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A Bose-Hubbard model on a dynamical lattice was introduced in previous work as a spin system
analogue of emergent geometry and gravity. Graphs with regions of high connectivity in the lattice
were identified as candidate analogues of spacetime geometries that contain trapped surfaces. We
carry out a detailed study of these systems and show explicitly that the highly connected subgraphs
trap matter. We do this by solving the model in the limit of no back-reaction of the matter on
the lattice, and for states with certain symmetries that are natural for our problem. We find that
in this case the problem reduces to a one-dimensional Hubbard model on a lattice with variable
vertex degree and multiple edges between the same two vertices. In addition, we obtain a (discrete)
differential equation for the evolution of the probability density of particles which is closed in the
classical regime. This is a wave equation in which the vertex degree is related to the local speed
of propagation of probability. This allows an interpretation of the probability density of particles
similar to that in analogue gravity systems: matter inside this analogue system sees a curved space-
time. We verify our analytic results by numerical simulations. Finally, we analyze the dependence
of localization on a gradual, rather than abrupt, fall-off of the vertex degree on the boundary of the
highly connected region and find that matter is localized in and around that region.

PACS numbers: 04.60.Pp , 04.60.-m

I. INTRODUCTION

Since the discovery of the Hawking and Unruh effects
it has been clear that gravity is fundamentally different
from the other forces. That a new thermodynamics has
to be associated to black hole physics is a remarkable
puzzle which physicists are slowly unveiling. In the last
two decades, the possibility that gravity itself may have a
thermodynamical origin has been explored from a variety
of angles [1–4]. A closely related idea is that gravity may
be emergent, either the thermodynamics of a microscopic
(quantum) theory [5–7], or emergent in the condensed
matter sense [8–11].

Motivated by the possibility that gravity may be emer-
gent and the questions this raises, quantum graphity was
introduced in [12, 13] as a method to study the emergence
of geometry and gravity in the simplified but explicit and
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tractable setting of a spin system. Graphity models are
systems of quantum, dynamical graphs where the spin
degrees of freedom correspond to dynamical adjacency:
the edges of the graphs can be on (connected), off (dis-
connected), or in a superposition of on and off. By inter-
preting the graph as pre-geometry (the connectivity of
the graph tells us who is neighboring whom), this pro-
vides a way to treat pre-geometry as a spin system. A
particular graphity model is given by such graph states
evolving under a local Ising-type Hamiltonian. The goal
is to investigate whether such a local dynamics can lead
to the system exhibiting aspects of gravity in the ther-
modynamical limit. In previous work we were able to
derive features such as a variable speed of light from a
non-geometric quantum system; we studied the quantum
dynamics in a spin system as a precursor to a quantum
theory of gravity ; we showed entanglement and thermal-
ization between geometry and matter; and found that
certain states appear to behave like geometries contain-
ing trapped surfaces.

These models can also be viewed as analogue mod-
els for gravity. In the analogue gravity program vari-
ous phenomena of general relativity (e.g., black holes or
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cosmological geometries) are modeled by other physical
systems, such as acoustics in a moving fluid, superfluid
helium, or Bose-Einstein condensate; gravity waves in
water; and propagation of electromagnetic waves in a di-
electric medium [3]. The fluid analogues provide a very
interesting concrete setting in which to study emergent
gravitational properties, but leave open several impor-
tant questions: 1) What is the role of the background
fluid? 2) Can we go beyond analogues of kinematical
only aspects of general relativity? 3) Lorentzian geom-
etry: in analogue gravity systems, Lorentzian geometry
“emerges” in the sense that it is the geometry seen by
excitations inside the fluid (phonons). What happens
if there is no background fluid, and can this work in a
quantum system?

Alternative analogue models, including ours, may at-
tempt to answer some of these. For example, in our
model there is no background fluid. There is, however,
a background time in the Hamiltonian. Interestingly, as
we will show in this paper, matter in our model sees an
effective Lorentzian geometry, a phenomenon that can be
traced to the locality of the Hamiltonian.

In this article, we gain substantial insight into the
model of [13] by studying two important questions: we
explicitly confirm the argument of [13] that highly con-
nected regions in the graph trap matter, and we relate
the evolution of matter under a Hubbard Hamiltonian on
these lattices to a wave equation on a curved geometry.
We achieve this by restricting the model to a large class
of states relevant for these questions. These are states
in which the graph has certain symmetries (although the
vertex connectivity and the number of edges linking two
vertices can vary) and states of matter that respect these
symmetries.

We find that the Bose-Hubbard Hamiltonian with ho-
mogeneous couplings on a lattice with varying vertex
degree is equivalent to a Bose-Hubbard Hamiltonian on
a regular-degree graph but with site-dependent effective
couplings (similar to the behavior seen in [14]). This
makes it possible to connect the coefficients in the Hamil-
tonian to geometric properties of the graph. The picture
which emerges from this analysis is the one of Fig. 1:
the graph modifies the strength of the interaction in the
Bose-Hubbard Hamiltonian, and this appears as a curved
geometry to the propagating matter.

It is important to note that the emergent curved space
is a dynamical property of the system. The geometry that
the particles propagating on the graph see depends on the
dynamics of the particles and it is not just a property of
the graph, and, in addition, the resulting motion of the
particles will change the graph and so affect the geometry.

The structure of the paper is as follows. In Section
II we review the model introduced in [13] and state the
approximations we will use. This amounts to a Hub-
bard model on a fixed but unusual lattice. In Section III,
we define foliated and rotationally invariant graphs, the
symmetric graph states we will consider, and delocalized
states, our similarly symmetric matter states. In Section

FIG. 1. The scheme representing the relations between the
graph, the hopping energies fi,j of the Bose-Hubbard model
and the emergent metric: the graph modifies the strength of
the interaction in the Bose-Hubbard Hamiltonian, which in
turn translates into a curved geometry (for the appropriate
states).

IV, we study the states that were previously identified
as possible trapped surfaces and confirm this property.
These states have the symmetries defined in the previ-
ous Section. In the single particle sector we can diag-
onalize the Hamiltonian on the subspace of rotationally
invariant states and show that the ground state belongs
to that subspace. We then show that this ground state
is protected by a gap which increases linearly with the
size of the completely connected subgraph, so when that
size is large, this area acts as a trap for matter. In the
many-particle sector, we find that the ground state is a
Bose-Einstein condensate of delocalized particles at the
completely connected region, again with a large gap. We
confirm these results numerically. In Section V, we re-
late the one-dimensional Bose-Hubbard model with site-
dependent coefficients to the wave equation in curved
space for the particle probability on the lattice. In sec-
tion VI, we study numerically matter localization as a
function of a fall-off parameter of vertex degree on the
boundary of the highly connected region. We find that
the particles are localized inside the trapped surface as
before, but also on a small region around it. Conclusions
follow.

II. THE MODEL

In this section we will introduce the model, starting
with the basic idea of describing a dynamical lattice using
quantum degrees of freedom on the edges of a complete
graph.

We start with a quantum mechanical description of
a universe of Nv elementary systems, given by the set

{Hi, Ĥi} of the Hilbert spaces Hi and Hamiltonians Ĥi of
the systems i = 1, ..., N . This presumes it makes sense to
talk of the time evolution of an observable with support
on Hi without any reference to a spatial coordinate for
i.

