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Introduction
Motivation I: Ride-sharing

Emergence and rapid development of online ride-sharing
services
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Introduction
Motivation II: Two-sided Market

Two-sided market configuration ⇒ Drivers and Customers

Existing algorithms are mostly offline heuristics to apply in
one-sided market
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Introduction
Motivation III: Inefficiency

Efficiency of the services are limited by the sub-optimal and
imbalanced matching

Imbalance between supply and demand (e.g. No match or
congestion)

Long waiting time ⇒ Real-time response

High cost ⇒ Surge Pricing
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Introduction
Challenges

Scalability: Deal with a large number of workers and
customers, can partition the map in city’s scale (i.e. travel
across the entire city)

Real-time: Always need the platform to give real-time
responses to the customers ⇒ Making online algorithms
essential
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Introduction
Contributions

Generalized economic models for both Internet taxi and
product delivery markets

A deterministic approximation algorithm with a tight
theoretical bound

Two heuristic online algorithms

Verify the algorithms with theoretical analysis and
trace-driven simulations
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Problem Model
Overview

Two-sided Market with both Temporal and Spatial
information

Drivers - The users who provide taxi or delivery services

Customers - The users who receive the services

Tasks - The taxi and delivery services ordered by the
customers

Task Maps - DAGs to demonstrate the relationship between
the drivers and tasks in the market
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Problem Model
Drivers

# of drivers: N , and for each driver n ∈ [N ]:

Source - location: sn = (u−n , v
−
n ), time: t−n

Destination - location: dn = (u+n , v
+
n ), time: t+n
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Problem Model
Customers and Tasks

# of tasks: M , and for each task m ∈ [M ]:

Source - location: s̄m = (ū−m, v̄
−
m), time: t̄−m

Destination - location: d̄m = (ū+m, v̄
+
m), time: t+n

Price - pm (calculated by the platform)

Publishing time - t̄m: t̄m < t̄−m < t̄+m

9 / 38



Introduction

Problem Model

Definitions

Task Maps

Formulations

Offline Alg

MDP

Gready

Analysis

Online Alg

Nearest

Max Margin

Simulations

Configurations

Results

Conclusion

Problem Model
Task Map Construction

Figure: shows a simple example task map of driver n. The driver
can take one task among task 1, task 2 and task 3. She can also
take two tasks, and that is to take task 3 after finishing task 2.

Indicator hn,m,m′ ∈ {0, 1}, ∀n ∈ [N ],m,m′ ∈ [M̂ ] denotes
whether there is an arc from m to m′ in driver n’s task map.
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Problem Model
Task Map Construction

l̂n,m, ĉn,m - travel time/cost of the same task m for driver
n

ln,m,m′ , cn,m,m′ - travel time/cost of driving empty from m
to m′ for driver n

ĥn,m - whether driver n can take task m, with ĥn,m = 1
indicating a “yes" as follows:

ĥn,m = 1⇔ (l̂n,m ≤ t̄+m − t−m), ∀n ∈ [N ],m ∈ [M ]. (1)
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Problem Model
Task Map Construction

For the arcs from the source (labeled 0) to any task m,

hn,0,m = 1⇔ ĥn,m ∧ (ln,0,m ≤ t̄−m − t−n )

∧ (ln,m,−1 ≤ t+n − t̄+m), ∀n ∈ [N ],m ∈ [M ].
(2)
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Problem Model
Task Map Construction

For the arc from one node of task m to the next task m′,
driver n should have enough time to travel from the
destination of task m to the source of task m′:

hn,m,m′ = 1⇔ ĥn,m ∧ ĥn,m′ ∧ (ln,m′,−1 ≤ t+n − t̄+m′)
∧ (ln,m,m′ ≤ t̄−m′ − t̄

+
m), ∀n ∈ [N ],m ∈ [M ],m′ ∈ [M ].

(3)
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Problem Model
Task Map Construction

If hn,m,m′ = 1 then also set hn,m′,−1 = 1, there is an arc
from m to m′ and another arc from m′ to −1.

It will take (M2 + 2M) iterations to calculate all the values
of hn,m,m′ for driver n ⇒ Complexity to construct the task
map of all the N drivers is O(NM2).
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Problem Model I:
Drivers’ Profits Maximization: Objective

Our Goal: Maximize drivers’ total profits ⇒ Total Revenue -
Total Excess Cost (Shown in (4))

Decision variables:

xn,m - If task m is assigned to driver n in the market

yn,m,m′ - If driver n takes task m′ after finishing task m.

