insightful comments, and our shepherd Jon
Crowcroft for helping to shape the final version of the paper.

This research is supported in part by the National Natural
Science Foundation of China Grants 61033001, 61361136003,
61532001, 61303195, China 1000 Talent Plan Grants, Ts-
inghua Initiative Research Program Grants 20151080475,
a Microsoft Research Asia Collaborative Research Award,
and a Google Faculty Research Award.

References
[1] acado. ACADO Toolkit. http://acado.github.io/.
[2] V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage,

R. Bianchini, T. Yang, D. Franklin, and F. T. Chong. Barely
alive memory servers: Keeping data active in a low-power
state. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 8(4):31, 2012.

[3] autoscale. Facebook Autoscale. https://code.facebook.
com/posts/816473015039157/making-facebook-s-

software-infrastructure-more-energy-efficient-

with-autoscale/.
[4] L. A. Barroso and U. Hölzle. The case for energy-proportional

computing. Computer, (12):33–37, 2007.
[5] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as

a computer: An introduction to the design of warehouse-scale
machines. Synthesis lectures on computer architecture, 8(3):
1–154, 2013.

[6] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla,
M. Hiltunen, and M. Satyanarayanan. Jettison: Efficient idle
desktop consolidation with partial VM migration. In Proceed-
ings of the 7th ACM european conference on Computer Sys-
tems, pages 211–224. ACM, 2012.

[7] D. J. Bradley, R. E. Harper, and S. W. Hunter. Workload-based
power management for parallel computer systems. IBM Jour-
nal of Research and Development, 47(5.6):703–718, 2003.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In ACM SIGOPS Operating Systems Review,
volume 35, pages 103–116. ACM, 2001.

[9] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee,
and L. Niccolini. An energy case for hybrid datacenters. ACM
SIGOPS Operating Systems Review, 44(1):76–80, 2010.

[10] ciscoproduct. Cisco Unified Computing System.
http://www.cisco.com/c/en/us/products/servers-

unified-computing.

[11] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. RAPL: Memory power estimation and capping.
In Low-Power Electronics and Design (ISLPED), 2010
ACM/IEEE International Symposium on, pages 189–194.
IEEE, 2010.

[12] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. ACM SIGARCH
Computer Architecture News, 41(1):77–88, 2013.

[13] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient
and QoS-aware cluster management. ACM SIGPLAN Notices,
49(4):127–144, 2014.

[14] X. Fan, W.-D. Weber, and L. A. Barroso. Power provision-
ing for a warehouse-sized computer. In ACM SIGARCH
Computer Architecture News, volume 35, pages 13–23. ACM,
2007.

[15] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini. Statistical profiling-based techniques for effective
power provisioning in data centers. In Proceedings of the 4th
ACM European conference on Computer systems, pages 317–
330. ACM, 2009.

[16] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
cost of a cloud: Research problems in data center networks.
ACM SIGCOMM computer communication review, 39(1):68–
73, 2008.

[17] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring
energy consumption for short code paths using RAPL. ACM
SIGMETRICS Performance Evaluation Review, 40(3):13–17,
2012.

[18] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In NSDI, volume 11, pages 22–22, 2011.

[19] hpproduct. HP Thermal Logic. http://

h20621.www2.hp.com/video-gallery/us/en/

4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/

video.

[20] ibmproduct. IBM PowerExecutive. https://www-

01.ibm.com/marketing/iwm/tnd/demo.jsp?id=

IBM+PowerExecutive+Power+Capping+Mar07.

[21] intelproduct. Intel DCM Energy Director. http:

//www.intel.com/content/dam/www/public/us/en/

documents/articles/intel-dcm-energy-director-

overview.pdf.

[22] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper,
R. Wolford, T. Brey, R. Kantner, A. Ng, et al. Agile, ef-
ficient virtualization power management with low-latency
server power states. In ACM SIGARCH Computer Architec-
ture News, volume 41, pages 96–107. ACM, 2013.

[23] jmpc. jMPC Toolbox. http://www.i2c2.aut.ac.nz/

Resources/Software/jMPCToolbox.html.

[24] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson,
H. Homayoun, E. Pettis, D. M. Tullsen, and T. S. Rosing.
Managing distributed UPS energy for effective power capping
in data centers. In Computer Architecture (ISCA), 2012 39th
Annual International Symposium on, pages 488–499. IEEE,
2012.

[25] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang. Power and performance management of virtualized

http://acado.github.io/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
https://code.facebook.com/posts/816473015039157/making-facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/
http://www.cisco.com/c/en/us/products/servers-unified-computing
http://www.cisco.com/c/en/us/products/servers-unified-computing
http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video
http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video
http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video
http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video
https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=IBM+PowerExecutive+Power+Capping+Mar07
https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=IBM+PowerExecutive+Power+Capping+Mar07
https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=IBM+PowerExecutive+Power+Capping+Mar07
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html
http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html

computing environments via lookahead control. Cluster com-
puting, 12(1):1–15, 2009.

[26] W. H. Kwon and S. H. Han. Receding Horizon Control:
Model Predictive Control for State Models. Springer Science
& Business Media, 2006.

[27] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska. Dynamic
right-sizing for power-proportional data centers. IEEE/ACM
Transactions on Networking (TON), 21(5):1378–1391, 2013.