We choose Hi to be the Hilbert space of a harmonic
oscillator. We denote its creation and destruction op-

erators by b†i and bi respectively, satisfying the usual
bosonic commutators. Our Nv physical systems then are
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Nv bosonic modes and the total Hilbert space of such
modes is given by

Hbosons =

Nv⊗
i=1

Hi. (1)

If the harmonic oscillators are not interacting, the total
Hamiltonian is trivial:

Ĥv =

Nv∑
i=1

Ĥi = −
Nv∑
i=1

µb†i bi. (2)

If, instead, the harmonic oscillators are interacting, we
need to specify who is interacting with whom. Let us
call I the set of the pairs of oscillators e ≡ (i, j) that are
interacting. Then the Hamiltonian reads as

Ĥ =
∑
i

Ĥi +
∑
e∈I

ĥe, (3)

where ĥe is a Hermitian operator on Hi⊗Hj representing
the interaction between the system i and the system j.

Spacetime geometry determines the set of relations
among physical systems, namely, interactions are only
possible between neighbors. In a discrete setup, we can
introduce a primitive notion of spacetime geometry via
the adjacency matrix A, the Nv ×Nv symmetric matrix
defined as

Aij =

{
1 if i and j are adjacent
0 otherwise.

(4)

A defines a graph on Nv nodes, with an edge between
nodes i and j for every 1 entry in the matrix. Now note
that all possible graphs on Nv vertices are subgraphs of
KN , the complete graph on Nv vertices (with adjacency
matrix Aij = 1 for every i, j). In our model, the Nv(Nv−
1)/2 edges of KN correspond to (unordered) pairs e ≡
(i, j) of harmonic oscillators. To every such pair e (an
edge of KN ) we associate a Hilbert space He ' C2 of a
spin 1/2. The total Hilbert space for the graph edges is
then

Hgraph =

Nv(Nv−1)/2⊗
e=1

He. (5)

The basis in Hgraph is chosen so that to every subgraph
G of KN corresponds a basis element in Hgraph: the
basis element |e1 . . . eNv(Nv−1)/2〉 ≡ |G〉 corresponds to
the graph G that has an edge es present for every es = 1.
For every edge (i, j), the corresponding SU(2) generators
will be denoted as Si = 1/2σi where σi are the Pauli
matrices.

The total Hilbert space of the theory is

H = Hbosons ⊗Hgraph, (6)

and therefore a basis state in H has the form

|Ψ〉 ≡ |Ψ(bosons)〉 ⊗ |Ψ(graph)〉 (7)

≡ |n1, ..., nNv 〉 ⊗ |e1, ..., eNv(Nv−1)
2

〉. (8)

The first factor tells us how many bosons there are at
every site i. The second factor tells us which pairs (i, j)
interact, that is, the structure of interactions is now pro-
moted to a quantum degree of freedom. Unlike the model
presented in [13] where hard core bosons were considered,
the interaction among the bosons in the present paper is

an on-site potential described by ub†i bi(b
†
i bi− 1)/2 where

u is the interaction energy between two particles.
In general, a quantum state in the full model describes

a system in a generic superposition of energies of the har-
monic oscillators, and of interaction terms among them.
A state can be a quantum superposition of “interactions”.
For instance, consider the systems i and j in the state

|φij〉 =
|10〉 ⊗ |1〉ij + |10〉 ⊗ |0〉ij√

2
. (9)

This state describes the system in which there is a parti-
cle in i and no particle in j, and a superposition of link
and no link between i and j.

A simple but interesting matter interaction term is the
one that describes the physical process in which a quan-
tum in the oscillator i is destroyed and one in the os-
cillator j is created. This dynamical process is possible
when there is an edge between i and j. Such dynamics
is described by a Hamiltonian of the form

Ĥhop = −Ehop

∑
(i,j)

P̂ij ⊗ (b†i bj + bib
†
j), (10)

where

P̂ij ≡ Ŝ+
(i,j)Ŝ

−
(i,j) = |1〉〈1|(i,j) =

(
1

2
− Ŝz

)
(i,j)

(11)

is the projector on the state such that the edge (i, j) is

present and the spin operators are defined as Ŝ+
(i,j) =

|1〉〈0|(i,j) and Ŝ−(i,j) = |0〉〈1|(i,j). With this Hamiltonian,

the state defined in Eq.(9) can be interpreted as the quan-
tum superposition of a particle that may hop or not from
one site to another.

It is possible to design such systems in the laboratory.
For instance, one can use arrays of Josephson junctions
whose interaction is mediated by a quantum dot with two
levels.

We note that it is the dynamics of the particles de-

scribed by Ĥhop that gives to the degree of freedom |e〉
the meaning of geometry. The geometry at a given in-
stance is given by the set of relations describing the dy-
namical potentiality for hopping. Two vertices j, k can
be “empty”, that is, the oscillators j, k are in the ground
state, but they can still serve to allow a particle to hop
from i to j, then to k, then to l. We read out the structure
of the graph from the interactions, not from the mutual
positions of particles.

In addition, Ĥhop tells us that it takes a finite amount
of time to go from i to j. For instance, in a one-
dimensional graph (a chain) it takes a finite amount of
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FIG. 2. Diagramatic representation of the exchange and hop-
ping terms of the model. The exchange term destroys a link
and creates two particles on the vertices of that link; the par-
ticles hop; two particles can combine to form a new link.

time for a particle to go from one end of the chain to
another (modulo exponential decaying terms). As shown
in [15], this results in a “spacetime” picture with a finite
light-cone structure.

The hopping amplitude is given by t, and therefore all
the bosons have the same speed. Note that, for a larger
Hilbert space on the links, we can have different speeds
for the bosons.

Of course, we need a Hamiltonian also for the spatial
degrees of freedom alone. The simplest choice is to assign
an energy to every edge:

Ĥlink = −U
∑
(i,j)

σz(i,j). (12)

Finally, a central motivation for the model [13] was to
have space and matter interact unitarily. The term

Ĥex = k
∑
(i,j)

(
Ŝ−(i,j) ⊗ (b†i b

†
j)
Q + Ŝ+

(i,j) ⊗ (bibj)
Q
)
, (13)

introduced in [13], destroys an edge (i, j) and creates Q
quanta at i and Q quanta at j, or, vice-versa, destroys Q
quanta at i and Q quanta at j to convert them into an
edge (see Fig. 2).

As mentioned above, the long-term ambition of these
models is to find a quantum Hamiltonian that is a
spin system analogue of gravity. In this spirit, matter-
geometry interaction is desirable as it is a central feature
of general relativity. The above dynamics can be consid-
ered as a very simple first step in that direction.

This was the final step that brings us to the total
Hamiltonian of the model which is

Ĥ = Ĥlink + Ĥv + Ĥex + Ĥhop. (14)

This is the original model proposed in [13]. It is a Bose-
Hubbard model on a dynamical lattice, where the pro-
jector on the modified hopping term means that the dy-
namics gives the lattice the meaning of space: space is
where matter is allowed to go.

In the present work, we study the model for a par-
ticular class of graphs that have been conjectured to be
analogues of trapped surfaces. We are interested in the
approximation k � t, which can be seen as the equiv-
alent of ignoring the backreaction of the matter on the
geometry. For simplicity, we will set U = k = 0, meaning
that

Ĥ = Ĥv + Ĥhop. (15)

In this case, the total number of particles on the graph is

a conserved charge. Ĥv and Ĥlinks are constants on fixed
graphs with fixed number of particles. The Hamiltonian
is the ordinary Bose-Hubbard model on a fixed graph,
but that graph can be unusual, with sites of varying con-
nectivity and with more than one edge connecting two
sites. Our aim will then be to study the effective geome-
try that matter in this model sees.

