
Data and text mining

Secure multiparty computation for privacy-preserving

drug discovery

Rong Ma1,†, Yi Li1,†, Chenxing Li1,†, Fangping Wan1, Hailin Hu 2, Wei Xu1,* and

Jianyang Zeng1,3,*

1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China, 2School of Medicine, Tsinghua

University, Beijing 100084, China and 3MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors.

Associate Editor: Jonathan Wren

Received on April 5, 2019; revised on January 8, 2020; editorial decision on January 13, 2020; accepted on January 15, 2020

Abstract

Motivation: Quantitative structure–activity relationship (QSAR) and drug–target interaction (DTI) prediction are both
commonly used in drug discovery. Collaboration among pharmaceutical institutions can lead to better performance
in both QSAR and DTI prediction. However, the drug-related data privacy and intellectual property issues have be-
come a noticeable hindrance for inter-institutional collaboration in drug discovery.

Results: We have developed two novel algorithms under secure multiparty computation (MPC), including
QSARMPC and DTIMPC, which enable pharmaceutical institutions to achieve high-quality collaboration to advance
drug discovery without divulging private drug-related information. QSARMPC, a neural network model under MPC,
displays good scalability and performance and is feasible for privacy-preserving collaboration on large-scale QSAR
prediction. DTIMPC integrates drug-related heterogeneous network data and accurately predicts novel DTIs, while
keeping the drug information confidential. Under several experimental settings that reflect the situations in real
drug discovery scenarios, we have demonstrated that DTIMPC possesses significant performance improvement
over the baseline methods, generates novel DTI predictions with supporting evidence from the literature and shows
the feasible scalability to handle growing DTI data. All these results indicate that QSARMPC and DTIMPC can provide
practically useful tools for advancing privacy-preserving drug discovery.

Availability and implementation: The source codes of QSARMPC and DTIMPC are available on the GitHub: https://
github.com/rongma6/QSARMPC_DTIMPC.git.

Contact: weixu@mail.tsinghua.edu.cn or zengjy321@mail.tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the early stage of drug discovery, identifying promising hits and
optimizing various properties of lead compounds are two essential
steps. Drug–target interaction (DTI) prediction based on chemical
information of drugs, genomic information of proteins, known DTIs
and other drug-related or protein-related information (Bleakley and
Yamanishi, 2009; Luo et al., 2017; Mei et al., 2013; Xia et al.,
2009), has become a powerful way to identify promising compound
hits. Optimizing various properties of compounds, such as absorp-
tion, distribution, metabolism and excretion (ADME), can be
achieved by quantitative structure–activity relationship (QSAR) pre-
diction, i.e. inferring the bioactivities from chemical structures.

Machine learning techniques have shown promising applications
in drug discovery in the last few decades (Barrett and Langdon,
2006; Burbidge et al., 2001; Gertrudes et al., 2012; King et al.,

1992; Lavecchia, 2015; Murphy, 2011). For instance, the deep neur-
al network has been successfully used for solving the QSAR regres-
sion problem (Ma et al., 2015), and the DTINet algorithm (Luo
et al., 2017) has been proposed to predict novel DTIs from drug-
related heterogeneous information and identify the new indications
of old drugs. In general, larger datasets can help improve the per-
formance of the machine learning-based approaches to solving such
pharmaceutical research problems. However, more experiments
(which thus cost more money and time) are generally required to ob-
tain a larger dataset.

Public databases, such as ChEMBL (Gaulton et al., 2012) and
DrugBank (Knox et al., 2010), can provide a large quantity of col-
lected experimental data and other compound or drug-related infor-
mation and thus make it easy for pharmaceutical companies and
academic institutions to retrieve publically available data. However,
these databases are also limited by the privacy concerns, in that
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pharmaceutical organizations are generally reluctant to reveal their
novel intellectual property information to public databases.

Recently, modern cryptographic techniques have started to be
applied to drug discovery and other research fields in computational
biology (Cho et al., 2018; Hie et al., 2018; Jagadeesh et al., 2017).
To achieve pharmaceutical collaboration without divulging private
information, secure multiparty computation (MPC), which allows
multiple participants to collaboratively perform computation on
their secret data while protecting data from being leaked to others,
has provided a suitable technique. In 2005, MPC was applied to per-
form a simple linear regression task on chemical data (Karr et al.,
2005). Unfortunately, linear regression is of limited use in practice.
With the growing of computational capability and the further devel-
opment of MPC (Tetko et al., 2016), feasible MPC protocols for
genomic diagnosis (Jagadeesh et al., 2017), genome-wide association
study (GWAS) (Cho et al., 2018) and DTI prediction (Hie et al.,
2018) have been developed in the literature. However, widely ap-
plicable MPC protocols for different machine learning algorithms to
solve various drug discovery problems are still underway.

Here, we introduce MPC to QSAR prediction for the first time
and develop an MPC version of DTINet (Luo et al., 2017) to achieve
privacy-preserving DTI prediction. Computational experiments
show that collaboration via our MPC protocols using protected pri-
vate data delivers almost the same learning performance as public
collaboration via the corresponding plaintext (i.e. all data are publi-
cally available) algorithms, and significantly outperforms the predic-
tion strategy using private data owned by a single institution. All
these results demonstrate the effectiveness and the great application
potential of our MPC algorithms.

For QSAR prediction, we design QSARMPC, an MPC version of
a two hidden layer neural network (Rumelhart et al., 1986), which
achieves collaborative QSAR prediction among different institutions
without divulging chemical structures or corresponding bioactivities
of compounds. In addition, the training time of QSARMPC
increases linearly with the number of training instances and the di-
mension of features in the neural network, which implies that
QSARMPC can be practically used even for large datasets. Different
from Secure DTI (Hie et al., 2018), a recently-developed neural net-
work model under MPC for classification problems, QSARMPC is
mainly designed for solving the regression problems and has demon-
strated reasonably good performance on QSAR prediction under the
MPC protocol.

