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Abstract—Spectrum sensing is the first and foremost step in 
cognitive radio technology, where sensing efficiency and 
accuracy cannot be simultaneously optimized. Tradeoff 
between the two metrics is represented by sensing duration 
and sensing period, which are among the most important 
parameters in spectrum sensing. Aiming at maximize overall 
available spectrum opportunity, an efficiency-accuracy 
tradeoff is proposed with interference to licensed user under 
specified threshold. Based on Neyman-Pearson criterion, joint 
optimal mathematical model is established and closed-form 
expressions are derived. Optimal sensing parameters can be 
obtained and simulation results verified our proposed scheme. 

Keywords- Cognitive networks; Spectrum sensing; Neyman-
Pearson Criterion; Sensing duration; Sensing period; Missed 
Detection Rate. 

I. INTRODUCTION

With the rapid developments of wireless industry, 
available spectrum resources are nearly running out. But 
demands towards high speed data transmission never rested, 
leading to spectrum crisis in many fields. Several 
investigations conducted by Federal Communication 
Committee in the past ten years reveals that the so called 
spectrum crisis is indeed spectrum paradox [1-4]. The reason 
lies in that traditional, fixed spectrum allocation scheme, 
which renders available spectrum exhausted and heavily 
underutilized, i.e., more than 70% of the allocated spectrum 
are idle in  terms of time and frequency [5]. Cognitive rad io 
offers a promising future for solving the dilemma of 
spectrum paradox and has been widely acknowledged by 
researchers, industry professionals, and academics  since it 
came into being in 2000[6-7]. Spectrum sensing is the first 
and foremost step of cognitive radio networks, fast and 
efficient discovery of spectrum holes rely considerably on 
spectrum sensing. It is noticeable that interference constraint 
is also an important factor when opportunistically accessing 
licensed channel authorizing orig inally to primary user [8]. 
The sensing procedure includes continuous monitoring, soft 
or hard decision (cooperative sensing) and finally conclusion 

of being opportunity or not [9-10]. PHY layer sensing is not 
enough for better sensing performance and MAC layer 
should be involved in sensing issue in order to accurately 
determine the spectrum hole. Current literature mainly focus 
on single objective optimization in determining sensing 
parameters such as sensing duration, sensing periods and 
combining rules (cooperative sensing) [11-12]. Joint 
optimization is seldom mentioned in few literatures except in 
that of [13-15]. The authors of [13] proposed a joint optimal 
sensing method to maximize throughput of secondary user 
under the constraint of detection probability and further 
works in [14] gives a more general case of multiple channel 
scenario. In [15], based on Maximum A Posteriori (MAP) 
criterion, an optimal sensing framework is proposed to 
obtain maximal opportunities in terms of transmission time 
for secondary user. 

This paper investigates the tradeoff between accuracy 
and efficiency of local spectrum sensing based on energy 
detection (ED). In order to suits a variety of application 
environments, renewal processes is introduced to model the 
traffic behavior of primary user. Sensing parameters of 
sensing duration and sensing periods are jointly optimized to 
reach the goal of maximize spectrum opportunity under the 
constraints of interference to primary users, i.e., in terms of 
missed detection probability. Neyman-Pearson criterion is 
employed to get the decision threshold, but we fixes missed 
detection rate instead of constant false alarm rate widely 
used in literature[16-20] and textbooks. Closed form 
expression of sensing time and periods are derived and 
simulation results validate our proposal.  

The rest of the paper is organized as follows: in the 
second section, general energy detection model is reviewed 
and Neyman-Pearson criterion is introduced to obtain 
optimal decision threshold. Section III gives traffic model of 
primary user and joint parameter optimization model is 
established, followed by a tradeoff between sensing accuracy 
and sensing efficiency. We conduct simulation in section IV 
and conclude our work in section V. 
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II. NEYMAN-PEARSON BASED ENERGY DETECTION IN 
SPECTRUM SENSING

A. General Energy Detection Framework  
The energy detection based spectrum sensing problem in  

cognitive radio can be formed as a binary detection problem,
or rather hypothesis testing problem, where 0H means 

primary user is absent and 1H corresponds to the opposite 
side. So, the sensing problem is to differentiate the two 
hypotheses below: 
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Where ( )x t  is the transmitting signal wave of primary  

user with central frequency cf  and bandwidth W. h is the 
channel gain between the transmitter and secondary user, and 

* ( )h x t represents the received signal strength at the radio 
front-end of secondary user. ( )n t is Additive White 

Gaussian Noise with zero  means and variance 2
n� [21-23]. 