Even on a fixed lattice, the Hubbard model is diffi-
cult to analyze, with few results in higher dimensions. It
would seem that our problem, propagation on a lattice
with connectivity which varies from site to site is also
very difficult. Fortunately, it turns out that for our pur-
poses it is sufficient to restrict attention to lattices with
certain symmetries.

III. FOLIATED AND ROTATIONALLY
INVARIANT GRAPHS

In this Section we define graphs with two particular
properties which we call foliation and rotational invari-
ance. These properties will allow us to greatly simplify
the calculations that follow without loss of generality. We
will see that the problem of finding the ground state of
hopping Hamiltonians, on graphs with these properties
can be simplified to the solution of the one-dimensional
Bose-Hubbard model.

A. Foliated graphs

A foliated graph is a graph that can be decomposed
into a set of subgraphs connected by edges in a successive
way. More precisely, let gi be a labeling of subgraphs of a
graph G and Ei a labeling of the set of edges connecting
the sets gi, such that ∪i(gi ∪ Ei) = G. Then,

Definition 1 A graph G is foliated if it can be decom-
posed in several disjoint subgraphs gi with the following
properties:

1. All the subgraphs gi are degree regular.

2. All the edges of a subgraph gi connect a vertex in
gi to a vertex in gi−1 or gi+1.

3. The number of edges connecting a vertex in gi
(gi+1) to vertices in gi+1 (gi) is the same for every
vertex of gi (gi+1). This number is called relative
degree and is represented by di,i+1 (di+1,i).

Notice that the name, foliated, comes from the fact that
these graphs can be decomposed into subgraphs such as
any foliated structure can be separated into thin layers.
Examples of foliated graphs are presented in Figs. 3 and
4.

The number of edges that connect two consecutive sub-
graphs gi and gi+1 is given by

di,i+1Ni = di+1,iNi+1 , (16)
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FIG. 3. A 2-d lattice that can be foliated.

FIG. 4. A non-planar lattice that can be 1-foliated.

where Ni is the number of vertices of gi.

In order to discuss the properties of the hopping Hamil-
tonians defined by foliated graphs, let us introduce a nat-
ural coordinates (i,m) to specify a vertex of a foliated
graph. The coordinate i specifies the subgraph gi and m
refers to the particular vertex in gi. The hopping Hamil-
tonian of a foliated graph in terms of these coordinates
can be written as

Ĥfol = −
R−1∑
i=0

Ni−1∑
m,m′=0

A
(i)
mm′b

†
i,mbi,m′ + h.c.

−
R−1∑
i=0

Ni−1∑
m=0

Ni+1−1∑
m′=0

B
(i)
mm′b

†
i,mbi+1,m′ + h.c. , (17)

where b†i,m(bi,m) is the creation (annihilation) operator of

a particle at the vertex (i,m), R is the number of layers

gi, A
(i)
mm′ is the adjacency matrix of the subgraph gi, and

B
(i)
mm′ stands for the edges between the vertices of gi and

gi+1.

In this model, the delocalized states on the subgraphs
gi are particularly interesting. These are states of a par-
ticle which is completely and uniformly spread over the
graph gi, defined as follows:

Definition 2 The delocalized state, |i〉, in gi is defined
by

|i〉 =
1√
Ni

Ni−1∑
m=0

|i,m〉. (18)

The delocalized state |i〉 is an eigenstate of the hopping
Hamiltonian defined from the degree-regular subgraph gi,

Ĥ
(i)
fol = −

Ni−1∑
m,m′=0

A
(i)
mm′b

†
i,mbi,m′ + h.c. . (19)

More explicitly,

Ĥ
(i)
fol |i〉 =

1√
Ni

Ni−1∑
m=0

(
Ni−1∑
m′=0

A
(i)
m′m

)
|i,m〉 = −di,iEhop|i〉 ,

(20)
where we have used the degree-regularity of the graph,

di,i =
∑
mA

(i)
nm, for all n. For example, when the graph

gi is a chain, the completely delocalized state is the
ground state of the system and has energy −2, with 2
is the degree of the vertices of a 1-dimensional chain.

The subspace spanned by the delocalized states |i〉 is
an eigenspace of the system, since the projector onto this
subspace,

P̂d =

R−1∑
i=0

|i〉〈i| , (21)

commutes with the Hamiltonian (17), [Hfol, Pd] = 0.
Therefore, the time evolution of any superposition of de-
localized states lies always in this subspace (it is a super-
position of delocalized states). This allows us to define
an effective Hamiltonian for the delocalized states,

Ĥeff := P̂dĤfolP̂d (22)

=

R−1∑
i=0

(fi,i+1 (|i+ 1〉〈i|+ |i〉〈i+ 1|) + µi|i〉〈i|) ,

where µi = 〈i|Ĥfol|i〉 = −Ehopdi,i and

fi,i+1 := 〈i|Ĥfol|i+ 1〉 = −Ehop di,i+1

√
Ni
Ni+1

. (23)

Note that the Hamiltonian (22) is a one-dimensional
Bose-Hubbard Hamiltonian with chemical potential µi
and tunneling coefficient fi,i+1.

The mass term (or chemical potential) µ, is fattened
by the edges connecting the nodes within the subgraph gi
of the foliated graph. This is one the main results of
the paper. This behavior resembles a scalar field not-
minimally coupled to (classical) gravity, where the mass
of the particle is multiplied by a curvature factor. In our
case, the role of the curvature is played by −Ehopdi,i (see
Sec. V).

The extension to higher dimensions is straightfor-
ward. It requires the extension of one-dimensional fo-
liated graphs to graphs which can be foliated in multiple
directions, thus resembling an ordinary lattice, but with
multiple links between pairs of sites. The coefficients
fk,k−1 will depend on the direction of the foliation that
the particle is hopping to.
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We have found an eigenspace of the foliated Hamilto-
nians for which the effective Hamiltonian is particularly
simple. However, this eigenspace will not, in general, con-
tain relevant eigenstates of the Hamiltonian such as the
ground state. In order to ensure this, we require another
symmetry.

B. Rotationally invariant graphs

Let us present next our definition of the rotationally
invariant graphs.

Definition 3 A graph G is called N -rotationally invari-
ant if there exists an embedding of G to the plane that is
invariant by rotations of an angle 2π/N .

With the exception of those graphs that have a vertex
in the center, N -rotationally invariant graphs allow for a
labeling of their vertices (n, θ) ∈ N× ZN such that their
adjacency matrix A(nθ) ,(n′θ′) only depends on n, n′ and
θ − θ′. We can make use of these coordinates (n, θ) in
order to write the Hamiltonian defined by a rotationally
invariant graph

Hrot = −
N−1∑
θ=0

∑
n,n′

Ann′b
†
nθbn′θ + h.c.

−
N−1∑
θ=0

N−1∑
ϕ=1

∑
n,n′

B
(ϕ)
n,n′b

†
nθbn′θ+ϕ + h.c., (24)

where b†n,θ (bn,θ) is the creation (annihilation) operator

at the vertex (n, θ), Ann′ is the adjacency matrix of the

graph of any angular sector and B
(ϕ)
n,n′ is the adjacency

matrix of two angular sectors at an angular distance ϕ
in units of 2π/N .

Let us introduce the rotation operator L̂ defined by

L̂bn,θ = br,θ+1L̂

L̂b†n,θ = b†r,θ+1L̂ . (25)

The effect of the operator L is particularly easy to un-
derstand in the single particle case:

L̂|n, θ〉 = L̂b†n,θ|0〉 = b†n,θ+1L̂|0〉 = |n, θ + 1〉 , (26)

where we have assumed that the vacuum is invariant un-
der a rotation L̂|0〉 = |0〉.