Z :maximize
∑
n∈[N ]

∑
m∈[M ]

xn,mpm −
( ∑
n∈[N ]

∑
m∈[M ]

xn,mĉn,m

+
∑
n∈[N ]

∑
m∈[M̂ ]

∑
m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′ −
∑
n∈[N ]

cn,0,−1

)
.

(4)
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Problem Model I:
Drivers’ Profits Maximization: Constraints

s.t. ∑
n∈[N ]

xn,m ≤ 1, ∀m ∈ [M ]; (5a)

∑
m∈[M ]

xn,mpm ≥
∑

m∈[M̂ ]

∑
m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′

+
∑

m∈[M ]

xn,m − cn,0,−1,∀n ∈ [N ];
(5b)

∑
m′∈[M̂ ]

hn,0,m′yn,0,m′ = 1, ∀n ∈ [N ]; (5c)

∑
m∈[M̂ ]

hn,m,−1yn,m,−1 = 1, ∀n ∈ [N ]; (5d)

(5a): task allocation, (5b): individual rationality
(5c)-(5d): flow conservation for sources and destinations
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Problem Model I:
Drivers’ Profits Maximization: Constraints (Cont’d)

∑
m∈[M̂ ]

hn,m,m′yn,m,m′ = xn,m′ ,∀n ∈ [N ],m′ ∈ [M ]; (6a)

∑
m′∈[M̂ ]

hn,m,m′yn,m,m′ = xn,m,∀n ∈ [N ],m ∈ [M ]; (6b)

xn,m ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M ]; (6c)

yn,m,m′ ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M̂ ],m′ ∈ [M̂ ]. (6d)

(6a)-(6b): flow conservation for internal nodes
(6c) - (6d): decision variables
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Problem Model II:
Social Welfare Maximization

bm: Customers’ willingness-to-pay for task m

Ẑ :maximize
∑
n∈[N ]

∑
m∈[M ]

xn,mbm −
( ∑
n∈[N ]

∑
m∈[M ]

xn,mĉn,m

+
∑
n∈[N ]

∑
m∈[M̂ ]

∑
m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′ −
∑
n∈[N ]

cn,0,−1

)
.

(7)
s.t
Previous Constrains +∑

n∈[N ]

xn,m(bm − pm) ≥ 0,∀m ∈ [M ]. (8)
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Problem Models
Solving Ideas

Solving (4) or (7) is NP-hard

In the real markets, it is hard to formulate the social
welfare, since it is hard to estimate bm

Optimizing the drivers’ total profits is enough to improve
the efficiency of the ride-sharing markets

Relax to LP and get an upper bound of OPT
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Offline Approximation Algorithm
Key Solving Ideas: Node-disjoint Path Problem

Original Problem: Allocate tasks to drivers for total profits
maximization (temporal + spatial)
Merge all the N task maps into one DAG (G). Assign each
task to at most one driver (Node-disjoint needed).
Objective: Find multiple weighted node-disjoint paths with
maximum total value.
EDP: Edge-disjoint paths (existing solutions)
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Offline Approximation Algorithm
Node-disjoint Path Problem: Definitions

Definitions:
π: A path from a source to a destination

Pi: All the paths in the graph G from si to di for driver i

fπ:Whether path π is selected in the solution

rπ: Profit of the path - the summation of the total value of
the tasks subtracting the excess cost (defined in Eq. (4))
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Offline Approximation Algorithm
Node-disjoint Path Problem: Equivalent Formulation

Z : maximize
∑

π∈∪iPi

fπrπ. (9)

s.t. ∑
π∈Pi

fπ = xi,∀i ∈ [N ]; (10a)

N∑
i=1

∑
π∈Pi:m∈π

fπ ≤ 1,∀m ∈ [M ]; (10b)

xi ∈ {0, 1}∀i ∈ [N ]; (10c)

fπ ∈ {0, 1},∀π ∈ ∪iPi. (10d)

(9): Same as (4), for the drivers’ total profits
(10a): Each driver may choose 1 or 0 task list
(10b): Node-disjoint guarantee
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Offline Approximation Algorithm
The Greedy Algorithm: Pseudocode

