
DumbNet: A Smart Data Center Network Fabric with Dumb
Switches

Yiran Li
Institute for Interdisciplinary

Information Sciences
Tsinghua University

liyr14@mails.tsinghua.edu.cn

Da Wei
Institute for Interdisciplinary

Information Sciences
Tsinghua University

xichuanglian@gmail.com

Xiaoqi Chen
Department of Computer Science

Princeton University
xiaoqic@cs.princeton.edu

Ziheng Song
School of Computer Science

Beijing University of Posts and
Telecommunications

songziheng@bupt.edu.cn

Ruihan Wu
Institute for Interdisciplinary

Information Sciences
Tsinghua University

wrh14@mails.tsinghua.edu.cn

Yuxing Li
Institute for Interdisciplinary

Information Sciences
Tsinghua University

yx-li17@mails.tsinghua.edu.cn

Xin Jin
Department of Computer Science

Johns Hopkins University
xinjin@cs.jhu.edu

Wei Xu
Institute for Interdisciplinary

Information Sciences
Tsinghua University

weixu@tsinghua.edu.cn

ABSTRACT
Today’s data center networks have already pushed many functions
to hosts. A fundamental question is how to divide functions be-
tween network and software. We present DumbNet, a new data
center network architecture with no state in switches. DumbNet
switches have no forwarding tables, no state, and thus require no
configurations. Almost all control plane functions are pushed to
hosts: they determine the entire path of a packet and then write the
path as tags in the packet header. Switches only need to examine
the tags to forward packets and monitor the port state. We design a
set of host-based mechanisms to make the new architecture viable,
from network bootstrapping and topology maintenance to network
routing and failure handling. We build a prototype with 7 switches
and 27 servers, as well as an FPGA-based switch. Extensive eval-
uations show that DumbNet achieves performance comparable to
traditional networks, supports application-specific extensions like
flowlet-based traffic engineering, and stays extremely simple and
easy-to-manage.

CCS CONCEPTS
• Networks → Data center networks;

KEYWORDS
Data center networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190531

ACM Reference Format:
Yiran Li, Da Wei, Xiaoqi Chen, Ziheng Song, Ruihan Wu, Yuxing Li, Xin
Jin, and Wei Xu. 2018. DumbNet: A Smart Data Center Network Fabric
with Dumb Switches. In EuroSys ’18: Thirteenth EuroSys Conference 2018,
April 23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3190508.3190531

1 INTRODUCTION
The network infrastructure is an essential component of modern
data centers. It directly impacts the availability and performance
of data center applications. Compared to the Internet, data center
networks (DCNs) have unique requirements: it needs to provide
high bisection bandwidth and low latency to servers in a cost-
effective manner. The switches of a DCN are typically placed in the
same building with many redundant links and are managed by a
single entity.

Despite the differences, many of today’s data centers still use
similar hardware and protocols as the Internet to build their net-
works. IP longest prefix matching (LPM) is still the dominant packet
forwarding mechanism employed in the switches. For large DCNs,
IP LPM has scalability problems in terms of forwarding table size in
switches, as IP prefixes cannot always be easily aggregated. DCNs
also adopt complex distributed control plane protocols, such as
Border Gateway Protocol (BGP), to manage link and router failures
and to perform traffic engineering, which unnecessarily compli-
cates network management. All the complexities require separate
operator teams to manage the network and system, increasing the
management overhead. Given a data center network with hun-
dreds to thousands of switches that may have different hardware
models, different switch OSes and different firmware versions, this
management process is very complex and error-prone.

On the other hand, the networks in traditional supercomput-
ers are much simpler and often treated as an integral part of the
computation system [2]. They use tag-based switching and allow

https://doi.org/10.1145/3190508.3190531
https://doi.org/10.1145/3190508.3190531

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

application-level control with source routing, i.e., letting senders
determine each hop of a packet. Unfortunately, the supercomputing
networks only offer fixed topologies and limited fault-tolerance,
making them unsuitable for modern data centers.

Software-defined networking (SDN) is an important step for-
ward to simplify network management. It provides a centralized
controller to manage the network based on a global view. The
controller eliminates many inefficiencies and complexities of dis-
tributed protocols. However, the switch data plane still maintains
a lot of states for routing, network measurement, access control,
etc. The state not only increases the cost and hurt the scalability
of the switch hardware but is also hard to manage. Specifically,
state consistency is the key for operations, but it is hard to achieve
consistency cross the host-network boundary as network devices
are based on entirely different software stacks. It is fundamentally
difficult to ensure the consistency of the sheer amount of state dis-
tributed over hundreds to thousands of switches. Even worse, state
updates are common in DCN, in order to get better performance or
prevent attacks [19].

As a step towards using a coherent infrastructure to handle
both network and host systems, we present DumbNet, a new data
center network architecture with no data plane state while still sup-
port application-specific performance tuning. DumbNet is a layer-2
network. Switches in DumbNet are extremely simple: they have
no forwarding tables, no state, and thus require no configuration.
DumbNet uses source routing for packet forwarding: each packet
contains a path in its packet header, which is a list of tags denot-
ing the output port at each hop; each switch simply examines the
packet header to find out the output port at the current hop and
forwards the packet accordingly. Such a simple design eliminates
all states and thus all configurations from the switch. All control
functions are pushed to hosts. All the routing decisions can be made
locally on a single host, and thus DumbNet avoids the distributed
states management system.

The major technical challenge of DumbNet is the control plane
design to support all necessary network functionalities with dumb
and stateless switches. We design host-based mechanisms to ac-
complish these tasks. Specifically, the control plane supports (i)
automatically discover the network topology without any active
discovery logics in switches, (ii) update the network for failures
and failover to alternative paths, and (iii) leveraging the host-only
design, we allow software to easily extend DumbNet. For example,
we implement a flowlet-based traffic engineering, a layer-3 router,
and virtual networks as examples. Our mechanisms automatically
exploit the network topology (e.g., mostly-regular topology like
fat-tree) to reduce the overhead of topology discovery and network
update.

We provide two physical DumbNet switch implementations: (i)
on commodity Ethernet switches using Multiprotocol Label Switch-
ing (MPLS) and (ii) on a Field-Programmable Gate Array (FPGA)
development board. We implement the client module with Intel
DPDK [9]. We have built a prototype of DumbNet with 7 switches
and 27 servers, and have conducted extensive evaluations on the
prototype, from micro benchmarks to real-world big data applica-
tions. Results show that DumbNet offers comparable performance

to traditional network architectures while providing a purely host-
based network software that is easy to integrate with upper soft-
ware layers, opening many new opportunities for future cross-layer
optimizations.

In summary, we make the following contributions.
• We propose DumbNet, a new DCN architecture with no state in
switches. DumbNet takes advantage of source routing and SDN
to build an extremely simple yet high-performance network that
is easy to integrate with the software layer.
• We design a set of host-based mechanisms for topology discovery
and maintenance, routing, failure handling and flowlet-based
traffic engineering.
• We rethink the division of labor between switches and hosts.

DumbNet simplifies switches to a practical extreme and pushes
all functionalities to hosts.
• We provide several implementations of DumbNet switches and a
prototype of a DumbNet fabric, demonstrating its feasibility as a
real DCN with real data center benchmarks.

2 RELATEDWORK
Data center network architectures. Researchers have proposed
new scalable network topologies to support a massive amount
of servers, new addressing schemes to support free migration of
virtual machines, and new routing mechanisms to guarantee no
routing loops and to provide high bandwidth and low latency [1, 8,
11, 13, 14, 29]. Source routing is proposed to provide flexible routing
and reduce switch state [8, 12, 20, 32]. Many of these solutions are
built upon existing commodity switches or proposed new function-
ality extending capability of today’s switches. Different from them,
DumbNet aims to simplify the management aspect of data center
networks with simple switches that do not contain any data plane
state. Sourcey [18] proposes a data center network architecture
with no switch state and outlines the design of the data and control
planes. We build on Sourcey by developing a concrete system.

