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Realization of geometric Landau-Zener-Stückelberg interferometry
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We report an experimental realization of the geometric Landau-Zener-Stückelberg (LZS) interferometry
proposed by Gasparinetti et al. [Phys. Rev. Lett. 107, 207002 (2011)] in a single-trapped-ion system. Unlike those
in a conventional LZS interferometer, the interference fringes of our geometric interferometer originate solely
from a geometric phase. We also observe the robustness of the interference contrast against noise or fluctuations
in the experimental parameters. Our scheme can be applied to other complex systems subject to relatively large
errors in system control.
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I. INTRODUCTION

The Landau-Zener (LZ) transition or Landau-Zener-
Stückelberg (LZS) interferometry together with Rabi oscil-
lation have been widely used to coherently control quantum
systems, including atomic or optical systems [1–3], quantum
dots [4,5], superconducting qubits [6,7], nitrogen-vacancy-
(NV-) center systems [8], and spin transistors [9]. Related to the
Rabi operation, composite pulses associated with dynamical
decoupling [10–13] or adiabatic manipulation with geometric
phases [14–16] have been extensively studied to reach error
rates below the fault-tolerant level with reasonable limitations
of control in feasible physical systems.

Generally, a quantum system subjected to adiabatic driving
acquires a geometric phase (or Berry phase) as well as a
dynamic phase. Unlike the dynamic phase, the geometric
phase depends solely on the trajectory of the parameters in
the Hamiltonian, and thus is stable against certain types of
fluctuations; this has been experimentally observed in various
systems [17–20]. Composite-pulse schemes also have a geo-
metric phase interpretation in nonadiabatic regimes [21,22].
However, the geometric phase and robust control in the
context of LZ interferometry have‘ not yet been experimentally
investigated and demonstrated [23,24].

Here, we report an experimental realization of LZS inter-
ferometry controlled exclusively by the geometric phase; it
is inspired by the proposal of Ref. [23] in a single-trapped-
ion system, which is capable of simulating other quantum
two-level (qubit) systems. Although the original proposal
is specifically for a superconducting system, we apply the
scheme to a trapped-ion system and observe the robustness
of the geometric phase against very great operational errors
in all possible control parameters by artificially introducing
noise into the system. Our demonstration of strong immunity
sheds light on the possibility of examining the geometric
phase in more complex systems which might be subject to
large fluctuations in control parameters. Furthermore, our
realization contains the basic procedure for adiabatic quantum
simulation and can be extended to investigate and harness
the geometric phase in many-body systems for quantum
information processing [15,25].

*kimkihwan@mail.tsinghua.edu.cn

II. TRAPPED-ION SYSTEM FOR GEOMETRIC LZS
INTERFEROMETRY

The geometric LZS interferometry of a qubit system can be
described by the following Hamiltonian:

HGLZ (t) = �

2
σ · Beff (t) , (1)

where σ = (σx,σy,σz) is the vector of Pauli matri-
ces and the effective magnetic field Beff ≡ (Bx,By,Bz) =
(� cos ϕ,� sin ϕ,�). Here � is the energy splitting of the qubit
system at the avoided crossing and � is the driving strength of
the system. We denote � = 1 for convenience.

We realize the geometric LZS interferometer in a single
171Yb+ ion as a model qubit. The single 171Yb+ ion is trapped
in a four-rod radio -requency trap [26,27] as shown in Fig. 1(a).
We map the two internal levels of the 171Yb+ ion in the S1/2

ground-state manifold to the qubit states; this is represented
by |F = 1,mF = 0〉 ≡ |↑〉 and |F = 0,mF = 0〉 ≡ |↓〉. The
energy splitting of the two levels results from the hyperfine
interaction, and the transition frequency between the |↑〉 state
and the |↓〉 state is ωhf = (2π )12 642.821 MHz. Coherent
driving is implemented by a microwave with a frequency
detuned by �(t) = ωhf − ωM(t) and strength � as depicted
in Fig. 1(b). We control � and � by mixing the microwave
signal with the output of an arbitrary-wave-form generator
(AWG) of 1 GSamples/s, which is significantly high to ignore
the sampling effect compared to the typical operation time,
a few hundred microseconds, as shown in Fig. 1(d). By
going to the interaction picture defined by HM = σz