For DTI prediction, we develop an MPC based version of our
previously developed plaintext DTI prediction algorithm (Luo et al.,
2017), called DTIMPC, to predict novel DTIs from drug-related het-
erogeneous information. DTIMPC maintains the confidentiality of
the drug-related information, which thus can encourage multiple
institutions to collaborate for better DTI prediction. Our framework
DTIMPC integrates a set of more relevant drug-related heteroge-
neous networks and surpasses both the plaintext DTI prediction al-
gorithm with the original eight heterogeneous networks in our
previous work (Luo et al., 2017) and the state-of-the-art privacy-
preserving DTI prediction algorithm Secure DTI (Hie et al., 2018).
Compared with Secure DTI (Hie et al., 2018), DTIMPC achieves
significantly higher AUPR score and is more suitable to perform
DTI prediction under the MPC protocol by integrating drug-related
heterogeneous information instead of focusing on large-scale homo-
geneous chemical–protein interaction data.

All these results indicate that QSARMPC and DTIMPC can pro-
vide practically powerful tools to perform privacy-preserving QSAR
and DTI prediction efficiently and accurately. Moreover, our MPC
based frameworks can be easily extended to other machine learning
algorithms for solving various drug-related learning tasks, and thus
can further advance privacy-preserving drug discovery.

2 Methods

2.1 Secure multiparty computation protocols
Consider the following MPC problem: suppose that there are n cli-
ents, denoted by C1;C2; . . . ;Cn, respectively, and each Ci holds

private data Di, i ¼ 1; 2; . . . ; n. Denote P as public data. These
n clients want to collaboratively calculate a function
f ðD1;D2; . . . ;Dn;PÞ, such that only the public data P and the results
of the function f ð�Þ are revealed.

Here, for efficiency, suppose that the MPC is in the client–server
model. Each client can represent an institution, which owns private
data. The number of clients can be arbitrary. We assume that there
are four semi-honest servers (which are also called parties) here. The
term semi-honest means that each party follows the designed proto-
col and will not send fake or false data to others but is curious about
the private information and will mine sensitive information from the
data as much as possible. We also make the assumption that any
two of the four semi-honest parties do not collude with each other.
We also assume that all communication channels are secure and the
data transferred cannot be seen or modified by adversaries, which
can be achieved through the Secure Sockets Layer (Li and Xu,
2019). Based on these assumptions, the four semi-honest parties
know nothing about private information of individual clients. Also,
each client obtains no information about the data from others, other
than the information inferred from the training model or the pre-
dicted results.

In our framework, the MPC pipeline can be divided into three
phases (Li and Xu, 2019) (Fig. 1). First, the private data are sepa-
rated by each client locally into two parts, one shared with party S1

and the other shared with party S2. This operation is performed
through a cryptographic technique, called ‘secret sharing’ (Shamir,
1979). In particular, we use the replicated 2-out-of-4 secret sharing
scheme (Li and Xu, 2019) to carry out this task. Here, we use a sim-
ple example to illustrate this secret sharing concept. Suppose that an
integer x is the private data in a client. Then this client picks a ran-
dom integer r, and sends r and x – r to parties S1 and S2, respectively.
Here, r and x – r are called the two secret shares of x. Because of the
uniform randomness of r, parties S1 and S2 learn no information
about x. After parties S1 and S2 receive the secret shares of x from a
client, they negotiate another random integer r0. Then S1 sends
rþ r0, r to parties Sa, Sb, respectively, and S2 sends x – r, x� r� r0 to
parties Sa, Sb, respectively. Parties Sa and Sb can learn no informa-
tion about x either, but any two parties among S1, S2, Sa and Sb can
collaborate to recover x. This procedure is called the replicated 2-
out-of-4 secret sharing (Li and Xu, 2019) and implemented as the
SecretSharing operation in our MPC protocol (Supplementary Table
S3). We use ½x� to mean that x is secret and exists in the form of se-
cret shares separately among S1, S2, Sa and Sb.

Second, we decompose the learning tasks into a sequence of basic
operations, such as addition, multiplication, comparison and div-
ision, and some non-linear functions such as sqrt and log. More
details about our task decomposition can be found in Sections 2.2
and 2.3 and Supplementary Notes 3 and 4. For each basic operation
in format of c ¼ a op b, we call the same operation over secret
shares ½c� ¼ ½a� op ½b� private operation (PO). Each party should
learn no information about input a and b when executing a PO. All
the basic POs are implemented using the protocols available in
PrivPy (Li and Xu, 2019), which require four parties. PrivPy claimed
that the protocols designed on four parties can achieve more effi-
ciency than those on three parties for many frequently used POs.
The four parties complete the tasks by conducting a sequence of POs
in order. Some POs can be executed in parallel to achieve better effi-
ciency. Since each party cannot learn the input, intermediate values
or final results from neither secret shares nor POs, the confidential-
ity of input is protected.

After completing all the POs, the four parties obtain secret shares
of the final result y. Since any two secret shares can recover the final
result, in the third phase, S1 and S2 send the secret shares of the final
results to the corresponding clients. Then each client can add up
these secret shares to obtain its final result. This procedure is formal-
ized as the Reveal operation in our MPC protocol (Supplementary
Table S3).

2.2 QSARMPC
In QSARMPC, each client Ci holds private data Di, including local
training data with chemical structure descriptors (Ma et al., 2015)
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as features and the corresponding bioactivities as labels, and local
test data with chemical structure descriptors without labels.
QSARMPC trains a neural network under PO protocols by fully
exploiting the training data from all the n clients to predict the
QSAR activities for the test data, while only revealing the predicted
activities to the corresponding clients (Fig. 1 and Supplementary
Algorithm S14).

The three phases of QSARMPC are described below. In the
beginning, the n clients execute secret sharing of their own
private data to the MPC parties S1 and S2. Then parties S1 and S2 ini-
tiate the replicated 2-out-of-4 secret sharing together with parties Sa

and Sb (Supplementary Algorithm S1 and lines 1–3 in Algorithm
S14).