Note that L̂ is unitary and its applicationN times gives

the identity, L̂N = 1. This implies that its eigenvalues
are integer multiples of 2π/N .

Another interesting property of L is that commutes
both with the rotationally invariant Hamiltonians and

with the number operator N̂p,

[Ĥrot, L̂] = [N̂p, L̂] = [Ĥrot, N̂p] = 0 . (27)

FIG. 5. A foliated graph which is not rotationally invariant.

Therefore Ĥrot, N̂p, and L̂ form a complete set of com-
muting observables and the Hamiltonian is diagonal in

blocks of constant L̂ and N̂p. This allows us to simplify
the problem of finding the ground state and the first ex-
cited states of the system, a very useful fact we will use
in the next section.

Note that rotational invariance and foliability are not
equivalent. There are graphs which can be foliated and
are not rotationally invariant and vice-versa. An example
is given in Fig. 5.

We have seen that both for the cases of foliated
graphs and the rotationally invariant graphs, the sub-
space spanned by the completely delocalized states is an
eigenspace of the system. In the foliated model, ef-
fective dynamics in this eigenspace are given by a one-
dimensional Bose-Hubbard Hamiltonian. In the rota-
tional invariant case, this eigenspace contains the ground
state of the system. Thus, the ground state of graphs
with both symmetries lies in the subspace of completely
delocalized states and the computational effort to find it
is equivalent to the solution of a one-dimensional Bose-
Hubbard model. This allows us to analyze a complicated
model using the approximation of a one-dimensional spin
chain, with obvious advantages, especially for numerical
work.

IV. REGIONS OF HIGH CONNECTIVITY AS
TRAPPED SURFACES

In [13], we observed that the Hamiltonian (15) caused
trapping of matter in regions of higher connectivity. The
basic mechanism is the following: consider a graph con-
sisting of two set of nodes, A and B, separated by a set
of points C on the boundary. Let the vertices in A be
of much higher degree than the vertices in B, dA � dB
(see Fig. 6). If the number of edges departing from the
set C and going to the set A is much higher than the
number of edges going from C to B, then the hopping
particles have a high probability of being “trapped” into
the region A.

Our task in this paper is to make this heuristic ar-
gument precise and determine whether these high con-
nectivity configurations are spin-system analogues of
trapped surfaces. We will do this by studying specific
states that are graphs with symmetries that contain a
core (trap) of N nodes. Fig. 7 is an example of such a
graph. Such states are 1-foliated graphs and we will be
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C

FIG. 6. A region of higher connectivity in a regular graph.

able to use the properties we discovered above.

A. Classical trapping

In order to gain some intuition on the trapping, let us
consider the classical analogue of the problem. In the
classical setup, a particle has a well-defined position in
some site of A. At each time step of length ~/Ehop,
the particle randomly jumps to another site of the graph
connected to its current site by an edge. This process is
successively repeated until the particle escapes from A.
How much time is required (on average) for the particle
to escape from the highly connected region?

In this simple model, the probability that the particle
jumps to a site outside A is

pesc =
Next

N − 1 +Next
, (28)

where Next is the number of links that connect a site in
A with the environment, and N is the total number of
sites in A. The evaporation time is then given by

tev =
~

Ehop

1

pesc
≈ ~
Ehop

N

Next
, (29)

where we have assumed that N � Next. In the large N
limit, the particle is trapped in A.

B. Quantum case: the KN configuration

In this section we study the spectrum and the con-
figuration of the ground state and the finite temperature
states of the hopping Hamiltonian on the graph of Figure
7 which we will call the KN graph. This is a 1-foliated
graph with a completely connected core. We will show
that the model on KN can be solved analytically in the
thermodynamic limit.

The position of a vertex of the KN graph can be speci-
fied by means of the integer spherical coordinates r and θ,

FIG. 7. The KN graph.

with ranges 0 ≤ r ≤ R−1 and 0 ≤ θ ≤ N −1. Then, the
quantum state of a particle with a well-defined position
in the graph can be written as

|r, θ〉 = b†r,θ|0〉 , (30)

where |0〉 is the vacuum state and b†r,θ the corresponding
creation operator. Using these coordinates, the hopping
Hamiltonian defined by the KN graph becomes

Ĥ0 =

N−1∑
θ=0

R−1∑
r=0

(
b†r+1,θbr,θ + b†r,θ+1br,θ + h.c.

)
(31)

+
∑

|θ−θ′|≥2

b†0,θ′b0,θ ,

where h.c. is the Hermitian conjugate. Note that the
second term in Eq. (31) corresponds to hopping in the
completely connected region, while the first sum is hop-
ping outside that core. Our question is how the intro-
duction of this completely connected region (the second
sum) changes the spectrum and the eigenstates of the
system.

Single particle case. Let us first work out the single
particle sector of the Hamiltonian.

In order to determine the eigenstates and eigenvalues

of Ĥ0, we will write the Hamiltonian in the eigenbasis

of the rotation operator L̂ defined in equation (25). The

eigenstates of L̂ read

|r, `〉 =
1√
N

N−1∑
θ=0

ei 2π
N `θ |r, θ〉 , (32)

with eigenvalues

L̂|r, `〉 = ei 2π
N ` |r, `〉 , (33)

where ` = 0, 1, . . . , N − 1. The Hamiltonian is diagonal
in blocks of constant ` and can be written as

Ĥ =

N−1∑
`=0

Ĥ` , (34)
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where Ĥ` = P̂`ĤP̂` are the projections onto the

eigenspaces of L̂ with the projectors P̂` defined as

P̂` =

R−1∑
r=0

|r, `〉〈r, `| . (35)

Inserting Eq. (35) into the definition of Ĥ`, we get

Ĥ` = −Nδ`0|0〉〈0| − 2 cos

(
2π

N
`

)
θ

(
r − 1

2

)
|r〉〈r|

− (|r + 1〉〈r|+ |r〉〈r + 1|) , (36)

where θ(·) is the Heaviside step function, introduced to
make the second term of the right hand side vanish when
r = 0.

Note that Ĥ` is translationally invariant in the limit
R → ∞ for ` > 0. Therefore, it can be analytically
diagonalized by the discrete Fourier transform

|kr, `〉 =
1√
R

R−1∑
r=0

ei 2π
R krr |r, `〉 , (37)

with kr = 0, . . . , R− 1 and 1 ≤ ` ≤ N − 1. We find

Ĥ`|kr, `〉 = 2

(
1− cos

(
2π

R
kr

)
− cos

(
2π

N
`

))
|kr, `〉

(38)
up to 1/R corrections that vanish in the infinite limit.

Let us now consider the subspace ` = 0 of the rota-
tionally invariant states. Because the Hamiltonian com-

mutes with L̂, the ground state |GS〉 of the system must

be invariant under its action: L̂|GS〉 = |GS〉. Therefore,
|GS〉 belongs to this subspace. On it, we can explicitly

construct the matrix for the Hamiltonian Ĥ`=0:

Ĥ`=0 = −Ehop



N 1 0 · · · 0

1 2 1
. . .

...

0 1 2
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 2


. (39)

It is a tridiagonal matrix with characteristic polynomial

pR(λ) = det(Ĥ−λI) which can be written in a recursive
way as

p0(λ) = 1,

p1(λ) = −N , (40)

pn(λ) = −(2− λ)pn−1(λ)− pn−2(λ) .