2 ωM(t),
we obtain the geometric LZS Hamiltonian, HGLZ (1), where ϕ

is the phase of the microwave source. In the experiment, we
first apply Doppler cooling and initialize the state to the |↓〉
state by the standard optical pumping technique with 99.1%
efficiency [26,27]. At the end of the experimental sequence,
we measure the population of the |↑〉 state by applying a
fluorescent detection scheme [26,27], and the typical photon
distribution for the difference states is shown in Fig. 1(c).

III. EXPERIMENTAL PROCEDURE FOR GEOMETRIC
LZS INTERFEROMETRY

The whole procedure for the geometric LZS interferom-
etry is shown in Fig. 2(a) as sequences of experimental
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FIG. 1. (Color online) Experimental setup for the realization of geometric LZS interferometry. (a) The schematic diagram of a standard
four-rod rf trap, detection system, and microwave operation system. (b) The energy-level diagram of the 171Yb+ ion with the detection laser
beam and microwave nearly resonant with the qubit system for geometric LZS interferometry. (c) Histograms of detected photons after the
ion is prepared in each of the two qubit states. (d) Experimental apparatus for the control of the amplitude and the frequency of the applied
microwave.

controls of � and �. The interferometer basically consists
of two successive LZ transitions, which are equivalent to the
beam splitters of a Mach-Zehnder interferometer, where the
interference fringes are solely determined by the geometric
phase. The dynamical phases accumulated between the LZ
transitions are completely removed by an adiabatic spin-echo
scheme [28,29]. In detail, the sequences are decomposed
to five main procedures and the adiabatic spin echo: (1)
[t1,t2], adiabatic preparation of the instantaneous ground
state of the initial Hamiltonian; (2) [t2,t3], LZ transition;

(3a),(3b) [t3,t4] and [t6,t7] adiabatic evolutions to accumulate
a geometric phase; (4) [t7,t8], LZ transition; (5) [t8,t9] adiabatic
rotation to transfer the final state to the measurement basis
σz; and (S1),(S2) [t4,t6], spin-echo sequence to eliminate
the dynamic phase and the Stokes phase. The interference
pattern of the geometric phase is observed by measuring
the population of the upper eigenstate in the measurement
basis. Figures 2(b)–2(e) show the trajectories of Beff in the
(Bx,By,Bz) space and Figs. 2(f)–2(i) show the evolutions of
the qubit state in E-B⊥

eff space with changes of the parameters
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FIG. 2. (Color online) (a) The control sequences of � and � in Beff = (� cos ϕ,� sin ϕ,�) for the realization of geometric LZS
interferometry. The sequences are composed of (1) adiabatic state preparation [t1,t2], (2) the first LZ transition [t2,t3], (3a), (3b) adiabatic
evolutions for acquiring the geometric phase [t3,t4] and [t6,t7], (4) the second LZ transition [t7,t8], (5) final rotation to the measurement basis
[t8,t9] and adiabatic spin-echo sequence [t4,t6]. At t = t6, we change the phase of φ from 0 to φ0. Adiabatic procedures are noted in red [(1),
(3a), (3b), and (5)] except for the spin-echo sequences. The colors and numbers used in (a) remain consistent in all the other figures. (b)–(d)
The trajectories of Beff during the operation in (Bx,By,Bz) space. (e)–(g) The description of geometric LZS interferometry in E-B⊥

eff space,
where the hyperbolic curves indicate the adiabatic eigenenergies. In contrast to the standard energy diagram for the LZ transition, the geometric
LZS interferometer should be described in three-diemsnional (3D) space due to the phase information. The volume of the orange spheres
corresponds to the population of the adiabatic eigenstates. (h) The trajectories of Beff for the adiabatic spin-echo sequences. (i) The description
of the spin-echo sequences in E-B⊥

eff space.
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in the Hamiltonian, where the hyperbolic curves indicate the
adiabatic eigenenergies E± = ±