Network control plane. Traditional networks extensively rely
on distributed network protocols for network management, e.g.,
OSPF [26] and IS-IS [4] for intra-domain routing and BGP [33] for
inter-domain routing. Distributed network protocols bring many
painful network problems, like routing oscillation due to distributed
route computation and sub-optimal decisions due to local routing
information. SDN [24] aims to solve these problems by a centralized
controller with a global view. However, current SDN design still
assumes a stateful network: the controller manipulates switch flow
tables to achieve management goals. This complicates the problem
as we have to solve two distributed state management problems:
states in switches, as well as states in hosts. DumbNet goes one step
further by making the network data plane completely stateless, and
the controller only needs to manage the state in hosts. Existing
work like Fastpass [31] also attempts to reduce the workload of
SDN controllers.

Various solutions have been proposed in the past on topology
discovery, network monitoring, and fault localization [5, 7, 16].
SinceDumbNet switches only provide simple label-based forwarding
and maintain no state, we design new host-based mechanisms for
DumbNet to accomplish these tasks.

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

Multi-path routing. In order to support data-intensive applica-
tions and user-facing web services, data center networks provide
many parallel paths to provide high bandwidth and fault-tolerance.
There are many solutions on how to best construct network topolo-
gies, leverage the available paths to increase network throughput,
reduce end-to-end latency and improve network robustness [3, 22,
27, 31, 34]. Specifically, [22] showed a need for multi-path routing
in an irregular topology, with possibly different lengths for each
path, to achieve optimal performance. In DumbNet, we use host-
based mechanisms to collect path information, reliably store the
information in a central controller, and perform multi-path routing
in hosts.

3 DUMBNET OVERVIEW
DumbNet aims to build a fast, flexible and resilient network fabric
with extremely simple switches. Specifically, we remove all data
plane states and most processing logic from switches and imple-
ment all control plane functions except for failure notification with
host-only software. As a result, DumbNet switches require no config-
urations. Of course, the simplified data plane brings challenges for
initialization, maintenance, and routing. In this section, we provide
an overview of these challenges and solutions.

3.1 Design goals and choices
Stateless and configuration-free switches. In existing networks,
switches make forwarding decisions for each packet. Thus, we need
to keep and manage a lot of states in the network in a distributed
manner. Although SDN uses a centralized controller to simplify
state management, the data plane states such as forwarding ta-
bles remains in switches. Coordinating updates on the state dis-
tributed over switches is a challenging problem and often requires
sophisticated algorithms [19] that do not usually run on network
equipment.

Our key design goal is to remove all state and complex logic
from switches. DumbNet switches only do three things: forwarding
packets based on tags in packet headers without table lookup, mon-
itoring and broadcasting the port state, and reply a fixed unique ID.
Such a simplification has three advantages. (i) It simplifies switch
hardware. DumbNet does not need TCAMs or complex parsers to
support many protocols, and thus saves chip area for more ports
or larger packet buffers. (ii) It simplifies switch software, which is
often an arcane and proprietary embedded system and is hard to
debug. (iii) It eliminates switch configuration, making it easy to
extend the consistency-based configuration management tool [6]
to cover the network. Yet, a stateless switch still provides essential
functionality it should offer, such as physical link state monitoring
for its own ports, and fast link failure notification. As we will point
out later, we keep the logic on the switch extremely simple using a
two-stage protocol.

We think the DumbNet design strikes the right balance to simplify
the switches while keeping them practical.

Packet routingwith the centralized controller andhost agents.
We push routing computation to hosts, and it has three benefits. (i)
It provides flexibility to make routing decisions in software without
complicated routing protocols. (ii) The routing computation runs
as normal server software and can reuse existing distributed system

1

2

1
2

3 1

2
3

2

1
1 2

9

5 5

5 5 5

Host

SwitchS2

C3

H1 H2

H3

S3 S4

H5

S5

S1

H4

Figure 1: A sample DumbNet topology used in examples in
Section 3.2 and 4.1.

code, such as Paxos, for consensus. (iii) The computation resources
on hosts are more abundant than switches and thus easy to support
advanced features such as per-flow state tracking.

As it is expensive for each host to keep an up-to-date network
topology, we divide host software into two parts, i.e., a centralized
controller and agents on each host. The controller is responsible
for maintaining the topology information and performing routing
computation. The agents get available paths from the controller,
choose one path for each packet, and encode the path information
into packet headers. To reduce the overhead of frequently contact-
ing the controller, host agents cache the relevant part of topology
and use the cache to serve most packets.

Striking the right division of functionality between software
and hardware. We try to keep DumbNet hardware switch sim-
ple. However, putting everything into software results in an over-
complicated host agent. The hardware can support functions like
multi-queue, priority and ECN much more easily and efficiently
than software. Adding those functions will not change the state-
less and configuration-free nature of DumbNet switches. In this
paper, we focus on the core networking features only, and leave
the advanced hardware features as future work.

Incremental deployment in existing networks. DumbNet al-
lows incremental deployment. It can be deployed on existing com-
modity switches with MPLS. It is transparent to applications, which
use the same TCP/IP interface for network communication. Under-
neath, the host agents of DumbNet push paths to packet headers for
packet delivery.

Easy to extend in software. While DumbNet provides only core
functionality as a network fabric, it provides a software interface
that reveals the network state to the applications, making it easy
to implement different functionalities. The information sharing
with applications is carefully controlled to ensure fairness and
security. We add flowlet-based traffic engineering, layer-3 routers,
and network virtualization as extensions with little effort (Section 6).
We can easily support existing source-routing based optimizations
such as pHost [10] on to DumbNet too.

3.2 End-to-end packet forwarding
We provide a concrete example on how DumbNet forwards packets
through the dumb switches. Figure 1 illustrates a sample topology.
Circles S1-S5 represent switches, and squares represent hosts. Host

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

C3 is special as it serves as the controller. Hosts H1 to H5 are five
hosts we use in this example. Edges in the figure represent network
links, and the numbers at the ends of edges represent switch ports,
link S2-S3 connects port 1 of S2 (denoted by S2-1) and port 2 of S3
(denoted by S3-2).

We consider a packet from H4 to H5 as an example. H4 gets
available paths to H5 from the controller C3. One such path is H4-
S4-S2-S5-H5. Since each hop only needs to know its outgoing port,
we can encode the path as 2-3-5-ø, where 2, 3, 5 are the outgoing
ports on S4, S2 and S5, respectively. “ø” is a marker for the end of a
path, and we set it to 0xFF. With the path encoded in the packet
header, each switch only examines the first tag, removes the tag, and
forwards the packet to the port specified by the tag. For example, S4
examines the first tag and forwards the packet to port 2. Then the
path in the packet header becomes 3-5-ø when it reaches S2. When
H5 receives the packet, it removes the ø tag and passes the packet
up in the OS network stack, just as a normal Ethernet packet. The
switches process packets based on the header tag only, requiring
no table lookup.

3.3 Overview of challenges and solutions
Dumb switches bring challenges to the control plane design, espe-
cially at the scale of large data center networks. Here we summarize
the key challenges and solutions.

Challenge 1: Automatic topology discovery. Because switches
have no tables or address resolution logics, we rely on host-based
mechanisms to discover the topology.

We use hosts to send probing packets to discover the topology. A
probing packet can end upwith three scenarios: (i) the packet is lost,
which indicates no host on the path; (ii) the packet bounces back,
which discovers the links in the path; (iii) the packet is received and
replied by another host, which discovers a new host and possibly the
controller if the new host knows. By probing all possible links with
breadth-first search, we can discover the entire network topology
efficiently.