Note that because of the recursive relation, it is not clear
whether the other eigenvalues apart from the first one
depend on N or not.

It is easy to see that, if we rescale Ehop = Ẽhop/N and
take N → ∞, the only element left in the matrix is the
element associated to the |0〉 state. Thus, at N →∞, the

ground state becomes |r = 0, ` = 0〉 and the gap between
it and the first excited state scales as N . In the ther-
modynamic limit, the ground state of the single particle
sector corresponds to a particle completely delocalized in
the complete graph,

lim
N→∞

|GS〉 = |r = 0, ` = 0〉 =
1√
N

N−1∑
θ=0

|0, θ〉 . (41)

The rest of eigenvectors of the subspace ` = 0 are or-
thogonal to |GS〉 = |r = 0, ` = 0〉, and therefore lie in the
subspace spanned by |r, ` = 0〉 with r ≥ 1. The Hamil-
tonian can be analytically diagonalized in this subspace
by the same transformation used in Eq. (37):

|k, 0〉 =
1√
R

R−1∑
r=1

ei 2π
R kr |r, 0〉 , (42)

with k = 0, . . . , R− 2.
In conclusion, we have seen that the KN model has a

unique ground state which is protected by a gap which
increases linearly with the size N of the completely con-
nected region. The rest of the eigenvalues form an energy
band which is the same as if we had the KN graph with-
out the completely connected region,

Ek` = 2

(
1− cos

(
2π

R
kr

)
− cos

(
2π

N
`

))
. (43)

These results are numerically confirmed by Figs. 8 and
9. In Fig. 8, the energies of the ground state, the first
excited state and the state with maximum energy are
plotted against the size of the completely connected re-
gion. In Fig. 9, we have plotted the fidelity between the
ground state of the system and the completely delocal-
ized state in the completely connected region vs N .

Multi-particle case. Let us next analyze what happens
when there are several particles in the KN configuration,
interacting with an on-site potential.

The Hamiltonian of the multi-particle KN model can
be decomposed in its one-body and two-body parts,

Ĥ = Ĥ0 + V̂ (44)

where Ĥ0 is defined in Eq. (31) and V̂ is an on-site in-
teraction among the particles:

V̂ = u

R−1∑
r=0

N−1∑
θ=0

b†rθb
†
rθbrθbrθ , (45)

with u the energy penalty for two particles in the same
site.

Because the interaction V̂ commutes with the number
operator N̂ and the rotation transformation L̂, Ĥ, L̂ and

N̂ form a complete set of commuting observables. It is

convenient to write Ĥ0 and V̂ in terms of the creation
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FIG. 8. Plots of the energy E0 of the ground state, the energy
E1 of the first excited state, and Emax, the energy of the
maximum energy state, against the size N of the completely
connected region of the KN graph, in the single particle sector.
This plot has been realized for the full model with R = 30.
Note that the gap E1 − E0 increases linearly with N .
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FIG. 9. Fidelity between the completely delocalized state
in the completely connected region |r = 0, ` = 0〉 and the
ground state against the sizeN of that region. The completely
delocalized state |r = 0, ` = 0〉 becomes the ground state of
the system for large N .

and annihilation operators

ηk` =
1√
RN

N−1∑
θ=0

R−1∑
r=0

ei 2π
R kr ei 2π

N `θbr,θ, ∀` ≥ 1, (46)

ηk0 =
1√
RN

N−1∑
θ=0

R−1∑
r=1

ei 2π
R−1 r br,0, (47)

ηgs =
1√
N

N−1∑
θ=0

b0,θ . (48)

As it has been previously shown, the one-body term in

the Hamiltonian is

Ĥ0 = −Nη†gsηgs +
∑
k`

Ek`η
†
k`ηk` , (49)

and the interaction reads

V̂ = u
∑
k`

δ`1+`2,`3+`4δk1+k2,k3+k4 η̂
†
k1`1

η†k2`2ηk3`3ηk4`4

+ u η†gsη
†
gsηgsηgs , (50)

where the sum runs over all possible ki and `i for i =
1, . . . , 4 and the Krönecker delta shows that the interac-
tion conserves the quantum numbers ` and k. Note that
the single-particle ground state is completely decoupled
from the states of the energy band. Therefore, the state
of n particles,

|GS〉 =
(
η†gs

)n |0〉 , (51)

is an eigenstate of the system with energy −nN+un(n−
1)/2. Furthermore, as the interaction is a positive oper-
ator, we can ensure that |GS〉 is the ground state of the
system as long as n < N .

Thus, the ground state of the many-body problem is a
Bose-Einstein condensate of delocalized particles at the
completely connected region. The large gap and the
features of the on-site interaction make this condensate
robust at finite temperatures and against adding inter-
acting particles. Thus, the completely connected region
of the KN model can be considered a trapped surface.

However, it is not clear whether every completely con-
nected region is a trapped surface. In particular, we
would like to see what happens when the connectivity
does not change as abruptly as in the KN system. For
this reason, in Section VI we will parametrize the fall-off
of the parameters and study the localization of particles.
Moreover, we would like to relate this fall-off to an effec-
tive curved space-time geometry, as in an analogue grav-
ity system. In order to do this, then, a correspondence
between the connectivity of the graph and the curvature
of the space-time is required. Establishing this relation
is our task for the next section.

V. CORRESPONDENCE BETWEEN GRAPH
CONNECTIVITY AND CURVED GEOMETRY

In this section we establish a relation between the con-
nectivity of a graph and the curvature of its continu-
ous analogue geometry. In order to do this, we restrict
the time-dependent Schrödinger equation to the mani-
fold formed by the classical states, that is, single-particle
states with a well-defined but unknown position. The
equation of motion obtained corresponds to the equation
of propagation of light in inhomogeneous media, simi-
larly to black hole analogue systems. Once we have such
a wave equation, we can extract the corresponding met-
ric. In the second part of the section, the dispersion
relation and the continuous limit are discussed for the
transitionally invariant case.
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A. Restriction of the time-dependent Schrödinger
equation to the set of classical states

Since we want to study the dynamics of a single particle
on a fixed graph, it is only necessary to consider the sin-
gle particle sector. The one dimensional Bose-Hubbard
model for a single particle reads,

Ĥ0 =

M−1∑
n=0

fn,n+1 (|n〉〈n+ 1|+ |n+ 1〉〈n|)+
∑
n

µn|n〉〈n| ,

(52)
where fn,n+1 are the tunneling coefficients between sites
n and n + 1, µn is the chemical potential at the site n,
and M is the size of the lattice.

In this setup, let us introduce the convex set of classical
states MC , parameterized as

ρ(Ψ) =

M−1∑
n=0

Ψn|n〉〈n| , (53)

where Ψn is the probability of finding the particle at the
site n. The states inMC are classical because the uncer-
tainty in the position is classical, that is, they represent
a particle with an unknown but well-defined position.

The aim of this section is to restrict the Schrödinger
equation of the whole convex set of density matrices to
the convex set MC and obtain the effective equations of
motion for the classical states. In order to do this we
will follow the same procedure as in Ref. [16]. We will

approximate the time evolution generated by Ĥ0 without
ever leaving the convex setMC . This procedure consists
basically of two steps:

1. Time evolution. Insert the initial state ρ(t) ∈ MC

into the time-dependent Schrödinger equation to
get its evolution ρ(t+ ∆t) after a short time ∆t.

2. Restriction toMC . Find the state inMC that best
approximates the evolved state ρ(t+ ∆t).

If we take the infinitesimal limit ∆t→ 0 of the previous
steps we are going to get a differential equation for the
field Ψn(t).