Then training (Supplementary Algorithm S9–S11) and prediction
(Supplementary Algorithm S12) of the neural network model are
performed by the four MPC parties S1, S2, Sa and Sb through execut-
ing a series of fundamental POs. The neural network contains two
hidden layers (Supplementary Algorithm S13). The hyperpara-
meters, including the learning rate, the number of neurons and the
dropout rate (Srivastava et al., 2014) for each hidden layer, are

tuned by a random search procedure. Both hidden layers use the rec-
tified linear unit (ReLU) (Nair and Hinton, 2010) as the activation
function. The output layer only contains one neuron with a linear
function. We use the mean squared error as the loss function
(Supplementary Note). The training process is performed using
backpropagation (Rumelhart et al., 1986) in mini-batches with mo-
mentum (Sutskever et al., 2013). The number of training epochs is
set to 120 at most. In practice, early stopping is also used to remedy
the potential overfitting issue (Caruana et al., 2001). To avoid re-
vealing at which epoch the early stopping criteria are met, a secret
binary variable is used to help address this issue (Supplementary
Note). In our experiments, we trained eight neural networks and
averaged their predicted scores as the final results.

Finally, the obtained secret array ½YtestAll� for the predicted test
scores is split into secret submatrices ½Yð1Þtest�; ½Y

ð2Þ
test�; . . . ; ½YðnÞtest�

(Supplementary Algorithm S2 and line 11 in Supplementary
Algorithm S14), and then the secret submatrix ½YðkÞtest� is revealed to
client Ck (Supplementary Table S3 and lines 12 and 13 in Algorithm
S14). In this way, each client receives the predicted scores only for
its test dataset.

Fig. 1. The overview of QSARMPC and DTIMPC. For QSAR prediction, each client contains private training data with labels and its local test data without labels. For DTI

prediction, each client contains the drug fingerprints in bit vectors, drug–disease association matrix and drug–protein interaction matrix for its private drugs. The protein fea-

ture matrix is pre-computed publically outside the MPC scheme using the public data of proteins. In the beginning, the client computes the secret shares of its private data and

sends them to party S1 and party S2, separately, and then party S1 and party S2 initiate the replicated 2-out-of-4 secret sharing together with party Sa and party Sb (see the

SecretSharing operation in Supplementary Table S3). The algorithm on plaintexts is decomposed to a sequence of basic operations, such as addition, multiplication and com-

parison. These basic operations have corresponding private operation protocols over secret shares, which are performed based on the replicated 2-out-of-4 secret sharing

framework. The four parties complete the MPC algorithm by conducting a sequence of private operations in order. Note that the four parties only deal with secret shares and

cannot know any information about the private data from the clients. Finally, party S1 and party S2 send the secret shares of the prediction results to the corresponding clients,

and then each client adds up the secret shares and recovers the result for itself. DCA and IMC stand for DCA and IMC, respectively. More details can be found in the text
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2.3 DTIMPC
We extended our previous computational drug repositioning frame-
work DTINet (Luo et al., 2017) to predict novel DTIs from private
pharmaceutical data under the MPC protocol. We call the extended
MPC based version of DTINet DTIMPC (Fig. 1 and Supplementary
Algorithm S28). In this problem, each client Ci (i.e. a pharmaceut-
ical company) holds the following private information about the in-
tellectual property protected drugs: the fingerprints of individual
drugs (which are derived by RDKit (Landrum, 2013) locally in client
Ci from the corresponding chemical structures), drug–disease associ-
ations and the known drug–protein interaction profiles. The public
data P include the publically available target-related information,
including protein–disease associations and pairwise protein–protein
sequence similarity scores. After running the collaborative algorithm
DTIMPC, each client Ci will obtain the predicted new DTIs only for
its own drugs. More details about DTIMPC will be described below.

Except the public steps for computing the protein feature matrix
(Luo et al., 2017) (Supplementary Note), other parts of the
DTIMPC algorithm follow the three-phase MPC pipeline. Initially,
the n clients execute secret sharing of their private drug-related data
(including known drug–protein interactions, drug fingerprints and
drug–disease associations) to the MPC parties S1 and S2. Then par-
ties S1 and S2 initiate the replicated 2-out-of-4 secret sharing to-
gether with parties Sa and Sb (Supplementary Algorithm S1 and lines
3–5 in Algorithm S28). Then the privacy-preserving similarity com-
putation (Supplementary Algorithm S18 and S19), compact feature
learning on the drug features (Supplementary Algorithm S24) and
the inductive matrix completion (IMC) algorithm (Supplementary
Algorithm S27) are executed by the four MPC parties S1, S2, Sa and
Sb. We will give a brief explanation of these main functions in the
below.

The drug similarity based on drug–disease associations is com-
puted by a Jaccard similarity metric (Supplementary Eq. S3). The
drug structure similarity between two drugs with the fingerprint vec-
tors f1 and f2 of length q is calculated by the Dice similarity
(Landrum, 2013) (Supplementary Eq. S4). The pair-wise similarity
calculation can be paralleled by several matrix operations, which
are benefited from the efficient optimization of private matrix oper-
ations (Supplementary Algorithm S18 and S19).

After the privacy-preserving drug similarity computation, we ob-
tain two secret arrays, including drug similarity derived from drug–
disease associations and drug structure similarity. Then we conduct
the privacy-preserving diffusion component analysis (DCA) to find a
secret array for drug features (Supplementary Algorithm S24), which
contains two main steps as in the original DCA algorithm (Luo
et al., 2017; Tong et al., 2006; Wang et al., 2015). The first step is
to run PoRWR for a privacy-preserving random walk with restart
(RWR) (Supplementary Algorithm S20). After that, we obtain a se-
cret array for the concatenated pairwise relevance score matrix.
Next, we decompose this relevance score matrix. In DTIMPC, the
matrix eigenvalue decomposition in the plaintext DCA is replaced
by an iterative algorithm that can be easily extended to the MPC
framework (Supplementary Algorithm S23). Here, we use the power
method with Rayleigh quotient to find the most principal eigenvalue
and its corresponding eigenvector (Supplementary Algorithm S21),
which are then used to reduce the dimension of the current matrix
to prepare for the next principal eigenvalue (Parlett, 1998).