Although theoretically any host can probe the entire network,
for performance reasons, we only allow a single controller to do
so, while other hosts just probe until they learn the location of
the controller. We provide more details on topology discovery in
Section 4.1.

Challenge 2: Fault tolerance. Traditional switches monitor link
state by exchanging packets using protocols like Link Layer Dis-
covery Protocol (LLDP). In DumbNet, we combine switch-based link
state monitoring with a two-stage link failure notification protocol
to provide simple yet efficient topology management. The switch
provides hardware-based, zero-overhead and continuous link mon-
itoring. The switch suppresses repeated port state notifications to
deal with flapping links. Section 4.2 provides detailed discussion.

We use replication to tolerate controller failures. The controller
replicas use Apache Zookeeper [17] to keep a consistency view of
the network topology and serve host requests in the same way.

Challenge 3: Resource consumption and routing flexibility
tradeoff in host agents. Ideally, if a host knows the entire topol-
ogy, it can choose the best path for each packet. However, due to the
resource consumption to maintain up-to-date topology information

at every host, DumbNet only stores the global view in the controller.
Each host caches the paths it needs for communication. While path
caching reduces resource consumption, it also decreases routing
flexibility and reliability. It is too slow if every link failure triggers
hosts to contact the controller. We design an efficient path caching
algorithm, called path graph, to allow hosts to configure how much
information they cache vs. how much routing flexibility they get
(detail in Section 4.3).

Challenge 4: Compatibility with existing networks. To make
DumbNet practical, it needs to be compatible with existing Ethernet
and OS networking stack. Theoretically, DumbNet is a layer-2 net-
work protocol and any existing IP network can run on top of it. In
practice, we implement a packet rewriting module in the host agent
to allow unmodified applications to send DumbNet packets. We
also design an Ethernet-friendly header format to encode routing
tags. With these considerations, we can run DumbNet traffic on any
MPLS-enabled Ethernet fabric together with normal Ethernet traf-
fic, and on our custom FPGA-based stateless switches. We provide
the details on backward compatibility in Section 5.

4 CONTROL PLANE
The host-based control plane in DumbNet handles the network
topology discovery and maintenance, including failure handling.

An important goal of the control plane design is to improve
the scalability of the network, and obviously, the scalability of the
controller is the bottleneck. We solve the problem with two types of
optimizations: (i) we use multiple controllers wherever possible, to
perform tasks such as topology discovery and handling topologies
queries from clients; and (ii) we aggressively cache paths a host
may need, especially those links helpful for failure recovery, on the
hosts to reduce the number of queries to the controller.

4.1 Topology discovery
While we can ask on administrators to manually enter topology
configuration, it is costly and error-prone, especially for large and
irregular topologies. A fully automated topology discovery pro-
cess makes bootstrapping the network easier, and can tolerate mis-
configurations in the underlying physical network. We design a
topology discovery protocol using only the dumb switches and
hosts. Essentially, we use a breadth-first search (BFS) originating
from one host to reach all other hosts. However, with some prior
knowledge about the topology, during bootstrapping the hosts can
quickly verify (instead of discover) all links, and thus make the
bootstrapping process faster while still maintain the tolerance to
mis-configurations.

The goal of topology discovery is to use a single host to discover
all switches, links, and hosts in the network. Since the switches
do not have topology discovery logic, we rely on hosts to discover
the network. Each host runs a topology discovery service that sends
out and listens to probing messages. A probing message (PM) is a
regular DumbNet packet. Its payload contains (i) a marker identi-
fying it is a probing message, (ii) the source of the message, and
(iii) the entire path to the destination (same as the tag sequence
in the header). If a host receives a PM, it would reply to the sender
using the reverse path contained in the payload, together with its
identity, such as its MAC or IP addresses.

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

The topology discovery algorithm uses breadth-first search (BFS).
A host first discovers the switch it attaches to (depth=0), and then
gradually discovers switches that are one, two and more hops away
(depth=1, 2, . . .), together with their attached hosts. To keep track
of the search state, the host maintains a queue Q for the newly
discovered switches. Once the host finishes scanning all neighbors
of one switch, it dequeues that switch and begins to process the
next switch until Q is empty. To illustrate this process, we describe
how the host C3 discovers the topology in Figure 1. We use C3 only
as an example. In fact, a host does not have to be a controller to
perform the discovery.

Discover switches, links, and hosts.WhenC3 starts, it first finds
the port number on the switch it attaches to. To do so, it tries to send
the following PMs and see which one bounces back to itself: 1-ø,
2-ø, 3-ø and so on. Note that in this section, we underline the hop(s)
in the path that the host is actively probing. As the PM 9-ø bounces
back, C3 learns that it connects to port 9 of a switch. Optionally,
we can pass the maximum number of ports to discovery process as
an argument to prevent sending too much probing packets.

C3 then queries the switch ID by adding tag 0 in the sequence
to specify ID query packet. When switch receives packet with tag
0-9-ø, it replies with its unique ID in packet tagged 9-ø. C3 then
receives and remembers the ID of this switch, say, S3. It is obvious
that we can combine port number probing and switch ID query by
directly sending 0-1-ø, 0-2-ø, 0-3-ø and so on.

Following the breadth-first search algorithm, the next step is to
discover the neighboring switches of S3. Observe that if there is a
link between two switches (e.g., S3-1 and S1-1), C3’s PM (e.g., 1-1-9-
ø) will bounce back. Thus, C3 enumerates all possible combinations
of port pairs, e.g., 1-0-1-9-ø, 1-0-2-9-ø, etc. Remember the tag 0
here let the probed switch return its ID. Once C3 receives 1-0-1-
9-ø back, it discovers S1 and learns that S3-1 connects to S1-1. To
continue finding switches further away from S1, C3 starts probing
1-2-0-1-1-9-ø, 1-2-0-2-1-9-ø, 1-2-0-3-1-9-ø, and so on.

In addition to the bouncing PMs, C3 may also to receive re-
sponses from other hosts and learn the identities and locations of
the hosts at each depth. For example, C3 will receive a response
from H3 for PM 5-9-ø and a response from H1 for 1-5-1-9-ø.

Notice that to discover the neighbors and hosts for a switch, a
host needs to send O (P2) PMs, where P is the number of ports per
switch. Thus the overall discovery algorithm complexity, in terms
of PMs sent, isO (N ∗P2), where N is the number of switches in the
fabric. The PMs are sent out in parallel to improve performance.

Ambiguity in switch identity and our solution. There is a
special case causing trouble for the algorithm above. For example,
S1 and S2 have exactly the same return path to C3 (both are 1-9-ø).
Thus, 1-2-0-1-1-9-ø (via S1) and 1-2-0-2-1-9-ø (via S2) both bounce
back to C3 during discovery. In this case, C3 never knows whether
there is a direct link between S1-2 and S4-2 or not.

To resolve the ambiguity between return path S4-S1-S3 and S4-
S2-S3, C3 will further verify the path using 1-2-1-0-1-9-ø and 1-2-
2-0-1-9-ø. Since C3 already know 1-1-9-ø passes S3, S1 and S3 in
order. The verify packet should return the ID of S1. The response of
1-2-1-0-1-9-ø shows that the return path is indeed S4-S1-S3, thus
confirmed there is a direct link between S1-2 and S4-2.

Multiple controllers.We havemultiple controllers in the network
for fault tolerance and query performance. During initialization, all
controllers start to probe the network without knowing each other.
Theoretically, we can run the discovery algorithm at each controller
and merge their results, but it does not worth the complexity given
that the topology discovery is fast (see Section 7.2.1). In our current
implementation, we only allow a single controller to complete
the discovery, and other controllers become replicas for topology
information maintenance. We keep the replicas consistent using
Apache ZooKeeper [17] to store the topology changes.