Let us mention that the time-dependent Gross-
Pitaevskii equation can also be derived by this method,
that is, by restricting the Schrödinger equation to the
manifold defined by states parametrized by |ϕ〉 =
exp

(∫
dxϕ(x)b†x

)
|0〉, where b†x is the field operator that

creates a particle at position x. In Ref. [16], the second
step is something that must be done in order to restrict
the equations of motion to the desired manifold. Never-
theless, in our case, decoherence can give a physical in-
terpretation to this step. Since our particle is under the
effect of a noisy environment, its density matrix is going
to be constantly dephased by the interaction between the
particle and its reservoir.

If we insert ρ(t) in the time-dependent Schrödinger
equation we obtain:

∂tρ(t) =
∑
n

∂tΨn(t)|n〉〈n| = i[Ĥ0, ρ(t)] , (54)

where, in general, the right hand side cannot be written
in terms of the left hand side, and therefore the previous
equation cannot be fulfilled. Note that the Hamiltonian
pushes ρ(t+ ∆t) out of the MC .

Thus, the best approximation to ρ(t+∆t) in the convex
set MC is obtained by minimizing the distance∥∥∥∥∥∑

n

∂tΨn(t)|n〉〈n| − i
[
Ĥ0, ρ(t)

]∥∥∥∥∥ , (55)

For the Hamiltonian (52), the commutator [Ĥ0, ρ(t)]
reads

[Ĥ0,ρ(t)] (56)

=
∑
n

fn,n+1 (Ψn+1 −Ψn) (|n〉〈n+ 1|+ |n+ 1〉〈n|) ,

and therefore the state in MC that best approximates
ρ(t+ ∆t) fulfills

∂tΨn(t) = 0 . (57)

This forces us to consider the second order in ∆t, and
therefore the effective equation of motion for Ψn(t) is
going to be a second order differential equation in time.
We then have

∂2
t ρ(t) =

∑
n

∂2
t Ψn(t)|n〉〈n| = − 1

~2

[
Ĥ0, [Ĥ0, ρ(t)]

]
.

The dephased state in the position eigenbasis that best
approximates ρ(t+∆t) can be easily determined by com-
puting the double commutator of the previous equation.
It obeys the evolution

~2

2
∂2
t Ψn(t) =−

(
f2
n,n+1 + f2

n−1,n

)
Ψn(t) (58)

+ f2
n−1,nΨn−1(t) + f2

n,n+1Ψn−1(t) .

In order to rewrite the previous expression in a nicer way,
let us add and subtract the quantity f2

n−1,n(Ψn+1(t) +
Ψn(t)) in the right-hand side, obtaining

~2

2
∂2
t Ψn(t) =f2

n−1,n (Ψn+1(t) + Ψn−1(t)− 2Ψn(t))

+
(
f2
n+1,n − f2

n−1,n

)
(Ψn+1(t)−Ψn(t)) .

This equation becomes a wave equation in the continuum,

∂2
t Ψ(x, t)− ∂x

(
c2(x)∂xΨ(x, t)

)
= 0 , (59)

where

1

c(x)
=

√
~2

2f2(x)E2
hop

=
~

Ehop

√
2f2(x)

, (60)

and Ψ(x, t) and f(x) are the continuous limit functions
of Ψn(t) and fn,n−1 respectively.
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We have shown that the equation of motion of the
Bose-Hubbard model, restricted to the convex set formed
by classical states, is the wave equation. This is a signif-
icant result that establishes a relation between the cou-
pling constants of the Bose-Hubbard model and the speed
of propagation of the fields Ψ(x, t). Equation (59) has
the same form as the equation for propagation of light in
media with a space-dependent refraction index, as is also
the case in black hole analogue systems [17].

A few comments are in order. In equation (59), the
constant of the speed of light is quantized. It is propor-
tional to the inverse of the number of links between the
nodes in this simplified model. This constant depends on
the hopping coupling constant of the hamiltonian, Ehop.
Finally, even though equation (59) is for a scalar quantity,
the analogy with a Klein-Gordon field can not be pushed
too far. The equation refers to the 1-particle density
from which we started from, Ψn(t) = 〈n|ρ(t)|n〉, and so
is completely classical. A generalization of equation (59)
to the case of many distinguishable interacting particles
is given in detail in the Appendix, where we analyze also
the effect of a local and non-local interaction.

B. Dispersion relation and continuum limit

Let us consider in more detail the translational invari-
ant case in which fn−1,n = f and µn = µ for all n. In
this case, the continuous wave equation (59) becomes

∂2
t Ψ(x, t)− c2∂2

xΨ(x, t) = 0 , (61)

where c is the speed of propagation.
In order to understand the continuum limit, we evalu-

ate the dispersion relation for the propagation of proba-
bility in the translationally invariant case. Let us intro-
duce a discrete Fourier transform in the spatial coordi-
nate and a continuous Fourier transform in the temporal
coordinate, given by

Ψn(t) =
1√
M

M−1∑
k=0

Ψ̃k(t)e− i 2π
M nk , (62)

and Ψ̃k(t) = Aeiωkt + Be− iωkt. After a straightforward
calculation, we find that the relation between ωk and k
is given by

ωkc =
√

2

√
1− cos

(
2π

M
k

)
. (63)

Note that this dispersion relation is different from that of
the quantum excitations. In order to see this, we Fourier
transform the Hamiltonian in the translational invariant
modes. We define the field momentum Ψk(t) as Ψk(t) =

〈k|ρ(t)|k〉, where |k〉 =
∑
m e

i 2πkm/M/
√
M |m〉 are the

eigenstates of the translationally invariant Hamiltonian

Ĥ0|k〉 = ~ωHk |k〉, with

~ωHk = 2

(
1− cos

(
2πk

M

))
. (64)

Therefore,

Ψk(t) =
∑
n,m

ei 2πk(n−m)/Mρn,m(t), (65)

and, for the classical states ρn,m(t) = δn,mΨn(t),

Ψk(t) =
1

M

M−1∑
n=0

Ψn(t) =
1

M
. (66)

Note now that Eq. (64) differs from (63). In fact, at the
quantum level, the continuum limit gives the ordinary
galilean invariance, while at the quantum level, the con-
tinuum limit gives excitations (time-evolving probability
densities) which are Lorentz invariant.

However, the continuum limit is tricky because we have
continuous time and discrete space, and no spatial scale
to send to zero with the inverse of the number of lat-
tice points (the graph is not embedded in any geome-
try). Thus the continuum limit is in the time scale of the
modes. If we rescale ωk → ω̃k/M (or equivalently c), we
find that

ω̃k c =
√

2M

√
1− cos

(
2π

M
k

)
, (67)

and, therefore,

lim
M→∞

ω̃k ≈ 2π
k

c
.

That is, only modes that are slow with respect to the time
scale set by c see the continuum. Note that by rescaling
the speed of propagation c, the continuum limit can be
obtained by a double scaling limit, Ehop → Ehop/M and
M →∞ for lattice size M . In this limit, the probability
density has a Lorentz invariant dispersion relation. An-
other interesting rescaling which gives Lorentz invariant
dispersion relations is the rescaling of ~.

To conclude the discussion, let us note that the speed
of propagation of the probability sets the timescale of the
interaction: if there are P points with constant speed of
light given by c, then the timescale of the propagation
of the interaction in the classical limit in that region is
given by tdyn = P/c.