Initialization: Let S = ∅, Π = ∅, X = {1, 2, · · · , N}, G′ = G
while there exists driver i ∈ X and path π ∈ ∪iPi from si to
di with strictly positive profit rπ > 0 do

(a) Find the path π∗ = argmaxπ∈∪iPirπ, such that π∗

has the maximum profit in the current graph G′. Let
π∗ be the task list for driver i∗;

(b) Remove the source and destination nodes (si∗ , di∗)
of driver i∗ and all the task nodes in π∗ from the
current graph G′;

(c) S = S ∪ i∗, Π = Π ∪ π∗, X = X/i∗;
end
Output the drivers in set S and the selected paths (i.e. task
lists) in Π.
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Offline Approximation Algorithm
Theoretical Analysis

Theorem
The Greedy Algorithm (i.e. GA) gives a feasible solution with
( 1
D+1)-approximation ratio in polynomial time, where D is

the maximum number of nodes in a path (i.e. the diameter of
the graph G). The ratio is tight.
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Offline Approximation Algorithm
Theoretical Analysis

Lemma 1: Complexity

GA achieves a feasible solution of (4) within time complexity
O(N2M2).
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Offline Approximation Algorithm
Theoretical Analysis

Lemma 2: Lower Bound
GA guarantees an approximation ratio of ( 1

D+1).
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Offline Approximation Algorithm
Theoretical Analysis

B: Set of paths selected by GA
O: Paths selected by the optimal solution (i.e. OPT )
GA terminates in K iterations,

{
πk
}
k=1,2,··· ,K is the path

selected by GA during the k-th iteration.

Proposition 1

Every path in O must intersect with at least one path in B.

Proposition 2

Every path in B intersects with at most (D + 1) paths in O.
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Offline Approximation Algorithm
Theoretical Analysis

Ok : Set of paths in O that intersect with πk

Proposition 3

O = ∪Kk=1Ok (11)

Proposition 4

∑
π∈Ok

rπ ≤ (D + 1) · rπk , ∀k = 1, 2, · · · ,K (12)
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Offline Approximation Algorithm
Theoretical Analysis

Lemma 3: Upper Bound

( 1
D+1) is also the upper bound to the approximation ratio.

O chooses Blue Edges ⇒ (D + 1) · (1− ε) (OPT)
B chooses Black Edges ⇒ 1 (GA)
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Offline Approximation Algorithm
Discussions

Motivated by the EDP model, state-of-the-art bound:
O
(
min(n2/3,

√
m)
)
for undirected graphs and

O
(
min(n4/5,

√
m)
)
for directed graph.

( 1
D+1) is a tight bound, and can apply well in real markets.
D is small for ride-sharing. D = 1 and 1

2 approximation
ratio for Google’s Waze Rider market.
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Online Heuristic Algorithms
Heuristic I: Nearest Drivers

When a task m arrives, chooses the driver who can arrive at
the first time

Update the information of tasks and drivers

If no driver can take the task, then drop task m
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Online Heuristic Algorithms
Heuristic I: Nearest Drivers

Define the marginal value:
δn,m = pm − (cn,m,−1 + ĉn,m + cn,m′,m − cn,m′,−1)
When a task m arrives, chooses the driver n who can serve
with the largest δn,m
Update the information of tasks and drivers
If no driver can take the task, then drop task m
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Performance Evaluations
Experiment Setup

Dataset: ECML/PKDD 15 including a complete year (from
01/07/2013 to 30/06/2014) of the trajectories for all the
442 taxis running in the city of Porto, Portugal

1, 000, 000+ records with detailed information, including the
timestamp of starting time and finishing time for each trip,
polyline of the trip trajectory, and the driver ID
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Performance Evaluations
Experiment Setup

Figure: Travel Time
Distribution

Figure: Travel Distance
Distribution
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Performance Evaluations
Results: Performance Ratios

Figure: The left figure shows the performance ratio of the
“hitchhiking” model and the right figure shows the performance
ratio of the “home-work-home” model
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Performance Evaluations
Results: More Insights
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Thank You

Conclusion Remarks

Propose generalized economic models for ride-sharing
markets: Dynamic Scheduling based on Temporal + Spatial
info

A deterministic offline algorithm + Two online heuristics

Application Specialization: Limited # of tasks within a
period, our greedy algorithm works fine

Future Work: Design deterministic online algorithms

Contact Information - Yongzheng Jia

jiayz13@mails.tsinghua.edu.cn
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