4.2 Failure handling
As the switches are dumb, we have to handle failures with the help
of host-based mechanisms. Although hosts are able to probe and
discover the potential failures, a fast failure detection unavoidably
involves a lot of unnecessary probing. Our goal is to allow the
client to quickly failover to another path upon a link failure. Two
mechanisms help us achieve the goal: (i) switch-hardware-based
local port state monitoring, and (ii) two-stage failure handling with
a combination of switch hardware and host-based broadcast to
disseminate the message to all hosts.

Port state monitoring. Like in traditional Ethernet, DumbNet
switches detect port up/down using the physical signal. The de-
tection is easy even for the dumb switches. The tricky part is sup-
pressing duplicate alarms (e.g. from a flapping link). The switches
suppress alarms for 1 second, i.e. a switch will send out one alarm
per second per port. We rely on host-based mechanisms to suppress
alarms if the link flapping lasts longer (details below).

Link Failure Handling Stage 1: Failure notification.
(On switch.) On a port state change, the switch broadcasts port-

up/down notification messages with a fixed number of hops. The
limited hop number prevents loops without using spanning trees.
As modern data center topologies often have small diameters, a
max of 5 hops is often enough.

(On hosts.) Once a host receives a port-down notification, it
knows failure position by checking the switch ID and port number
included in the packet. It checks its local state for duplicate alarm
suppression. If not duplicate, it starts to notify other hosts. A naive
way is to let the host notify the controller first, let the controller
update the topology and then notify others. However, it is slow and
unreliable as the controller is a single point of failure. Thus, we
let the host to directly flood the notification to the entire network.
The message starts from the hosts on the same switch, then goes to
hosts on the neighboring switches, like the way many peer-to-peer
networks do flooding. As soon as a host receives the notification
message, it can immediately route around the affected link, because
it is likely to have alternative path cached (Section 4.3). Stage 1
happens without any controller involvement.

Note that we use a local broadcast on switches and host-based
flooding on servers. This is because the broadcast requires little
logic with no state on switches, while on host we can run more
efficient flood algorithms.

Link FailureHandling Stage 2: Topology patch. As long as the
network is still fully connected, the controller will eventually learn
about the failure during the flooding. At this time, the controller

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

Ss Sd

Shortest Path

Local Detour

Backup Path

Figure 2: An example of a path graph.

updates the global topology and floods a topology patch message
to all the hosts to guarantee connectivity. The message may help
some host find a better path.

With this two-stage optimization, we remove the controller from
the critical path of the failover and instead use it as an asynchronous
book-keeper and performance optimizer. Our evaluation shows that
this mechanism significantly reduces failover delay (Section 7.2.2).

If a DumbNet switch fails, all the neighbor switches will report
link failure, and the switch will be removed from the topology.
Meanwhile, upon receiving link-up notifications, the controller
will probe the ports to discover and verify the newly added links
and switches. This way, we guaranteed rapid reaction for link fail-
ures and a reasonable reaction time for topology updates and link
addition.

4.3 Caching multiple paths
When a host asks the controller for a path to a specific destination, to
one extreme, the controller can return the entire network topology
and let the host figure out the best path itself; to another extreme,
it can return a single path only. As the host caches the results,
returning a larger portion of the topology means fewer queries to
the controller and faster recovery. The benefit, however, comes at
the cost of more resource utilization. We designed a mechanism,
called path graph, as a tradeoff.

A path graph is a subgraph of the network topology containing
three parts: (i) a primary path, which is one of the shortest paths
from the source to the destination; (ii) some local detours by re-
placing a few switches or links on the primary path; and (iii) a
backup path, which is a relatively short path that shares as few com-
mon switches or links as possible with the primary path. Figure 2
illustrates an example of a path graph.

While the primary path is optimal, hosts can use the local de-
tours to quickly handle single link failures, and the backup path is
designed to provide an alternative when many links on the primary
path fail in a correlated way.

We use a subgraph instead of separate paths for efficiency rea-
sons. The size of path graph is only proportional to the path length,
which is much smaller compared to the entire topology, especially
in a large network. Using path graph, we can merge multiple paths
into a single subgraph instead of using separate paths. Besides
saving space, the subgraph is also easy to scale up and patch fail-
ure. K-shortest paths only capture a very limited set of all possible
paths, while subgraph represents many more possible paths with
less memory overhead. When the network grows larger, the cost for
computing K-shortest paths grows faster than that for computing
the path graph. When link failure happens, it is easier to patch a
subgraph than update a set of separate paths.

Algorithm 1 Algorithm to find vertices in local detours
Input: The topologyG; primary path [p1,p2, . . . ,pl]; constant fac-

tors ε, s (see Section 4.3 text).
Output: path graph D, including local detours for primary path
1: D ← ∅, i ← 0
2: while i < l do
3: a ← pi
4: b ← pi+s ▷ or b ← pl if i + s > l
5: Di ← {∀x ∈ G,dist (a,x) + dist (x ,b) ≤ s + ε }
6: D ← D ∪ Di
7: i ← i + s/2
8: return D

Algorithm for path graph generation. The controller can gen-
erate a path graph efficiently.

First, we compute the primary path with a common shortest
path algorithm. It also randomizes the choice for equal cost links,
so it generates different shortest paths, useful for load balancing.

Secondly, we increase the cost for all links on the primary path
and run the shortest path algorithm again to generate the backup
path. The increased costmakes it unlikely to reuse links and switches
in the primary path, unless it is unavoidable (e.g. no redundancy
for the link).

Finally, we add local detours to the primary path. We define an
ε-good-detour for a primary path with length L as a path shorter
than L + ε . Of course, there are many good detours. We prefer local
detours, i.e. those deviate from the primary path as little as possible,
in order to avoid affecting the global traffic pattern, should a large
flow get detoured. Thus, we limit the local detours to alter at most s
consecutive hops on the primary path, with detour length no more
than s + ε . Letting the P[1 . . . L] be the primary path, Algorithm 1
provides a procedure to generate “s-steps, ε-good” local detours.
We can prove that the union of primary path and all local detours
form a connected subgraph, whose size grows linearly w.r.t. the
length of the primary path. Precisely, the size of this subgraph is
O (L∗Ps+ε/s), where P is the maximum number of ports per switch.

When s and ε in Algorithm 1 becomes large enough, the path
graph grows to cover the entire network topology, and the host’s
routing decision degenerates to the traditional ECMP. In small
topologies, the degenerated case is likely to happen if hosts com-
municates with each other. In large topology, not all pair of hosts
communicates and thus the subgraph size is much smaller.

The path graph not only provides a configurable tradeoff be-
tween cache size and resilience but also help avoid overloading the
controller during a link failure. Section 7.2.2 shows the performance
improvements.

5 DATA PLANE
The data plane of DumbNet is simple: the host agent makes the
routing decisions, including traffic engineering optimizations, while
the switches just forward packets using tags. We first introduce
the host agent design, focusing on efficiency and compatibility
with existing networks. Then we briefly introduce our two physical
switch implementations.

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

Ethernet T1 … Tn ϕ IPT2

EtherType 0x9800

Payload

Routing Tags

Figure 3: Packet format.

DST5 SRC

62 3

PathTable

DST5 1 3 6

DST2 2 7 1 3 72

Payload0x0800

TopoCache

Controller

DST5 SRC Payload0x9800 ϕ

2 3 6

Figure 4: Host cache.

5.1 Ethernet-compatible packet header
To coexist with Ethernet traffic, we keep the original Ethernet
header intact and insert our path tags between the Ethernet and
the IP header. To distinguish from normal Ethernet packets, we
set a separate EtherType, 0x9800, in the Ethernet header. Figure 3
illustrates the packet format.