An embedding of the graph in space, on the other hand,
would mean requiring that Ψn(t) depends on a point in
space and a length scale a (the lattice spacing): Ψn(t) ≡
Ψ(b0 + na, t), and that the coupling constant scales as
Ehop → Ehopa. In this case the continuum limit a → 0
gives the ordinary dispersion relation.

VI. MODEL WITH PARAMETRIZED FALL-OFF
OF CONNECTIVITY

In this section, we study a graph with a trapped sur-
face (completely connected region) whose boundary is
extended and the connectivity of its nodes decreases
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gradually towards the outer edge of the boundary. We
parametrize the fall-off of the parameters of the model
and study the localization of a one-particle state. We
use the techniques developed in Secs. III and IV to find
the ground state of the system and check its robustness
against finite temperature and many interacting parti-
cles.

This section summarizes the two main ideas of this
paper: the relation between the connectivity of a graph
and the optical parameter, and the analysis of the power
of trapping of a completely connected region.

A. The Model

Let us consider a 2-dimensional rotational invariant
graph where the connectivity fr,r+1 between two layers
r and r + 1 is not constant (KN case), but decreases as

− fr,r+1 = Ehopdr,r+1

√
Nr
Nr+1

=

(
1 +

N

rγ

)
. (68)

dr,r+1 is the relative degree of a site of the r-th subgraph
towards the r + 1-th subgraph, Nr is the number of ver-
tices in the layer r, and γ is a parameter that controls
how fast the connectivity decreases. Note that this choice
is consistent because we can always tune Ehop to be small
enough, Nr = N uniform, and dr,r+1 to be such that we
can approximate the rhs of Eq. (68). The KN model cor-
responds to γ → ∞ together with N . We expect that
the larger γ is, the larger is the localization.

B. Trapped surface

The rotational symmetry allows us to perform the
same diagonalization procedure followed in Sec. IV. That
is, we will diagonalize the Hamiltonian in blocks corre-
sponding to the eigenspaces of the rotation operator L̂.
Unlike the KN graph, the diagonalization in such sub-
spaces must be done numerically. This is not a problem
in the single particle sector. We can then determine the
ground state and the gap of the system.

In Fig. 10, we have found the spectrum of the system.
We see that the ground state is protected by a gap that
increases linearly with the size of the completely con-
nected region N . By the same argument as in the KN

model, this gap guarantees that the completely connected
region is a trapped surface robust against finite temper-
ature and against adding several interacting particles.

To characterize the ground state of the system, the
probability distribution of the position of the particle is
plot in Fig. 11. We note that, unlike the KN model, the
particle is not completely localized inside the trapped
surface, but localized in a small region in and around the
trapping surface.

In Fig. 12, the localization of the particle inside the
completely connected region is plotted against its size
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FIG. 10. Plot of the energies of the ground state E0, the
first excited state E1, and the state with maximum energy
Emax, with respect to the size of the trapping surface, N ,
for a rotational invariant graph with decaying connectivity
(1 + N/r), in the single particle sector. Note that the gap
E1 − E0 increases linearly with N .
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FIG. 11. Probability distribution of the position of the parti-
cle. The particle is completely confined around the trapping
surface. The larger the fall-off coefficient γ, the larger the
confinement.

and for three different parameters γ = 1/2, 1 and 2. Both
this plot and Fig. 11 illustrate that, the higher the pa-
rameter γ, the stronger the localization in the completely
connected region.

VII. CONCLUSIONS

Quantum mechanics drastically deviates from the or-
dinary intuition because of its nonlocality, or action-at-
distance. Wes do, however, know that in condensed mat-
ter systems we observe excitations with relativistic dis-
persion relations. Why is this? An analogue of this prob-
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FIG. 12. Localization of a single particle in a trapped surface
vs its size. The localization of the particle increases with the
size N and the fall-off coefficient γ (see the definition of γ in
Eq. (68)).

lem is sound in classical systems. Newtonian mechanics
is nonlocal but Newton himself evaluated the speed of
propagation of sound in gases.

It is now fairly well-understood that theories with
nonlocal action but local interactions have excitations
that are locally covariant in certain limits. The amount
of nonlocality can be bounded using the Lieb-Robinson
bounds [18]. In this paper we have explored this phe-
nomenon in the Hubbard model.

We found that the vertex degree plays a central role as
it is related to the local speed of propagation of the classi-
cal probability distribution of matter on the lattice. Our
analysis is relevant for the idea that relativity, general
and special, may be emergent from an underlying the-
ory which is local and quantum. Going further than the
analysis of the Lieb-Robinson bounds in [15], we looked
at emergence of an effective curved geometry in the Hub-
bard model. The quantum Hamiltonian evolution of the
one-particle density for a particular set of states leads to
an equation of motion that approximates the wave equa-
tion for a scalar particle in curved space. The same equa-
tion appears in optical systems with a varying refraction
index.

It is widely known that this equation can be cast in
the domain of general relativity by noticing that it is
the same as evolution in Gordon’s space-time. This con-
nection cannot be made in 1+1-dimensions, the case we
considered, but equation (59) can be extended to more
than one spatial dimension by considering graphs which
can be foliated in more than one directions.

Note also that this has been achieved on a Bose-
Hubbard model on graphs with varying vertex degree and
multiple edges between sites. The important picture to
keep in mind to understand this mechanism is Fig. 1. The
graph modifies the strength of the interaction of the orig-
inal Bose-Hubbard model and, for the particular states

we are interested in, we can obtain Eq. (59) for the par-
ticle localization.

Using similar methods, we confirmed previous argu-
ments [13] and showed that regions of high connectivity
in the lattice trap matter. We did this by showing that
this ground state is protected by a gap which increases
linearly with the size of the completely connected sub-
graph.

As with the emergent wave equation, this result is rem-
iniscent of the physics of analogue gravity systems . It is
then interesting to consider the model of [13] as a rather
unusal analogue gravity model.

We will close with the two obvious next questions,
which we leave for future work: 1) What is the timescale
of thermalization of matter in the completely connected
regions? Does it support the conjecture in [19, 20] that
black holes are the fastest thermalizers in nature? 2)
How do our results change if we include the backreaction
of the matter on the graph? (Our study makes it essen-
tial in order to have evaporation.) What is the effective
dynamics of the full Hamiltonian?
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APPENDIX: EVOLUTION IN THE
MULTI-PARTICLE SECTOR

In this Appendix, we generalize the results of Section
V to the case of multiple particles hopping on the graph.

Free motion. Let us first consider K distinguishable
particles in states which are tensor products of delocal-
ized states. This will allow us to track every single par-
ticle using a number operator.

Since the particles are distinguishable, we cannot use
the standard second quantization formalism. Instead, a
quantum state of the system must be described by

|ΦK〉 =

Ñ∑
m1,...,mK=1

cm1,...,mK |m1〉 ⊗ · · · ⊗ |mK〉 ,

where |mi〉 is the state of the i-th particle at the site mi,

and Ñ is the total number of sites of the lattice. Note
that the dimension of the Hilbert space is ÑK .

Let us also introduce a number operators N̂i, defined as
the tensor product of the number operator on the site of
the particle i with identity operators on all sites except i

so that the total number operator is N̂ =
∑K
i=1 N̂i. This
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number operator counts the total number of particles on
the graph. To see how to go from the 1-particle case

to this number operator, let us define N̂k
i as the number

operator on the vertex k for the particle i. In this case we

can write N̂ =
∑
i,k N̂

k
i , and define a number operator

for a region A of the graph as N̂A =
∑
k∈A,i N̂

k
i . This

consistently measures the number of particles in a region
A of the graph.