Next, the privacy-preserving IMC operation takes the secret
array for drug features, the public protein features and the secret
array for known DTIs as input data and outputs the secret array
[Iall] as the predicted DTI scores (Supplementary Algorithm S27 and
line 9 in Algorithm S28). In particular, we develop a privacy-
preserving version of the conjugate gradient iterative optimization
under square loss function (Natarajan and Dhillon, 2014; Yu et al.,
2014) to perform this task (Supplementary Algorithm S26).

Finally, the resulting secret array [Iall] is split into secret subma-
trices ½Ið1Þ�; ½Ið2Þ�; . . . ; ½IðnÞ� (Supplementary Algorithm S2 and line 10
in Algorithm S28), in which [I(k)] is revealed only to the correspond-
ing client Ck (Supplementary Table S3 and lines 11 and 12 in
Algorithm S28). After that, each client obtains the predicted DTI
scores only for its drugs.

3 Results

3.1 Datasets
For QSAR prediction, we use the 15 datasets provided by the Kaggle
competition (Ma et al., 2015) to evaluate our approach. Each data-
set is for a target or a type of ADME assay and is divided into train-
ing and test datasets. For DTI prediction, we use the drug-related
heterogeneous dataset, which was processed in our previous work
(Luo et al., 2017), including the drug–protein interaction network
obtained from DrugBank 3.0 (Knox et al., 2010), the drug–disease
association network and the protein–disease association network
derived from the Comparative Toxicogenomics Database (Davis
et al., 2013), and the protein sequence similarity matrix computed
according to the Smith–Waterman scores (Smith and Waterman,
1981). In addition, to incorporate the drug structure information,
we generate the fingerprint of each drug by looking up the corre-
sponding simplified molecular input line entry system (SMILES) in
the DrugBank database (Knox et al., 2010) and converting it into
the Morgan fingerprint in the form of a 1024-bit vector using the
RDKit Program (Landrum, 2013).

3.2 Comparison between public and MPC

collaborations
We examined whether our MPC collaboration protocol using pro-
tected private data will cause the loss of the prediction accuracy
when compared with the corresponding plaintext learning algo-
rithms under public collaboration using all shared information. We
first looked into the comparison between public collaboration and
MPC collaboration of using QSARMPC for predicting QSARs. We
used the squared Pearson correlation coefficient (R2) as the criterion
to evaluate the performance of different prediction strategies. When
all the QSAR training data were publically available, the R2 value
on test data of the 15 datasets was 0.425 on average for random for-
est with the same hyperparameters as in Ma et al. (2015).
QSARMPC achieved a better prediction performance, with an aver-
age R2 of 0.446 over the 15 datasets, which was the same as the cor-
responding plaintext neural network (Supplementary Table S4).

With respect to the DTI prediction from drug-related heteroge-
neous information, we used both the area under the precision-recall
curve (AUPR) and the area under the receiver operating characteris-
tic curve (AUROC) to evaluate the DTI prediction performance. To
simulate a realistic application scenario, we applied a 10-fold cross-
validation on DTIs with an imbalanced distribution of positive and
negative samples. In particular, we considered two test settings, one
with 1:10 positive and negative samples, and the other with all sam-
ples. Here, MPC collaboration did not use the drug-side-effect asso-
ciations or drug–drug interaction profiles, and the drug structure
similarities were calculated based on fingerprints. We found that
exploiting a larger feature space during the compact feature learning
process could further improve the performance of DTINet (Luo
et al., 2017). We called the improved version of DTINet DTINet*.
Furthermore, we found that integrating the five networks, including
drug–protein interactions, protein sequence similarities, drug struc-
ture similarities, drug–disease associations and protein-disease asso-
ciations, performed better than using other subsets of the eight
networks in DTINet*. DTIMPC with these five heterogeneous net-
works yielded nearly the same prediction performance as that of
public collaboration (i.e. DTINet* with the same five heterogeneous
networks), and achieved a higher AUPR score than DTINet reported
in our previous work (Luo et al., 2017) and DTINet* with original
data (Fig. 2 and Supplementary Fig. S1). To reduce the potential in-
fluence of similar drugs or homologous proteins on the performance,
we also did the following additional experiments: (i) remove
DTIs with similar drugs and proteins based on disease information
(Jaccard similarity � 0:6, Supplementary Fig. S2); (ii) remove DTIs
with homologous proteins (sequence similarity � 0:4, Supplemen-
tary Fig. S3); (iii) remove DTIs with similar drugs (structure similar-
ity � 0:6, Supplementary Fig. S4); and (iv) remove DTIs with both
homologous proteins and similar drugs (Supplementary Fig. S5). In
all these experiments, DTIMPC showed an improvement in AUPR
scores, which implied that our five heterogeneous networks were
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more relevant to DTI prediction and improved the performance, and
our approximation in the logarithmic operation and the iterative al-
gorithm for conducting the matrix eigenvalue decomposition under
MPC did not degrade the performance. In all the above DTI predic-
tion experiments, the hyperparameters were provided in
Supplementary Table S5, which were found using a grid search pro-
cedure. All the above results demonstrated that under the
QSARMPC and DTIMPC protocols, private pharmaceutical organi-
zations or institutions could achieve high-quality collaboration and
reach almost the same learning results as in the corresponding plain-
text prediction algorithms on the publicly shared data.