√
�2

0 + �2.
For the implementation of the geometric LZS interfer-

ometer, the adiabatic evolution, where a parameter of a
Hamiltonian slowly changes and the system follows the ground
state of the instantaneous Hamiltonian, plays a crucial role
as the main method for state preparation, state detection,
state inversion, and geometric phase generation. Therefore,
we carefully investigate the validity of adiabaticity in our
experimental realization. We also perform an experimental
study of the LZ transition, where the separation probability
between two instantaneous energy eigenstates is controlled by
the sweeping rate in the vicinity of the avoided crossing. Based
on the experimental confirmation of the validity of adiabatic
evolution and of the ability to control the LZ transition, we
perform geometric LZS interferometry.

A. Adiabatic evolution

Adiabatic evolution is used for the sequences of (1), (3a),
(3b), and (5) as well as (S1) and (S2). We apply adiabatic
evolution to rotate the Beff field about an axis on the x-y
plane by changing the amplitude � and the detuning � of the
microwave in the following manner:

� (t) = |Beff| sin θ (t) , � (t) = |Beff| cos θ (t) , (2)

where |Beff| is the magnitude of the effective magnetic field,
and θ is linearly increasing in time, θ (t) = (θf /Ta)t . We chose
the change rate θf /Ta = π/(200 μs) for |Beff| = (2π )50 kHz,
which is small enough to satisfy adiabaticity. With this rate, the
initial ground state |↓〉 evolves as the blue curve shown on the
Bloch sphere of Fig. 3(a), where ϕ = 0. The time dependency
of the populations of the |↑〉 state is measured and compared
to results of numerical calculations [Fig. 3(b)]. The difference
in population between the experimental data and the ideal
adiabatic evolution is no more than 5.5%.

B. LZ transition

The LZ transition is used for the sequences of (2) and (4).
The LZ transition is investiaged including time-resolved
measurement of the tunneling dynamics, similarly to the
demonstration with cold atoms [30]. LZ tunneling occurs in
the vicinity of the avoided crossing and in the long-time limit,
the probability transferred to the upper energy eigenstate of
the adiabatic basis after the transition is characterized by

PLZ = exp

(
−π�2

0

2|v|
)

, (3)

where v = d�
dt

|�=0. In the adiabatic impulse approach, the
transition in the adiabatic basis {|ψ−〉 , |ψ+〉} is described by
the evolution matrix ULZ = UaNUb with

N =
(

e−iϕS
√

1 − PLZ −√
PLZ√

PLZ eiϕS
√

1 − PLZ

)
, (4)

where ϕs is the Stokes phase [31] and Ua(b) = exp(iξa(b)σz),
where ξa(b) is the dynamic phase accumulated after (or before)
the LZ transition point.
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FIG. 3. (Color online) (a) The adiabatic evolution of the state.
The traces of the system depending on the speeds of change in
parameters are shown on the Bloch sphere in the case of ϕ = 0.
The red curve is the trace of the perfect adiabatic evolution from
the |↓〉 state to the ground state of HGLZ = (�/2)σz + (�i/2)σx .
We change � and � as shown in Eq. (2). The blue dashed and the
green dash-dotted curves are the trajectories with speeds θf /Ta =
π/(200 μs) and π/(60 μs), respectively, with |Beff | = (2π )50 kHz.
(b) The population of the |↑〉 state. During adiabatic rotation, the
rotation speed is π/(200 μs), which is used thoughout the rest of
the paper. The solid line shows the numerical estimation of the
evolution in the |↑〉 state population and the + symbols show the
experimental data after averaging the measurements of 1500 trials,
where the projection error of each point (0.012) is smaller than the size
of the symbol. Note that we use the same conventions and perform
the same number of trials for one data point throughout this paper.