It is easiest to start with the 2-particle case and then
extend the analysis to K particles. The main complica-
tion compared to the 1-particle case is that we now have
a density matrix with 4 indices. In the non-diagonal case,
we have

ρ =
∑

k1,k2,k1′,k2′

Uk1,k2,k1′,k2′(t)|k1〉〈k2| ⊗ |k′1〉〈k′2|. (69)

Fortunately, we also have Ĥ = Ĥ1 + Ĥ2, with [Ĥ1, Ĥ2] =
0. A straightforward calculation shows that we can use
the result from the 1-particle case:[

Ĥ, [Ĥ, ρ]
]

=
[
Ĥ1, [Ĥ1, ρ]

]
+
[
Ĥ2, [Ĥ2, ρ]

]
+ R̂, (70)

where the mixed term is

R̂ = 2
(
Ĥ1Ĥ2ρ+ ρĤ1Ĥ2 − Ĥ1ρĤ2 − Ĥ2ρĤ1

)
. (71)

We follow the same steps as in the 1-particle case and
evaluate the second derivative of the expectation value
of the two number operators to find

∂2
t α

1
k + ∂2

t α
2
k =− 1

~2

(
Tr
[
[Ĥ1, [Ĥ1, ρ]]N̂1

k

]
+ Tr

[
[Ĥ2, [Ĥ2, ρ]]N̂2

k

]
+ Tr

[
R̂ρ(N̂1

k + N̂2
k )
] )
. (72)

It is easy to understand what happens when ρ = ρ1 ⊗
ρ2, for which Uk1,k2,k1′,k2′(t) = Uk1,k2(t)Ũk1′,k2′(t): the
first and second terms on the r.h.s. of Eq. (72) reduce
to discrete second-order derivatives, as in the 1-particle

case. We therefore only have to deal with the Tr
[
R̂ρ(N̂1

k+

N̂2
k )
]

term.

Another way to see this is by noticing that N̂j acts
as a projector on the one-particle states. We have

Tr[Ĥ1ρĤ2] = Tr[Ĥ2Ĥ1ρ], using the properties of the

trace. Term by term, we can show that, for each Ĥi

and Ĥj , the mixed term vanishes for any number of par-

ticles. Defining R̂ij = ĤiĤjρ+ρĤiĤj−ĤiρĤj−ĤjρĤi,
we find that the many-particle equation becomes,

∑
i

∂2
t α

i
k(t) =

∑
i

∇αik + 2Tr

∑
<ij>

R̂ij

∑
i

N̂ i
k

 ,
(73)

where ∇αik is the second order discrete derivative
∂x(c∂x(·)).

We can now use the same argument as in the 2-particle

case to show that all the terms R̂ij vanish independently.
We define αk := 1

2

∑
i α

i
k to be the probability of finding

a particle at k. This quantity satisfies the same equation
as the one-particle sector probability:∑

i

∂2
t α

i
k(t) =

∑
i

∇αik. (74)

That is, particles are independent from each other and
each follows its own equation (74).

Interaction. Including interaction, in general, the
Hamiltonian of the system can be written as

Ĥ =

K∑
i=1

Ĥi +
∑
i<j

Ĥij , (75)

where Ĥi = 1̂⊗ · · · 1̂︸ ︷︷ ︸
i−1 times

⊗Ĥ ⊗ 1̂⊗ · · · ⊗ 1̂︸ ︷︷ ︸
K−i−1 times

. For what fol-

lows, again we first check the case of two particles, and
calculate what happens to Eq. (74) when we add an
interaction term. The most general interaction Hamilto-

nian is of the form Ĥint =
∑
ijkl Ũijkl â

1†
i â

1
j ⊗ â2†

k â
2
l . We

make a simplifying assumption which is natural for de-
localized states, and require that the potential respects
their symmetries. The simplest such local potential is of
the form

Ĥint =
∑
k

Ik|k〉〈k| ⊗ |k〉〈k|. (76)

If we add this hamiltonian to the free one, additional
terms appear on the rhs in Eq. (74). These can be traced
back to the additional commutators in the expansion of
the full Hamiltonian,

Ĉ :=
[
Ĥ1, [Ĥint, ρ]

]
+
[
Ĥint, [Ĥ1, ρ]

]
+ (1→ 2) +

[
Ĥint, [Ĥint, ρ]

]
, (77)

that come from expanding the full hamiltonian ĤT =

Ĥ1 + Ĥ2 + Ĥint in the double commutators and keeping
only the terms involving free Hamiltonians. Since we
want to distinguish the single particles in the continuum

limit, we consider the approximation ‖Ĥint‖ � ‖Ĥ1/2‖,
with ‖T̂‖ = supv

‖T̂ v‖
|v| . This gives a product of the density

matrices of the single particles.
A lengthly but straightforward calculation shows that,

when we restrict to diagonal density matrices in the sub-
space of the single particles, we find:

Tr[ĈN̂1
k ] = Tr[ĈN̂2

k ] = 0.

This means that, surprisingly, in the continuum limit,
the wave equations for the fields are decoupled if we use
a local potential of the form (76).
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The next generalization is a potential which is slightly
non-local. The simplest such potential is given by

Ĥint =
∑
k

Ik |k + 1〉〈k + 1| ⊗ |k〉〈k| (78)

for the case of 2-particles. In this case, an even longer but

still straightforward evaluation of Tr[ĈN1
k ] or Tr[ĈN2

k ]
shows that these traces are nonzero. They take the form

Tr[ĈN1
k ] = fk,kUk,k(t)Ũk+1,k+1(t)(Ik+1 − Ik), (79)

and

Tr[ĈN2
k ] = fk,kUk+1,k+1(t)Ũk,k(t)(Ik+1 − Ik). (80)

That is, in the continuum limit, the equations for the
two probability fields are coupled. If we define αk(t) :=

Uk,k(t) and βk(t) := Ũk,k the probability fields obey

∂2
t αk −∇αk = αkβk+1fk,k(Ik+1 − Ik) (81)

∂2
t βk −∇βk = βkαk+1fk,k(Ik+1 − Ik) (82)

If we define µ(x) to be the continuum equivalent of fk,k
and I(x) the continuum equivalent of Ik, we have

�α(x, t) = α(x, t)β(x, t)µ(x)I ′(x) (83)

�β(x, t) = β(x, t)α(x, t)µ(x)I ′(x). (84)

These equations can be straightforwardly generalized to
the case of more than two particles if the potential is the

sum of a 2-body interaction for each pair of particles of

the type
∑
〈ij〉 Ĥ

ij
int, with

Ĥij
int =

∑
k

1̂⊗ · · · 1̂⊗ |k〉〈k|︸ ︷︷ ︸
i−th

⊗ 1̂⊗ · · · ⊗ 1̂⊗ |k − 1〉〈k − 1|︸ ︷︷ ︸
j−th

⊗1̂ · · · ⊗ 1̂ Iijk .

(85)

The sum 〈ij〉 is over all pairs of particles. If αi(x, t) is
the probability field for particle i, we obtain, for each
particle, the following coupled differential equations:

�αi = αi(
∑
j 6=i

∂Iijαj)µ. (86)

We can now define m2
i = (

∑
j 6=i ∂I

ijαj)µ. The EOM
becomes,

�αi −m2
i (x, t)α

i = 0

The effective mass m2
i is determined by the interaction

with the other particles. The study of the interaction is
important to understand, but beyond of the scope of the
paper.
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