3.3 Comparison between DTIMPC and other DTI

prediction algorithms
We also compared the prediction performance between our
DTIMPC and another four DTI prediction baseline methods, includ-
ing three plaintext algorithms: BLMNII (Mei et al., 2013), HNM
(Wang et al., 2014) and NetLapRLS (Xia et al., 2010), and one
privacy-preserving method Secure DTI (Hie et al., 2018), through a
10-fold cross-validation procedure (Fig. 2 and Supplementary Fig.
S1). The hyperparameters in these three plaintext baseline algo-
rithms were tuned using the same grid search strategies as in our pre-
vious work (Wan et al., 2019). The cross-validation settings on all
pairs of DTIs for both 1:10 positive and negative samples and all
samples were considered. Our DTIMPC achieved a significant im-
provement in AUPR on such skewed DTI data (Fig. 2). As shown in
previous studies (Van Laarhoven et al., 2011), AUPR is a more suit-
able metric than AUROC for the DTI prediction problem, because
the DTIs with the higher AUPR scores predicted by an algorithm are
more likely to be correct. These comparison results demonstrated
the strong predictive power of our DTIMPC protocol.

3.4 Comparison between predictions using more data

with MPC collaboration and using private data owned

by a single institution
In an ideal secure collaboration scenario, samples from different
pharmaceutical institutions are pooled together to form a more in-
formative sample space and facilitate the training of better machine
learning models. To mimic such an application setting, we randomly
separated all available data into subsets and distributed them to in-
dividual institutions, which were then regarded as private data. For
QSAR prediction, suppose that there are nt instances in all available
training data. Then a single institution owns a random subset of
training data with bx � ntc instances, where x stands for a fraction
parameter within the range of (0, 1). We used the squared Pearson
correlation coefficient (denoted by R2) on the whole test dataset to

evaluate the performance of different prediction strategies. For the
case without MPC collaboration, every single institution ran a plain-
text neural network, in which the hyperparameters were calibrated
using the same random search strategy as in QSARMPC. We found
that among all 15 datasets, when fully exploiting all available train-
ing data under the MPC protocol, QSARMPC outperformed the
strategy of using only the private data from a single institution, espe-
cially for small x (Supplementary Fig. S6). This result demonstrated
that the privacy-preserving collaboration by QSARMPC gained bet-
ter performance than the prediction using only intra-institution pri-
vate data, since QSARMPC can exploit more data to train the
neural network in a secure manner.

For the DTI prediction or drug repositioning task, denote the
total number of instances (drugs) by nd. Suppose that a single insti-
tution owns a random subset of the currently available drug set with
bx � ndc instances, where x stands for a fraction parameter within (0,
1). When performing the drug repositioning task on the private data
owned by a single institution (i.e. without MPC collaboration), the
plaintext DTINet* algorithm (Luo et al., 2017) on the same five het-
erogeneous networks as in DTIMPC was used to make a prediction.
In this experiment, we ran 10-fold cross-validation on all pairs of
DTIs with 1:10 positive and negative samples and all samples. In
each fold, without MPC collaboration, every single institution only
took samples related to its own drugs as its individual small training
and test datasets. Here, the hyperparameters for the plaintext
DTINet* using five heterogeneous networks within a single institu-
tion were calibrated using grid search separately for different x val-
ues. In the DTIMPC framework, the whole training data under the
MPC protocol were used to train the model, while the same small
test dataset from the single institution was used to assess the predic-
tion performance. We looked into the average difference of the
AUROC or AUPR scores over 10-folds for different x values be-
tween predictions using only private data within an institution and
using all training data under MPC collaboration (Supplementary
Fig. S7). Our comparison showed that when using all training data
under MPC collaboration, DTIMPC can significantly outperform
the plaintext DTINet* algorithm with five heterogeneous networks
using only private data within a single institution, especially for
smaller x values (Supplementary Fig. S7). All these results indicated
that DTIMPC could fully take advantage of all existing drug data
among different pharmaceutical organizations or institutions with-
out divulging the private intellectual property information and thus
provide a better choice to achieve all-win results.

3.5 Novel DTIs predicted by DTIMPC
We predicted novel DTIs by DTIMPC based on the training over all
pairs of known DTIs. We selected those novel predictions whose

(a) (b)

Fig. 2. Performance comparison according to AUPR between DTIMPC and other baseline methods. DTINet was the original DTINet algorithm proposed in our previous

work (Luo et al., 2017). DTINet* was an improved version of the DTINet algorithm by exploiting a larger feature space during the compact feature learning process.

DTINet* with five networks (i.e. public collaboration) used the same five heterogeneous networks as in DTIMPC. The performance of Secure DTI was from the literature (Hie

et al., 2018). Among all the eight algorithms, only DTIMPC and Secure DTI are privacy-preserving. The experiments were performed in 10-fold cross-validation on all pairs of

DTIs with (a) 1:10 positive and negative samples and (b) all samples. The results are shown as mean 6 standard deviation of 10 trials
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scores were significantly high among all the drugs and the proteins
(using the three-sigma rule), and also excluded those easy predic-
tions which were similar to any known DTIs in the training data
(i.e. with drug structure similarity larger than 0.6 and protein se-
quence similarity larger than 0.4). Among the top 20 novel DTIs
predicted by DTIMPC, many can be supported by the known evi-
dence in the literature (Table 1). For instance, aripiprazole and
ziprasidone are known to have high affinities for 5-hydroxytrypt-
amine receptor 2B (HTR2B) (Shahid et al., 2009) and our prediction
result was consistent with this evidence. In addition, DTIMPC pre-
dicted that sorafenib can act on the vascular endothelial growth fac-
tor receptor 1 (FLT1), which plays an important role in the
regulation of angiogenesis (UniProt Consortium, 2018). This predic-
tion can be supported by the previous known evidence that sorafe-
nib inhibits FLT1 (Kitagawa et al., 2013). All these results indicated
that the novel DTIs predicted by DTIMPC can provide useful clues
for repositioning existing drugs and finding their new indications.