As each switch consumes one tag, the destination host agent
needs to check if the remaining tag is ø. If so, it removes the tag
and passes the packet up the normal network stack directly, as
the packet is exactly an IP packet. Otherwise, the agent drops the
packet. Note that we regenerate the Ethernet checksum once we
remove the tag.

5.2 Host agent
The host agent handles most logics of DumbNet, and thus we want
it to be efficient yet feature-rich. The host agent contains a kernel
module that handles packet sending and receiving, as well as sev-
eral service daemons. We have introduced some of these services
previously, such as the topology discovery service. Now we focus
on the kernel module and a path cache service.

The kernel module. The kernel module sits between the NIC
driver and the kernel network stack and intercepts all incoming and
outgoingmessages. For incoming packets, the kernel module checks
the EtherType to filter DumbNet packets, checks and removes the ø
tag for validation, and passes it to the normal IP stack for processing.
For outgoing packets, the kernel module queries the path cache
service for the routing tag sequence, inserts the sequence into the
packet header, and pushes the packet further down the network
stack to the NIC. We implement the kernel module with the kernel
NIC interface (KNI) in the Intel DPDK library [9].

The path cache service. We need to compute the routing tag se-
quence for packet headers. To accelerate the computation, we adopt
a two-level cache architecture: the TopoCache and the PathTable.

TopoCache interacts with the controller and aggregates all path
graphs (Section 4.3) from the controller. To find a path between a
(src, dst) pair, the TopoCache first checks if it has the location of
dst locally. If not found, it queries the controller and integrates the

Pop
Label

Pop
Label

Output
Demux

2-Port DumbNet Switch

Output
DemuxPacket In 1

Packet In 2

Packet Out 1

Packet Out 2

Drop

Tag

Tag

Figure 5: FPGA-based switch diagram.

returned path graph into its cache. Otherwise, it computes the k
shortest paths from src to dst and randomly chooses one as the
path.

As a host usually sends many packets to the same destination,
we cache the results from TopoCache in a PathTable. The PathTable
is indexed by hosts, i.e., destination MAC address. It caches both
the shortest path and backup paths. Note that for each destina-
tion, TopoCache computes k shortest paths and PathTable caches
them all. The k choices are useful for load balancing. The PathTable
remembers the previously used choice for each flow, and binds a
flow to a particular path, except when a customized routing func-
tion (see Section 6) tells it to do otherwise. In addition to the k
shortest paths, PathTable also caches the backup path discussed in
Section 4.3. Caching backup paths allows the hosts to failover fast,
significantly reducing the end-to-end downtime. The flows will
automatically choose a new path when the older path is invalidated.
Figure 4 summarizes the path cache service.

5.3 Physical switch implementation
We provide two DumbNet physical switch implementations.

First, we implement DumbNet in legacy Ethernet switches using
MPLS to emulate the push-label routing. We implement the switch
on commodity Arista switches with MPLS enabled, by inserting
static rules that statically map the MPLS labels to the physical port
numbers on the switch. The switch ID query packet is converted
to a UDP packet and handled by the switch’s CPU. We configure
the host agent to use MPLS labels. We set the host MTU to 1450 to
make packet shorter, and this leaves space for the MPLS labels in
the header. We provide the MPLS-based implementation as a way
to stay compatible with commodity Ethernet, and a way to build
a real-world large-scale testbed for performance evaluation. The
switch natively supports both port monitoring and broadcast that
we need.

Then, we implement a DumbNet switch prototype using FPGA
to show the switch hardware simplicity. We use an ONetSwitch45
FPGA development board [25] that has a Xilinx Zynq TM-7000
FPGA and four 1GE ports. We use a very simple, unoptimized
two-stage processing architecture as Figure 5 shows. In stage 1, a
pop-label module parses and removes the first routing tag, and in
stage two, a set of de-multiplexers send the packet to the correct
port. Section 7.1 shows that even the unoptimized design reduces
the FPGA resources utilization by almost 90% while achieving good
performance.

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

Edge RouterApplication
Application

2 3 6

1 3 6

Default

𝐹𝐹:𝑝𝑝𝑝𝑝𝑝𝑝 → 𝑝𝑝𝑡𝑡𝑡𝑡𝑠𝑠

𝐺𝐺

Customized
𝐺𝐺:𝑝𝑝𝑝𝑝𝑝𝑝 → 𝑝𝑝𝑡𝑡𝑡𝑡𝑠𝑠

Control

Packet

Packet
+

Tags

Tag Check

Network

Figure 6: DumbNet interface.

6 EXTENDING DUMBNET FUNCTIONS
In conventional SDN, to implement a new function, one needs to
coordinate state updates on hosts, controller, as well as multiple
switches. In contrast, DumbNet maintains all network state on the
host, mainly in the same topology service module that is closer
to where the transfer originates. The collocation of network state
management and the network users (applications) allows more
convenient interfacing between the software and the network. Us-
ing well-known software configuration management tools, we also
avoid update consistency problems.

In this section, we introduce the extension interface DumbNet
provides, and then provide three examples of extensions: network
virtualization, flowlet-based traffic engineering and layer-3 routing,
showing that their implementations are both easy and efficient.

6.1 DumbNet extension support
Sophisticated and performance-sensitive applications often require
better performance, be it higher throughput or lower latency. These
applications often have information to do better network optimiza-
tion too. For example, big data analysis applications often know the
flow size in advance. Thus, it is essential to allow the applications to
interact with network routing. The host-based design of DumbNet
fits this requirement well.

DumbNet provides the following support for application-specific
extensions, and Figure 6 illustrates the architecture.

1) Abstractly, some applications can provide a customized rout-
ing function, whose input is a packet and the network topology,
and output is the corresponding route. Other applications without
custom routing shares the same default routing function.

2) The TopoCache service offers an interface to reveal partial or
entire network topology graph to applications that want to manage
routing themselves. Each applicationmay receive different topology
based on its permission and priority. The TopoCache service may
offer different topologies also based on the overall workload.

3) The data plane forwarding agent supports priority-based
packet forwarding and multiplexes packets from different applica-
tions on a single link. Also, the system provides a path verifier to
check a route before adding it to the PathTable, to ensure that the
application-generated routes do not violate security policies. As
we will show in Section 7.2.2, the checking does not add too much
overhead.

With the above two mechanisms, we can trivially implement
network virtualization: we only need to provide different topologies
for applications on different virtual network. Of course, we need to
verify the paths to prevent malicious applications from violating the

separation. More sophisticated virtualization layers can implement
their own packet scheduling mechanism based on the topology
information too.

6.2 Traffic engineering
As an example extension, we show how we implement flow-level
traffic engineering on DumbNet. Traditional SDN makes the task
hard as rerouting a flow involves updating state on many elements
and thus require sophisticated coordination [19]. Enabling flowlet-
based load balancing requires even more (often not existing) soft-
ware/hardware support and configurations on each switch [21].

As described in Figure 4, the default routing function takes des-
tination MAC address as input and determines path. To implement
flowlet-based load balancing in DumbNet, the routing function uses
flowlet ID instead of destination MAC address, taking the packet’s
destination IP address, port number, and a timestamp into consid-
eration. The function can then deterministically choose one of the
many k paths available in the PathTable, based on the flowlet ID,
which will be bumped whenever flowlet timestamp expires. Thus,
whenever flow ID changes, the extension will output a different
path for packets with the same destination.

While per-flow tracking is expensive in traditional networks [21],
it is doable on the host because the number of flows is limited at
each host, and hosts already allocated the resources to track flow
states in the operating system.

In summary, three features of DumbNetmakes traffic engineering
simple and efficient: 1) the source determines the entire path so we
do not need any distributed updates; 2) each host maintains its own
flow-level information; and 3) caching multiple alternative paths
allows fast path switching.