Experimentally, we use the sequences (1), (2), and (5) of
Fig. 2 to study the LZ transitions: Sequence (1). We prepare the
ground state of the Hamiltonian (1) with �i = (2π )49.24 kHz,
�0 = (2π )8.68 kHz, and ϕ = 0 by adiabatically rotating
the |↓〉 state about the y axis. Sequence (2). We change
� (t) = (1 − 2 t

T
)�i linearly in time. Sequence (5). At time

t , we adiabatically bring the state to that in the measurement
basis [|ψ− (t)〉 → |↓〉 , |ψ+ (t)〉 → |↑〉], which enables us to
measure the population of the excited state |ψ+ (t)〉 by
observing the probability of the |↑〉 state, which is equivalent
to the transition probability. The population of the |↑〉 state
after the transition versus the duration of the transition is
plotted in Fig. 4(a), where the experimental results and the
transition formula of Eq. (3) are in precise agreement. We also
observe the transient dynamics and oscillatory behavior of LZ
tunneling in the vicinity of the transition point with various
speeds of change of � shown in Fig. 4(b), with improved
quantitative agreement compared to Refs. [8,30]. Note that
there is no fitting parameter in the theoretical expectations in
Fig. 4, since the parameters are independently measured.

IV. GEOMETRIC LZS INTERFEROMETER

The total procedure for the geometric LZS interferometer is
described in Fig. 2(a). The geometric phases are accumulated
by adiabatic processes between two LZ transitions and the
dynamical phases are canceled out by the adiabatic spin-echo
sequences. In Fig. 2(a), the sequences (3a) and (3b) are for
gaining the geometric phases and the sequences (S1) and
(S2) are for executing the spin echo, swapping the |↑〉 and
the |↓〉 eigenstates. The other sequences [sequences (1), (2),
and (5)] are performed in the exact same way as in studying
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FIG. 4. (Color online) (a) LZ tunneling probability PLZ as a
function of the total sweeping time T of linear changes of �, where
�0 = (2π )8.68 kHz and �i = (2π )49.24 kHz. (b) The LZ transition
dynamics for three exemplary cases: the total durations T are 90 μs,
157 μs, and 300 μs, which provide tunneling probabilities of 0.5, 0.3,
and 0.1 after the transitions. Oscillatory behaviors near the transition
points [8,30] are clearly observed and precisely agree with the results
of the numerical calculations.

the LZ transition as described above. Finally, we observe the
interference fringes of the acquired geometric phases after the
second LZ transition [sequence (4)] and adiabatic transfer of
the population to the measurement basis [sequence (5)].

A. Geometric phase accumulation: Sequences (3a),(3b)
and sequences (S1),(S2)

The accumulated geometric phase of each adiabatic eigen-
state {|ψ−〉 , |ψ+〉} is given by

γ± = i

∫ t5

t3

〈ψ± (t)| d

dt
|ψ± (t)〉dt. (5)

The difference of geometric phase between the upper and
lower eigenstates after the evolution is determined only by the
rotation angle ϕ0 = (γ+ − γ−) of Beff as shown in Fig. 2(c),
which is independent of the energy difference, the field
amplitude change, or the duration of the interferometry. The

dynamic phase is also acquired in the adiabatic processes. In
order to erase the dynamical phase, we adiabatically invert only
the state as depicted in Figs. 2(e) and 2(i) in the middle of the
evolution [32]. The time evolution of the adiabatic spin-echo
sequence (S1),(S2) is described as USE = Ua′σxUb′ , where
Ua′(b′) = exp(iξa′(b′)σz) is the dynamic phase accumulated after
(or before) the spin-flip operation (σx). Due to the symmetry
of the spin-echo sequences, the accumulated dynamic phases
are canceled out and the time evolution operation UG for these
adiabatic stages is written as

UG =
(

eiγ− 0

0 eiγ+

)
. (6)