3.6 Scalability
Scalability has been an essential practical issue in the MPC protocol.
Here, we examined the scalability of both QSARMPC and DTIMPC
with respect to the sizes of training data. For QSARMPC, we tested
the influence of both the number of training instances and the di-
mension of features on the training time (Fig. 3a and b). In our tests,
when the number of training instances is no more than the batch
size, the training process is conducted in a full-batch manner; other-
wise, it is performed in a mini-batch scheme. To analyze the influ-
ence of the number of training instances on scalability, we examined
the running time of one training epoch with respect to different
numbers of training batches per epoch. For different dimensions of
features, we investigated the running time of training a batch in one
iteration. Our tests showed that the training time of QSARMPC dis-
played a linear trend with respect to both the number of training
instances and the dimension of the encoded features in training data
(Fig. 3a and b).

For DTIMPC, we simulated various datasets with different num-
bers of drugs and recorded the corresponding running time. Our test
results showed that the running time of DTIMPC was almost linear-
ly proportional to the number of drugs in the current scale tested,
which thus demonstrated its feasible scalability in practice (Fig. 3c).
We also investigated how the communication costs of the three
main functions in DTIMPC scale with the number of drugs
(Supplementary Fig. S8). The communication costs for the privacy-
preserving pairwise drug–drug similarity computation and the
privacy-preserving DCA both showed quadratic trends in the num-
ber of drugs. In contrast, the communication cost for the privacy-
preserving IMC was linear to the number of drugs. On the other
hand, in the current scale tested, the communication cost for IMC
was higher than those for similarity computation and DCA, because
of the large number of iterative updates in IMC. Our DTIMPC algo-
rithm using the whole dataset processed in our previous work (Luo
et al., 2017) cost 1.51 h in a local area network (LAN) setting with
17.38 gigabytes communication at each of the four parties. The run-
ning time of the non-private methods, DTINet and DTINet*, was
around 18 s and 34 s, respectively. These results showed that our
DTIMPC algorithm protected the privacy of highly sensitive drug-
related data at an acceptable extra time cost.

3.7 Hyperparameter calibration
We evaluated the robustness of the corresponding plaintext algo-
rithms of QSARMPC and DTIMPC against different choices of
hyperparameters to find out which hyperparameters need to be
tuned in the MPC setting. In practice, the clients can test the per-
formance of the corresponding plaintext algorithms of QSARMPC
and DTIMPC using their local data and 10-fold cross-validation
with different random seeds to determine which hyperparameters in-
fluence the accuracy little and thus can be preset, and which hyper-
parameters affect the accuracy a lot and need to be further tuned in
the MPC setting. In consideration of the time complexity of the
MPC algorithms, hyperparameter tuning under MPC should be per-
formed using an independent held-out dataset, instead of 10-fold
cross-validation with different random seeds. For the corresponding
plaintext algorithm of QSARMPC, we tested performance in terms
of the squared Pearson correlation coefficient with different choices
of hyperparameters: the number of neurons for the two hidden
layers (Supplementary Fig. S9a), the dropout rate for the two hidden
layers (Supplementary Fig. S9b) and the learning rate
(Supplementary Fig. S10). We observed that the corresponding
plaintext algorithm of QSARMPC gained stable results with mul-
tiple choices of the number of neurons and the dropout rate for the
hidden layers. More importantly, we observed that the training was
underfitting within the maximum number of epochs when the learn-
ing rate was too small (Supplementary Fig. S10). Thus, the number
of neurons and the dropout rate for the hidden layers can be preset,
and all the clients can negotiate the preset values. A suitable range
of the learning rate can be suggested by the clients using their local
data and the optimal values can be finally determined using a grid
search over only several values under MPC. Note that the time com-
plexity of running QSARMPC with different learning rates is the
same. Therefore, suppose that the running time of QSARMPC is s,
then the time for hyperparameter tuning using a grid search with r
values of learning rate would be sr.

For the corresponding plaintext algorithm of DTIMPC, we
tested its performance in terms of both AUPR and AUROC with dif-
ferent choices of hyperparameters, including the restart probability
of RWR pr (Supplementary Fig. S11), the number of expansion
terms of Taylor series in the logarithmic operation tg
(Supplementary Fig. S12), the number of power method iterations tp
(Supplementary Fig. S13), the dimensions of drug features fd and
protein features fp (Supplementary Fig. S14), the number of IMC
iterations t (Supplementary Fig. S15), the latent rank of IMC k
(Supplementary Fig. S16), the regularization parameter of IMC k
(Supplementary Fig. S17) and the number of iterations in updating
decomposed low-rank matrices in IMC tc (Supplementary Fig. S18).
Note that, because AUPR of unbalanced test datasets can better re-
flect the predictive power in the DTI prediction problems than
AUROC (Van Laarhoven et al., 2011), we mainly considered the
performance in terms of AUPR on all pairs of DTIs with (i) 1:10
positive and negative samples and (ii) all samples. We observed that
the corresponding plaintext algorithm of DTIMPC produced stable
results over a wide range of hyperparameter settings. In practice,
only coarsely tuning the dimensions of drug and protein features,
the latent rank of IMC and the number of iterations in updating
decomposed low-rank matrices is sufficient enough to achieve excel-
lent prediction performance (Supplementary Figs S11–S18). The
hyperparameters, except these four, can be preset, and all the clients
can negotiate the preset values. Also, the corresponding plaintext

Table 1. Among the top 20 predictions by DTIMPC, eight novel DTIs have supporting evidence from the literature

Drug Protein Supporting literature

Sorafenib FLT1 Sorafenib inhibits FLT1 (Kitagawa et al., 2013)

Sorafenib CSF1R Sorafenib blocks CSF1R (Ullrich et al., 2011)

Olanzapine and risperidone HTR2B Olanzapine and risperidone block HTR2B (Shahid et al., 2009)

Risperidone HTR7 Risperidone blocks HTR7 (Shahid et al., 2009)

Aripiprazole and ziprasidone HTR2B Aripiprazole and ziprasidone show high affinities for HTR2B (Shahid et al., 2009)