In addition to Flowlet, we are implementing other typical traf-
fic engineering approaches as future work, such as congestion-
avoiding rerouting using based on early congestion notification
(ECN), as well as approaches like pHost [10].

6.3 Layer-3 routing
In addition to network services, we can build network applications
on top of DumbNet, and here we show how we can build a software-
based router/gateway easily with less than 100 lines of code.

A router is simply a number of host agents running on the same
node, one for each DumbNet (or other conventional) subnet. When
it sends packet to a connecting DumbNet network, it adds tags to
the outgoing packet as a normal host does. As all the incoming
packets are Ethernet packet, the forwarding logic of router remains
unchanged.

Optionally, we can extend source-routing to cross subnets, if
both subnets run DumbNet, and there are direct short-cuts between
switch ports of different subnets. This is common in data center
networks because they are under a single administrative domain.
For cross-subnet flows, the router can optionally tell the source
host about the path in both subnets. The source host can then use
the combined path directly without going through the router.

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 10 20 30
0K

10K

20K

30K

of ports on switch

El
em

en
tu

se
d

Look-Up Tables (LUTs) Registers

Figure 7: FPGA resource utilization v.s. # of ports.

7 EVALUATION
We present our experimental evaluations to demonstrate the via-
bility and performance of DumbNet. We performed evaluations of
DumbNet with the following three implementations.

Testbed. Our testbed is a real data center network with 7 Arista
7050 64-port 10Gbps Ethernet switches and 27 servers. Each server
has two 6-core Xeon E5-2620 (Ivy Bridge) CPUs running at 2.1GHz,
128GB memory, and a Mellanox Connect X3 10GE NIC. We imple-
ment DumbNet with the DPDK + MPLS approach as described in
Section 5.3. The testbed is organized as a leaf-spine topology with
2 switches in the spine layer and 5 switches in the leaf. Each leaf
switch has 5 servers and a 10 GE uplink to each spine switch.

Emulation. To evaluate networks larger than our testbed, we cre-
ate a software emulator similar to the architecture of Mininet [23].
We use separate threads to emulate DumbNet switches. The con-
troller runs in a separate thread. To make the emulation efficient,
we use one thread to emulate all hosts on the same switch. Our
emulator runs on a server with 24 CPU cores.

FPGA. We use the FPGA-based switch we introduce in Section 5.3.
We perform two evaluations with the FPGA switch. 1) We use the
four ports to verify whether the hardware switch implementation
works, and 2) we synthesize the forwarding logic module with more
ports to show the simplicity of DumbNet switch design.

All the implementations are made with reasonable effort. We
test it with typical Linux distribution and commodity switch in a
data center running other jobs. With the simplicity of DumbNet, it
is possible to get much better performance by paying more effort.

We use iperf for traffic generation in the micro-benchmarks,
and use HiBench [15], a popular benchmarking suite, to generate
real-world big data workload.

7.1 Implementation complexity
Figure 7 shows the FPGA resource utilization for DumbNet switches
with different numbers of ports.We compare the resource utilization
with the existing NetFPGA OpenFlow Ethernet switch [28] (ported

Agent Disc. Maint. Graph Total +Flowlet +Router
5000 600 200 1700 7500 100 100

Table 1: Code breakdown in different modules

0 200 400
0

20

40

60

of switches in the network

Ti
m
e
/s
ec

Cube-corner
Cube-center
FatTree

(a) Different topology, con-
troller position and number of
switches.

0 50 100
20

40

60

80

of ports per switch

Ti
m
e
/s
ec

(b) Different port density on
a 8-cube topology.

Figure 8: Topology discovery time with different settings.

to the ONetSwitch45 platform). For a 4-port switch, the OpenFlow
switch uses 16, 070 look-up tables (LUTs) and 17, 193 registers, while
we use 1, 713 and 1, 504, respectively. Note that we excluded the
resources in input/output buffers and the Ethernet interfaces for
the comparison. Plus, we do not use the embedded CPU cores on
the FPGA while the OpenFlow switch uses it for its control agent.
The switch implementation is short and straightforward too: only
1, 228 lines of Verilog code.

The comparison shows that we can dedicate most of the chip
area to the switching fabric and packet buffers, instead of lookup
tables and control logics, resulting in a resource efficient hardware
switch design with high port density.

On the software side, DumbNet consists of about 7,500 lines of
C/C++ code excluding extensions. Table 1 shows a breakdown of the
code. It takes approximately 6 human-months to develop the core
components of DumbNet, including the evaluation design, where
about 1/4 of our engineering efforts dedicated to. Thus, DumbNet
design does reduce network complexity.

7.2 Micro benchmarks

7.2.1 Topology discovery. Discover time w.r.t. the network
size. Using the emulator, we test the topology evaluation pro-
cess on networks with different sizes (in terms of the number of
switches) and various topologies. We use fat tree and cube, two
most common topologies for data center networks. We test three
controller placements: in the leaf of the fat-tree, in the center of the
cube and at a corner of the cube. All switches in the experiment
have 64 ports, and the controller needs to probe each possible port
to find available links.

Figure 8(a) shows that the discovery is fast: even in a network
with 500 switches with 64 ports each (translating to 5,000 hosts),
we can discover the entire topology using a single controller within
70 seconds. As the bottleneck of topology discovery is the packet
processing rate of the controller, the time is roughly proportional
to the number of switches in the network, which grows linearly
with the number of probe messages. Figure 8(a) also shows that the
network size is the primary contributing factor to the discovery
time, while the topology and the location of the controller both

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

0
1
2
3
4
5
6 5.41 5.19 5.19

Th
ro
ug

hp
ut

/G
bp

s

No-op DPDK MPLS Only DumbNet

Figure 9: Testbed comparison of throughput between differ-
ent network implementations.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Latency /ms

CD
F
(L
at
en
cy
)

Native No-op DPDK DumbNet

Figure 10: The round-trip latency distribution of DumbNet in
the testbed, compared to native Ethernet and no-op DPDK.

seem less important. This emulation result is worse than real-world
performance. This is because when the topology size gets larger, the
host processor becomes very busy and thus increase the discovery
time.

Discovery time w.r.t. per-switch port count. Using the same
emulator with a 8 × 8 × 8 cube topology, we vary the number of
ports per switch while holding the topology and number of links
constant, and then evaluate the topology discovery time. Figure 8(b)
shows that the time consumption w.r.t. the number of ports roughly
follows a quadratic trend. Such trend is consistent with our analysis
in Section 4.1 that the complexity in terms of PMs is O (N ∗ P2)
where P is the maximum per-switch port count.

Testbed results. In our testbed, it takes 3 ∼ 5 seconds for a single
controller to discover the entire network topology with 7 switches,
10 links, and 27 hosts. The discovery on real testbed is faster as
the probing runs in parallel on different machines, instead of the
emulation using a single node.

7.2.2 Throughput and latency. Single host throughput. Un-
der failure-free network conditions, DumbNet achieves similar per-
formance both in terms of throughput and latency as normal DPDK-
based network. Figure 9 shows the throughput comparison of no-
op DPDK, adding empty MPLS with DPDK and DumbNet on our
testbed.

Our servers with DPDK enabled (but performs no packet pro-
cessing) can achieve a throughput of 5.4 Gbps, about half of the
theoretical 10 Gbps throughput. The performance loss is because

DPDK does lots of tasks in software instead of hardware, such as
checksum and packet segmentation. Enabling MPLS header, even
with only a single constant tag, adds an extra header-copy opera-
tion, causing about 4% additional overhead, making the throughput
at around 5.19 Gbps. We consider these two the baseline for our
evaluation on single host performance. DumbNet’s source routing
and tagging add only negligible overhead, and the throughput is
still at 5.19 Gbps.