B. Second LZ transition: Sequence (4)

The second LZ transition at [t7,t8] in Fig. 2(a) is identical to
the first LZ transition. The final state |ψ (

tf
)〉 after the second

LZ transition can be expressed in the following equation:

|ψf 〉 = ULZUGUSEULZ |↓〉 , (7)

where the initial state is prepared as the instantaneous
eigenstate with lower energy of the beginning Hamiltonian.
Note that the Stokes phases occurring at the first and second
LZ transitions are effectively canceled out because of the
inversion of the state. Therefore, the final result is insensitive
to the fluctuation of the Stokes phase as well as to the dynamic
phase.

C. Rotation to measurement basis: Sequence (5)

At the final rotation [t8,t9] in Fig. 2(a), we adiabatically
transfer the population of the adiabatic basis to the measure-
ment basis as discussed for the adiabatic process. Finally
the population of the |↑〉 state after the geometric LZS
interferometry can be described by the simple formula

P|↑〉 = P 2
LZ + (1 − PLZ)2 − 2PLZ (1 − PLZ) cos ϕ0. (8)

In the experiment, we set the transition probability PLZ = 1/2,
which simplifies (8) to P|↑〉 = 1

2 (1 − cos ϕ0).
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FIG. 5. (Color online) (a) The interference pattern of the geometric LZS interferometery. The final |↑〉 state populations are determined
only by the geometric phase of the rotation angle ϕ0. The solid black line comes from the theoretical expectation Eq. (8) and the + symbols
are experimental results (the average of 1500 trials). (b) The experimental data and (c) the theoretical estimation of the immunities in the
interference contrast against the errors in the amplitude � and the frequency � of Beff . The amplitude and the frequency errors are scaled by
the ideal � and the minimum frequency gap �0. The experimental figure (b) is constructed using fringe contrasts of 1139 random pairs of the
amplitude �′ and the frequency δ. At a given value of �′ and δ, the reduction of the fringe contrast is inferred from the |↑〉 state population
P (|↑〉) obtained by 1500 repetitions of the experiment with ϕ0 = 0. For several settings of �′ and δ, we check that 1 − P (|↑〉) at ϕ0 = 0 is
equivalent to the contrast within our detection errors (1.5%).
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Figure 5(a) clearly shows that the populations of the |↑〉
state at the end of the interferometry are solely determined by
the geometric phase acquired during the adiabatic evolution,
which is exactly the rotation angle φ0. Figures 5(b) and 5(c)
show the immunity of our interferometry to errors in the
amplitude � and the frequency � which are both parameters
in the effective field Beff . For the amplitude error scaled by
the ideal strength, about ±50% changes reduce the contrast of
the interference pattern by 20%, and for the frequency errors
relative to the minimum gap �0, ±30% offsets decrease the
contrast by 20%. Here, we assume �′ and � + δ to be un-
changed in a single experiment. In this case, the dynamic phase
and Stokes phase are always canceled out, while the probability
of the LZ transition changes between different experiments,
which cause reduction of the interference contrast. We note that
it has been shown that the geometric phase is robust against
fast fluctuations of the control parameters, where the evolution
time is longer than the typical noise correlation time [20].

V. CONCLUSION

In conclusion, we have realized a clear connection between
the geometric phase and LZS interferometry and have observed

the interference of the pure geometric phase. We have demon-
strated the robustness of the interference against variations
of all the parameters in Beff , which shows the possibility of
observing such interference even in more complex systems,
including superconducting qubit systems [23,32], quantum dot
systems [33], NV-center diamond systems [8], etc. Within a
trapped-ion system, our research makes possible an additional
direction for performing multiqubit operations with the ge-
ometric phase in internal states [15,16], which can provide
strong robustness and high fidelity of operation beyond the
current methods that use the geometric phase in harmonic
oscillators [34,35]. We also note that the experimental method
used in the realization can be directly applied to adiabatic
quantum computation.
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