Haloperidol DRD4 Haloperidol has high affinity for dopamine receptor subtype D4 (Bymaster et al., 1996)

Secure multiparty computation for privacy-preserving drug discovery 2877

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/9/2872/5709032 by Tsinghua U
niversity user on 01 Septem

ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa038#supplementary-data


algorithm of DTIMPC showed good stable performance when these
four hyperparameters are large enough. Thus, presetting these four
hyperparameters to reasonably large values is also acceptable. If the
clients want to further perform hyperparameter tuning to verify
whether these four hyperparameters are large enough, a grid search
with several values under MPC is also acceptable. Suitable ranges of
these four hyperparameters can be suggested by the clients using
their local data in 10-fold cross-validation and the optimal values
can be finally determined using a grid search over only several values
through holdout validation under MPC. Hyperparameter tuning
under MPC should be decomposed into four phases. In each phase,
only one hyperparameter is tuned. Tuning one hyperparameter with
r values would only take r additional times of running the DTIMPC
algorithm under MPC.

4 Discussion

Our MPC algorithms achieve privacy-preserving computation based
on the assumption that the parties are semi-honest. The clients can
be malicious in terms of conspiracy since they are not involved in
the four-party computation process. The clients only send the secret
shares of their private data to the four parties and wait to receive the
secret shares of the final results after the four parties completing the
whole algorithms over four-party computation. We conceive that
government agencies, cloud service platforms and research institu-
tions can act as this role. Nevertheless, in real-world scenarios, it
may be challenging to find such semi-honest parties. However, we
can make our protocols achieve stronger security guarantees using
Intel’s Software Guard Extensions (SGX) (Schunter, 2016). Previous
work has demonstrated a feasible solution for secure computation
over biometric data based on SGX (Chen et al., 2016). When our
MPC protocols run in SGX, SGX can enforce all the four parties to
follow the prescribed steps and prevent them from touching the
intermediate results. Any party cannot be semi-honest or malicious
unless it can break SGX. Even if one party is able to steal data from
SGX, it can obtain no more information than secret shares.
Therefore, SGX can reinforce security effectively.

On the one hand, entities such as pharmaceutical institutions
generally aim to protect the confidentiality of drug-related intellec-
tual property information. On the other hand, they expect to achieve
better performance through cooperation than learning by their local
data alone. Even for directly competing companies, the goal for
achieving better performance makes collaboration more rational,
because counterfeit data mixed by a malicious participant could also
reduce the performance of the malicious participant itself. For
QSAR prediction, a reasonable constraint for cooperation is that the
size of the individual test dataset for each client has an upper limit.

These upper limits can be determined by the size of the local training
dataset owned by each client. A malicious client may add fake train-
ing data to obtain a higher upper limit of involved data or mislead
other clients. But once the counterfeit data reduce the effectiveness
of collaboration, the prediction scores for the malicious client’s data
would also lose the value of references. For DTI prediction, note
that at the revealing phase of DTIMPC, each client can only recover
the predicted DTI scores for its local drugs. If a client provides fake
input data to mislead other clients, this client would also obtain bad
results. Even though there is some client who aims to mislead com-
petitors, honest clients can evaluate the performance of MPC collab-
oration by their results. For QSAR prediction, we could consider
additional metrics (i.e. the squared Pearson correlation coefficient
and the mean squared loss) on a reserved validation dataset and cor-
responding local training data during training to each client. In this
way, honest clients can decide whether to trust the collaboration
results. For DTI prediction, reliable clients can compare the results
to the corresponding input known DTI profiles and have some idea
of how the collaboration algorithm performs for ground-truth
positives.

Federated learning algorithms are another kind of approaches
for multiple participants to collaboratively perform learning while
preventing their input data from being public. For instance, in
privacy-preserving deep learning (Shokri and Shmatikov, 2015), a
federated learning method, each participant trains a local neural net-
work model by uploading/downloading a fraction of parameters to/
from a global parameter center during the training process.
However, the follow-up designed generative adversarial network
(GAN) attack (Hitaj et al., 2017) may act as a warning for using
such collaborative learning for privacy-preserving purposes. In the
GAN attack, a malicious participant can reconstruct the training
data of a given label, by training a GAN simultaneously with the
collaborative model, setting a specific misleading label to these fake
data generated by the GAN in each epoch, and pretending that these
counterfeit data with specific misleading labels are local training
data. Note that our MPC algorithms naturally defend against this
GAN attack, since the participants select their training data at once
and cannot dynamically affect the learning process.

Which kind of results can be revealed to the participants is an
important question to consider. For QSAR prediction, in consider-
ation of the model inversion attacks (Fredrikson et al., 2015), e.g.
reconstruction attack, the trained model must not be revealed. In the
model inversion attacks, the adversary designs the next data to be
queried based on the prediction results of the previously queried
data. Since our MPC algorithms limit each participant to perform a
one-off selection of their local testing data and the size of testing
data always has an upper limit, the predictions of dynamically
designed test data are not available to the adversary. Thus, such

(a) (b) (c)

Fig. 3. Scalability of QSARMPC and DTIMPC. (a) Running time (in seconds) of training the neural network in QSARMPC in one epoch with different numbers of instances