Aggregate throughput on leaf switches. In another experiment,
we use two leaf switches in the testbed, each connecting 14 hosts,
and send traffic between them. Recall that a leaf switch has a link
to each spine switch, and thus the total uplink from a leaf switch is
20 Gbps.

The measured aggregated throughput reaches 18.5 Gbps. This
throughput shows that our MPLS-based implementation enables
the switches to run at wire speed, and our load balancing can fully
utilize both paths.

Testbed Latency. For latency, DumbNet achieves almost the same
latency with the no-op DPDK. On our testbed, we send 100 packets
between every pair of hosts and measure the end-to-end round-
trip time (RTT) of these packets. Figure 10 plots the cumulative
distribution (CDF) of the RTT numbers. We can see that using
software-based DPDK significantly increases the latency over the
native Ethernet. However, the extra overhead of DumbNet is negli-
gible, comparing to the no-op DPDK overhead.

Zooming into the long tail of Figure 10, we find about 0.5%
of the packets have a latency as long as 20 to 30 milliseconds.
This is consistent with our design that before two servers initiate
their connection, the host agents need to ask the controller for
the initial path (the path graph), and this query takes an extra
round trip to the controller. Since the sender and receiver send their
queries in tandem, the extra latency overhead is 2 ∗ RTT plus two
query response time at the controller. Since all hosts start to ping
each other at the same time, long tail in packet latency CDF is the
result of concurrent queries to the controller from all machines,
which resembles the worst case tail latency distribution. In actual
networks, path queries from different hosts will be more evenly
distributed over time, which leads to shorter tail latency.

We believe several design choices contribute to the low latency
overhead in DumbNet: efficient client cache, the client data path
implementation as well as the simple switch design.

Latency overhead breakdown. Table 2 shows the breakdown of
latencies on different functions in the DumbNet kernel module. We
use a fat-tree topology with 5,120 switches and 131,072 links. To
measure PathTable lookup time, we inserted 10K random entries
into the Table. The path length we verify is 16, longer than most
DCN paths. We run each test 1,000 times and take the average time.
We can see that the latency overhead from DumbNet kernel module
is actually very low.

PathTable Lookup Path Verify Find Path
0.37 µs 7.17 µs 1.50 µs

Table 2: Time of different kernel module functions.

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 2 4 6 8
0

0.2
0.4
0.6
0.8
1

Notification delay /ms

CD
F
(D
el
ay
)

Link Failure Msg
Topology Patch Msg

(a) CDF of topo. change noti-
fication delays.

0 100 200 300
0

100
200
300
400
500

Time /ms

Ra
te

/M
bi
ts
/s
ec

DumbNet
STP

(b) Throughput change.

Figure 11: Network recovery statistics in the testbed (failure
at time 0).

FPGA Switch Latency. To test the forwarding performance of
the FPGA implementation, we measure the latency by sending
packets with fixed tags. We let each packet go through 3 hops in the
FPGA switch, keeping the same number of hops as in the testbed. To
focus on the switch latency, we exclude the software stack overhead.
The average latency for the 3 hops is 100.6µs, with a maximum of
152µs. Considering our unoptimized FPGA implementation with
1GE ports, we believe the low latency shows the advantage of the
dumb switch design.

7.3 Failure recovery

Link Failure Notifications. The speed of hardware determines
link failure detection time. The key is to reduce the notification
delays. We focus on evaluating the delay using the real testbed
by injecting link failures. As Section 4.2 describes, we notify hosts
using two messages in two stages, the link failure message from a
host and topology patch message from the controller.

We measure the time between the failure discovery and notifica-
tion arrival at each host. It is tricky to measure delay in a distributed
testbed as we do not have a synchronized clock. Instead, we let each
host to ACK a measurement server once it receives the notification,
and compute the receiving time by adjusting the RTT between the
host and the measurement server.

Figure 11(a) shows the cumulative distribution of the notification
delay on all hosts. We can see that the majority of hosts receive
the link failure notification within 4 milliseconds, and receive the
patch message within 8 milliseconds; the entire process finishes
within 10 milliseconds. When a host receives the notification, it is
likely to find an alternative path in the local cache, and thus will
recover the transmission without further delay.

Comparing to traditional STP. We evaluate how fast DumbNet
recovers from a single link failure. We record the transfer rate
between two hosts connecting to different leaf switches in the
testbed. We inject a single failure (i.e. cut one of the two links
between spine switch and leaf switch) while the network is at close
to its full capacity (We limit the network bandwidth to 0.5 Gbps so
we can saturate the link).

We run a script on Arista switch to monitor the port state and
send the Link Failure Notification packets as described in Section 4.2.

0 2 4
0

50

100

150

ε

#
of

pa
th
si
n
pa
th

gr
ap
h

len = 2 5 10 15

Figure 12: The size of path graph w.r.t. ε choices, under a 10-
cube topology.

These packets can be sent even faster if it’s done by hardware. The
baseline we compare against is the off-the-shelf Ethernet Spanning
Tree Protocol (STP) [30]. As there are redundant paths, STP can
also automatically find alternative paths.

Figure 11(b) shows that the DumbNet approach described in Sec-
tion 4.2 is almost 4.7× faster than STP. This is because with all
states in hosts, instead of running a fully distributed, multi-round
STP protocol on link failure, the DumbNet failover only needs to
broadcast two notification messages and switch to the backup path
in local PathTable immediately.

Storage overhead of path graph. The fast recovery is at the
cost of caching a path graph instead of individual paths. Here we
evaluate the number of switches cached with different ε choices
(see Section 4.3). We emulate a path graph with a 10 × 10 × 10 cube
topology. We fix the parameter s at 2, meaning that we allow a
maximum of 2 steps deviation from the shortest path. Then we
randomly pick primary paths of different length in the network
and see the size of their corresponding path graph with different ε .
Figure 12 shows the result. We find that for longer paths, a larger ε
results in lots of extra caching, as it allows detours at each hop. For
shorter paths, even with a large ε , the cache size is still reasonable.
In real data centers, the path is usually short, and thus our the path
caching cost stays small.

Even in a large data center with 2,000 switches and 100,000 hosts,
saving both TopoCache and PathTable (defined in Section 5.2) will
cost at most 10MB of memory, a negligible amount for modern
servers. Nevertheless, caching only the relevant topology and paths
may improve lookup performance.

7.4 Performance with real workload
As a real-world macro benchmark, we use Intel HiBench [15], a
commonly used big data benchmark suite, to evaluate the perfor-
mance of DumbNet on our testbed topology as described early in this
section. As we do not have enough servers to saturate the network
bandwidth in HiBench, we limit spine switch port speed to 500
Mbps. We have flowlet enabled (see Section 5.2) in the experiment.
Note that we use HiBench to capture the flow dependencies in
real-world applications, rather than to simulate a real-world heavy
workload to stress test the prototype system.

EuroSys ’18, April 23–26, 2018, Porto, Portugal Y. Li et al.

Aggregation Join Pagerank Terasort Wordcount
0

100

200

Av
er
ag
e
du

ra
tio

n
/s
ec

DumbNet DumbNet Single Path No-op DPDK

Figure 13: Testbed performance of HiBench tasks.

Like the evaluation in Section 7.3, we compare performance
among full DumbNet with TE, no-op DPDK, and a version of Dumb-
Net without the path graph and flowlet-based traffic engineering.

Figure 13 shows that DumbNet outperforms conventional net-
work in all the tasks. Flowlet TE plays an important role. As the
hosts randomly generate paths, it is likely that each host uses a
distinct path for each flowlet, leading to more evenly distributed
traffic, therefore reduces the likelihood of link congestion. The com-
parison to the version without TE confirms that the performance
becomes much worse in the single-path setting.