[28] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and
Y. Chen. GreenCloud: A new architecture for green data cen-
ter. In Proceedings of the 6th international conference in-
dustry session on Autonomic computing and communications
industry session, pages 29–38. ACM, 2009.

[29] Y. Liu, S. C. Draper, and N. S. Kim. SleepScale: Runtime
joint speed scaling and sleep states management for power
efficient data centers. In Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on, pages 313–324.
IEEE, 2014.

[30] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceeding of the 41st annual
international symposium on Computer architecuture, pages
301–312. IEEE Press, 2014.

[31] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving resource efficiency at
scale. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture, pages 450–462. ACM,
2015.

[32] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pier-
son, and A. V. Vasilakos. Cloud computing: Survey on energy
efficiency. ACM Computing Surveys (CSUR), 47(2):33, 2014.

[33] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Elimi-
nating server idle power. In ACM Sigplan Notices, volume 44,
pages 205–216. ACM, 2009.

[34] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and
T. F. Wenisch. Power management of online data-intensive
services. In Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, pages 319–330. IEEE, 2011.

[35] S. Mittal. Power management techniques for data centers: A
survey. arXiv preprint arXiv:1404.6681, 2014.

[36] opencomputeproj. Open Compute Project. http://www.

opencompute.org/.
[37] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. A survey

on techniques for improving the energy efficiency of large-
scale distributed systems. ACM Computing Surveys (CSUR),
46(4):47, 2014.

[38] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load
balancing and unbalancing for power and performance in
cluster-based systems. In Workshop on compilers and op-
erating systems for low power, volume 180, pages 182–195.
Barcelona, Spain, 2001.

[39] S. J. Qin and T. A. Badgwell. A survey of industrial model
predictive control technology. Control engineering practice,
11(7):733–764, 2003.

[40] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No power struggles: Coordinated multi-level power
management for the data center. In ACM SIGARCH Computer
Architecture News, volume 36, pages 48–59. ACM, 2008.

[41] redis. Redis. http://redis.io/.

[42] redisbenchmark. Redis-benchmark. http://redis.io/

topics/benchmarks.
[43] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-

efficient real-time heterogeneous server clusters. In Real-
Time and Embedded Technology and Applications Sympo-
sium, 2006. Proceedings of the 12th IEEE, pages 418–428.
IEEE, 2006.

[44] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: Flexible, scalable schedulers for large com-
pute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems, pages 351–364. ACM, 2013.

[45] scorpio. Open Data Center Committy. http://www.

opendatacenter.cn/.
[46] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu.

Power-aware QoS management in web servers. In Real-Time
Systems Symposium, 2003. RTSS 2003. 24th IEEE, pages 63–
72. IEEE, 2003.

[47] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consol-
idation for cloud computing. In Proceedings of the 2008 con-
ference on Power aware computing and systems, volume 10,
pages 1–5. San Diego, California, 2008.

[48] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al. Apache Hadoop YARN: Yet another resource negotia-
tor. In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM, 2013.

[49] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.
Franklin, and I. Stoica. The power of choice in data-aware
cluster scheduling. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 301–
316, 2014.

[50] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari.
Server workload analysis for power minimization using con-
solidation. In Proceedings of the 2009 conference on USENIX
Annual technical conference, pages 28–28. USENIX Associ-
ation, 2009.

[51] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
Google with Borg. In Proceedings of the Tenth European Con-
ference on Computer Systems, page 18. ACM, 2015.

[52] D. Wang, C. Ren, S. Govindan, A. Sivasubramaniam, B. Ur-
gaonkar, A. Kansal, and K. Vaid. ACE: Abstracting, charac-
terizing and exploiting peaks and valleys in datacenter power
consumption. ACM SIGMETRICS Performance Evaluation
Review, 41(1):333–334, 2013.

[53] Z. Wang, N. Tolia, and C. Bash. Opportunities and challenges
to unify workload, power, and cooling management in data
centers. In Proceedings of the Fifth International Workshop on
Feedback Control Implementation and Design in Computing
Systems and Networks, pages 1–6. ACM, 2010.

[54] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé. Energy-
efficient policies for embedded clusters. In ACM SIGPLAN
Notices, volume 40, pages 1–10. ACM, 2005.

[55] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Pre-
cise online QoS management for increased utilization in ware-
house scale computers. ACM SIGARCH Computer Architec-
ture News, 41(3):607–618, 2013.

http://www.opencompute.org/
http://www.opencompute.org/
http://redis.io/
http://redis.io/topics/benchmarks
http://redis.io/topics/benchmarks
http://www.opendatacenter.cn/
http://www.opendatacenter.cn/

	Introduction
	Background on Data Center Power Provisioning
	Data center power provisioning and job scheduling
	Characteristics of data center power utilization

	Ampere Design and Implementation
	Design choices and rationales
	Ampere architecture
	Power monitoring
	Interface to the job scheduler
	Controller
	Computing the percentage of frozen servers

	Evaluation
	Experiment setup
	Cluster setup and workload
	Controlled experiment design
	Key performance metrics

	The effectiveness of Ampere's control
	Advantage over power capping approach
	Factors that affect the TPW

	Related Work
	Controlling power by hardware power capping
	Workload scheduling and power management
	Commercial power management tools

	Conclusion and Future Work