(in which the batch size was fixed as 128). The legend represents the different datasets. We used for three datasets as an example from the 15 datasets provided by the Kaggle

competition (Ma et al., 2015). The dimensions of input features were 4505, 4306 and 5877 for datasets METAB, HIVINT and CB1, respectively. (b) Running time (in seconds)

of training a batch in QSARMPC in one iteration with different dimensions of features. We simulated datasets with different dimensions of features by subsampling the fea-

tures of the original CB1 dataset. (c) Running time (in seconds) of DTIMPC with different numbers of instances (i.e. drugs). We used the simulated data for different numbers

of drugs by subsampling the drugs from the original datasets processed in our previous work (Luo et al., 2017). The running time of DTIMPC (with the legend ‘Total’) consists

of the time for three steps, namely, the privacy-preserving pairwise drug–drug similarity computation based on the drug fingerprints and the drug–disease associations (with

the legend ‘Similarity computation’), the privacy-preserving DCA (with the legend ‘DCA’) and the privacy-preserving IMC (with the legend ‘IMC’). The restart probability of

the RWR pr was fixed as 0.5, the number of expansion terms of Taylor series in the logarithmic operation was fixed as 100, the number of the power method iterations was

fixed as 10, the dimension of drug features was fixed as 100, the dimension of protein features was fixed as 400, the number of the IMC iterations was fixed as 5, the latent

rank of IMC was fixed as 50 and the number of iterations in updating the decomposed low-rank matrices in IMC was fixed as 200
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model inversion attacks do not damage the privacy-preserving prop-
erty of our MPC algorithms. For DTI prediction, each participant
only receives the predicted DTI scores for its local drugs. Revealing
only the order of proteins with the top DTI scores instead of all pre-
diction scores can further control information leakage. In this way,
the participants cannot infer private data of others from the pre-
dicted DTI scores.

We suggest computing in plaintexts for insensitive information
such as protein-related data, since it is unnecessary to protect the
confidentiality of that information at the cost of more time and
computing resources. For DTI prediction, we assume that the drug-
related information is private, while the protein-related heteroge-
neous networks (not related to drugs) are public. This scenario is
reasonable for real-world collaboration among pharmaceutical insti-
tutions because of the high cost to obtain drug-related data (espe-
cially the chemical structures of drugs) and the availability of
protein-related information.

Our MPC protocols mainly use secret sharing schemes (Shamir,
1979) and combine garbled circuits (Yao, 1982) for efficient private
comparison operations (Li and Xu, 2019). Because pure garbled cir-
cuit schemes as used in Jagadeesh et al. (2017) are not suitable for
the DTINet algorithm (Luo et al., 2017) or the neural network mod-
els, which are difficult to be implemented through low-depth paral-
lel computation. Probably due to this reason, secure GWAS (Cho
et al., 2018) and Secure DTI (Hie et al., 2018) also use secret sharing
as primary schemes.

On the other hand, unlike secure GWAS (Cho et al., 2018) or
Secure DTI (Hie et al., 2018) using three-party computation, our
algorithms adopted PrivPy, a four-party computation framework (Li
and Xu, 2019), because of the high efficiency of machine learning
tasks under MPC using PrivPy, which was mainly benefited from
the replicated 2-out-of-4 secret sharing, the corresponding well-
designed fixed-point multiplication protocols and the elegant opti-
mization for batch up and matrix multiplication (Li and Xu, 2019).
Notably, the fixed-point multiplication in the four-party computa-
tion framework of PrivPy requires only one round communication
without precomputation and each party sends only two messages,
which is faster than ABY3 (Mohassel and Rindal, 2018), the state-
of-the-art three-party computation framework for arithmetics.

Compared with Secure DTI (Hie et al., 2018), an MPC version
of a neural network to perform DTI prediction or large-scale com-
pound–protein interaction prediction, our DTIMPC inherits the
same spirit of our original DTINet algorithm (Luo et al., 2017),
which can thus take full advantage of the drug-related heteroge-
neous networks to achieve privacy-preserving drug repositioning,
and gain a much higher AUPR score than Secure DTI (Hie et al.,
2018) (Fig. 2). On the other hand, the STITCH dataset (Szklarczyk
et al., 2016) used in Secure DTI (Hie et al., 2018) consists of
265 080 chemicals. Inherited from the plaintext DTINet algorithm
(Luo et al., 2017), our DTIMPC algorithm also includes a step to
calculate pairwise drug–drug similarities based on heterogeneous
drug-related networks and a step to perform DCA (Wang et al.,
2015) for drugs. Both steps require quadratic communication costs
in the number of drugs (Supplementary Fig. S8) and thus are not
feasible for datasets with drugs in such a large scale. In light of this,
the current version of our DTIMPC algorithm is not suitable to run
on the STITCH dataset. How to improve our algorithm to be feas-
ible for such large datasets will be one future direction of our work.

The main difficulties in employing MPC in drug discovery can be
summarized as follows: (i) to convince pharmaceutical institutions
that collaboration can lead to better performance; (ii) to convince
pharmaceutical institutions that collaboration can be completed
without divulging their private and sensitive information; (iii) to im-
plement the algorithms under MPC in an acceptable time complex-
ity; and (iv) to be convenient for data scientists without
cryptographic background to modify the source codes for algorith-
mic adjustment and improvement. Our work has made great efforts
to resolve these difficulties: (i) We designed the single-institution
experiments to mimic the predictions using only private data and
showed that collaboration using MPC can greatly improve the pre-
diction performance. (ii) We implemented the MPC algorithms

using the four-party computation framework PrivPy (Li and Xu,
2019), and carefully designed which kinds of results need to be
revealed to the clients. (iii) We fully took advantage of high compu-
tational efficiency embedded in PrivPy (Li and Xu, 2019). (iv) We
fully exploited the friendly programming interface in PrivPy (Li and
Xu, 2019) to design the privacy preserving algorithms for drug dis-
covery. PrivPy (Li and Xu, 2019) provides a friendly Python front-
end for developing a learning algorithm under MPC. It has automat-
ic code rewriting to fit the algorithms more efficient under the MPC
setting. Data scientists can write a machine learning algorithm under
the MPC setting as easily as writing a plaintext version without
much pain.

In this work, we convert our original DTINet algorithm and the
neural network model to the MPC version and achieve privacy-
preserving QSAR and DTI prediction. Based on the PrivPy frame-
work (Li and Xu, 2019), other machine learning models can also be
easily extended to a high-quality and efficient MPC version with
minimal effort. Thus, our work provides a good example to demon-
strate that secure MPC can be effectively used to advance privacy-
preserving drug discovery.
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