
Modeling Heterogeneous Statistical Patterns In High-dimensional Data 
By Adversarial Distributions: An Unsupervised Generative Framework

Fig 1. Heterogeneous patterns of
high-dimensional data. Left: data
projected to 2D planes. Right:
data in the 3D space.

Motivation

l The intrinsic clusters in high-dimensional data may display
heterogeneous statistical patterns.

l Specifically, different clusters display clustering patterns w.r.t.
different features.

l For example, different fraud groups may share the IP address,
phone number, ID card number etc.

FIRD: a generative framework

l Feature Independent assumption: within each data cluster,
the features are independent with each other.

l AdveRsarial Distributions: for each feature within a cluster, a
pair of distribution compete with each other for generating the
observations.
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Fig 2. Example of
discrete adversarial
distributions. The
sparse distribution
models the fraud, and
the random part
models normal user.

Sparse distribution
Nearly random distribution
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Fig 3. The plate representation of 
FIRD in discrete space. The 
parameter π is the mixture weight. μ 
balances the adversarial distribution
pairs. The synchronization and 
randomness are captured by the 
adversarial distribution pairs, whose 
parameters are α and β, respectively.

l The generation process for an observation 𝑥!:
1. Choose cluster 𝑑!~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜋)
2. For each feature ℱ":

a) Choose the indicator variable 𝑓!"~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇#!" ;
b) If 𝑓!" = 1, choose 𝑥!"~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜶#!");
c) If 𝑓!" = 0, choose 𝑥!"~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜷#!");

l The objective function (log-likelihood):

Promote Sparsity Promote Randomness

Results

l We evaluate FIRD on 3 types of datasets:
1. E-commerce platform registration dataset;
2. anomaly detection benchmark dataset;
3. synthetic datasets according to FIRD’s generation process.

l We show that FIRD is able to:
1. detect fraud groups much better than comparison methods;
2. work as a general anomaly detection method;
3. provide significant performance with low time cost.
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