8 CONCLUSION AND FUTUREWORK
The development of SDN leads us to revisit the design philosophy
question: how should we divide responsibilities between switches
and hosts? How can we better integrate network functionalities
with the software? Through the design and implementation of
DumbNet, we achieve one extreme: making switches as dumb as
possible. With switches that have no CPUs and no state, we show
that we can efficiently support essential network functionalities
such as bootstrapping, routing and fault tolerance. We can also
support powerful software extensions and demonstrate traffic engi-
neering, layer-3 routing and network virtualization with very small
effort. Furthermore, we may achieve higher performance by porting
the host agent into today’s smart-NIC. In practice, keeping switches
dumb not only reduces the switch hardware cost but also avoids
the complicated distributed state update problem. Philosophically,
building the extreme solution allows us to come back to a clean
start to rethink about switch and DCN fabric design, which leads to
our future work: what else we must add back to the dumb switches
to make the DCN even more powerful? For example, we are adding
mechanisms for packet statistics and ECN support to the switch.
Note that these mechanisms either require no state, or only soft
state, keeping the switches dumb.

ACKNOWLEDGEMENT
We would like to show great appreciation to our shepherd Edouard
Bugnion and anonymous reviwers for their feedback. This work
was supported in part by the National Natural Science fundation
of China (NSFC) Grant 61532001, Tsinghua Initiative Research Pro-
gram Grant 20151080475, MOE Online Education Research Center
(Quantong Fund) Grant 2017ZD203, and gift funds from Huawei
and Ant Financial.

REFERENCES
[1] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin

Donnelly. 2010. Symbiotic Routing in Future Data Centers. In ACM SIGCOMM.
[2] Eric A Brewer and Bradley C Kuszmaul. 1994. How to Get Good Performance

from the CM-5 Data Network. In IEEE International Parallel Processing Symposium
(IPDPS).

[3] Matthew Caesar, Martin Casado, Teemu Koponen, Jennifer Rexford, and Scott
Shenker. 2010. Dynamic Route Recomputation Considered Harmful. ACM
SIGCOMM Computer Communication Review 40, 2 (2010), 66–71.

[4] R.W. Callon. 1990. Use of OSI IS-IS for Routing in TCP/IP and Dual Environments.
RFC 1195 (Proposed Standard). (December 1990).

[5] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and Yolanda
Tsang. 2002. Maximum Likelihood Network Topology Identification from Edge-
based Unicast Measurements. ACM SIGMETRICS Performance Evaluation Review
30, 1 (2002), 11–20.

[6] CoreOS. 2017. etcd Homepage. https://coreos.com/etcd/. (2017).
[7] Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and Christophe Diot.

2007. NetDiagnoser: Troubleshooting network unreachabilities using end-to-end
probes and routing data. In ACM CoNEXT.

[8] Luyuan Fang, Fabio Chiussi, Deepak Bansal, Vijay Gill, Tony Lin, Jeff Cox, and
Gary Ratterree. 2015. Hierarchical SDN for the Hyper-Scale, Hyper-Elastic Data
Center and Cloud. In ACM SOSR.

[9] The Linux Foundation. 2017. DPDK Homepage. https://dpdk.org/. (2017).
[10] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,

and Scott Shenker. 2015. pHost: Distributed near-optimal datacenter transport
over commodity network fabric. In ACM CoNEXT.

[11] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In ACM
SIGCOMM.

[12] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng Sun,
Wenfei Wu, and Yongguang Zhang. 2010. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In ACM CoNEXT.

[13] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. DCell: A Scalable and Fault-Tolerant Network Structure for Data
Centers. In ACM SIGCOMM.

[14] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In ACM SIGCOMM.

[15] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The
HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Anal-
ysis. In IEEE International Workshop on Information and Software as Services
(WISS).

[16] Yiyi Huang, Nick Feamster, and Renata Teixeira. 2008. Practical Issues with
Using Network Tomography for Fault Diagnosis. ACM SIGCOMM Computer
Communication Review 38, 5 (2008), 53–58.

[17] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free coordination for Internet-scale systems. In USENIX ATC.

[18] Xin Jin, Nathan Farrington, and Jennifer Rexford. 2016. Your Data Center Switch
is Trying Too Hard. In ACM SOSR.

[19] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and RogerWattenhofer. 2014. Dynamic Scheduling
of Network Updates. In ACM SIGCOMM.

[20] Sangeetha Abdu Jyothi, Mo Dong, and P Godfrey. 2015. Towards a Flexible Data
Center Fabric with Source Routing. In ACM SOSR.

[21] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-
namic Load Balancing Without Packet Reordering. ACM SIGCOMM Computer
Communication Review 37, 2 (2007), 51–62.

[22] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.
2017. Beyond fat-trees without antennae, mirrors, and disco-balls. In ACM
SIGCOMM.

[23] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In ACM SIGCOMM HotNets
Workshop.

[24] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Commu-
nication Review 38, 2 (2008), 69–74.

[25] MeshSr. 2015. ONetSwitch45 Webpage. https://github.com/MeshSr/ONetSwitch/
wiki/ONetSwitch45. (2015).

[26] J. Moy. 1998. OSPF Version 2. RFC 2328 (INTERNET STANDARD). (April 1998).
[27] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, and Jeffrey C

Mogul. 2010. SPAIN: COTS Data-Center Ethernet for Multipathing over Arbitrary
Topologies. In USENIX NSDI.

[28] Jad Naous, David Erickson, G Adam Covington, Guido Appenzeller, and Nick
McKeown. 2008. Implementing an OpenFlow Switch on the NetFPGA platform.
In ACM/IEEE ANCS.

https://coreos.com/etcd/
https://dpdk.org/
https://github.com/MeshSr/ONetSwitch/wiki/ONetSwitch45
https://github.com/MeshSr/ONetSwitch/wiki/ONetSwitch45

DumbNet: A Smart Data Center Network Fabric with Dumb Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

[29] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
2009. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric.
In ACM SIGCOMM.

[30] Institute of Electrical and Electronics Engineers. 2004. IEEE Standard for Local
and metropolitan area networks: Media Access Control (MAC) Bridges. IEEE
Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998) (June 2004), 1–277. https:
//doi.org/10.1109/IEEESTD.2004.94569

[31] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized zero-queue datacenter network. In ACM
SIGCOMM.

[32] Ramon Marques Ramos, Magnos Martinello, and Christian Esteve Rothenberg.
2013. SlickFlow: Resilient Source Routing in Data Center Networks Unlocked by
OpenFlow. In IEEE Conference on Local Computer Networks (LCN).

[33] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4 (BGP-4). RFC
4271 (Draft Standard). (January 2006).

[34] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer
Rexford. 2011. Network Architecture for Joint Failure Recovery and Traffic
Engineering. ACM SIGMETRICS Performance Evaluation Review 39, 1 (2011),
97–108.

https://doi.org/10.1109/IEEESTD.2004.94569
https://doi.org/10.1109/IEEESTD.2004.94569

	Abstract
	1 Introduction
	2 Related work
	3 DumbNet overview
	3.1 Design goals and choices
	3.2 End-to-end packet forwarding
	3.3 Overview of challenges and solutions

	4 Control plane
	4.1 Topology discovery
	4.2 Failure handling
	4.3 Caching multiple paths

	5 Data plane
	5.1 Ethernet-compatible packet header
	5.2 Host agent
	5.3 Physical switch implementation

	6 Extending DumbNet functions
	6.1 DumbNet extension support
	6.2 Traffic engineering
	6.3 Layer-3 routing

	7 Evaluation
	7.1 Implementation complexity
	7.2 Micro benchmarks
	7.3 Failure recovery
	7.4 Performance with real workload

	8 Conclusion and future work
	References