Furthermore, we assume transmitting signal is also zero-
mean and 2

n� .variance. Usually, to remove out-band noise 
and normalized noise variance, received signal is first pre-
filtered by ideal band pass filter with transfer function: 
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According to principle of energy detection, the output of 
pre-filter is then squared and integrated over sensing time, 
noted as � to produce a measure of energy of received signal 
waveform. The overall block diagram can be summarized as 
follows:   
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Figure 1. Band-pass processing method of energy detection 

According to Fig.1, the test statistics of energy detector is 
dealt with in a band pass fashion and one can also tackle it in 
a low-pass way. Furthermore, not matter which 
aforementioned method is employed, the processing progress 
is analogue and not easy to implement. In practical, we 
prefer to handle discrete samples obtained by the sampling 
law of Nyquist [24-27]. For the sake of simplicity, we 
assume the sample rate is 2W and total number of samples 
is 2N W�� . It is proved that both band pass and low pass 
method are equivalent and both lead to the same results if 
only energy metrics is concerned [28-31]. So, the discrete 
processing method can be profiled as follows: 
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Figure 2. Energy detection: equivalent discrete case 

Then we carry on our work. The energy detection method 
can be translated into: 
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B. Energy detection based on Neyman-Pearson Criterion
Typically, samples of received signal waveform (noise or 

signal of primary user plus noise) forms a vector,
namely, [ (1), (2), ( )]y y y y N� [ (1)y [ (1)(1) ( )]y(( , each of its element is 
an outcome of (3). According to the principle of Neyman-
Pearson criterion, we now define likelihood ratio function 
(LRF): 
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Where 1( , )f y H )  and 0( , )f y H ) are probability 
density function of energy detector of channel being busy 
and being idle, respectively. The LRF reveals the probability 
ratio of channel being busy over being idle for every possible 
yy [32]. Based on above assumption, all the elements of 
yy are Gaussian distributed, the energy detection distribution 

can be obtained: 
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Where I is unit vector. Now the LRF can be obtained: 
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According to Neyman-Pearson criterion, given specific 
missed detection rate, the best decision threshold is  
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Where LPR�  is threshold value of LPR and can be 
obtained by: 
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Substitute (7) into (6) and we get the decision area of 1H :
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Perform some mathematical processing, we get: 
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Where thV  is the decision threshold of energy detection.
The relationship of threshold value between LRF and ED is 
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2[2ln ln ln(1 )](1 ) /n thN N V� � � ��� � � � � .
According to basic probability theory, one can easily get the 
distribution of � : 
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Where the 2 ( )N� � is the non-central chi-square 
distribution with freedom N. Then the missed detection rate 
is: 
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Where 2 ,
( )

N
F
�

� is the cumulative density function of 

central chi-square distribution with freedom N. Given 
specific missed detection rate th

MP , decision threshold of N-
P based ED is obtain by: 
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Based on (13), missed detection rate can also be obtained: 
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Fig.3 presents the characteristic of Neyman-Pearson 
based energy detection. 

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR in dB

P
f

 

 

Pm = 0.05

Pm = 0.1

Pm = 0.15

Figure 3. Characteristic of Neyman-Pearson based Energy Detection 

III. SYSTEM MODEL

A. Traffic Model of Primary User 
Without losing generality, we assume primary traffic 

obey alternative renewal process instead of Poisson process, 
which can be indicated as below:  

ONT OFFT OFFTONT

Figure 4. Renewal process based primary traffic model 

Suppose primary user randomly appear (ON) and after a 
busy time interval disappeared (OFF) again, let ,ON OFFT T be 
random variables represent the ON time interval and OFF 
time interval, respectively. Then time interval sequence 

1{ }n
ON nT �

�  and 1{ }n
OFF nT �

� represents the realization of ,ON OFFT T ,

respectively, whose means are 1 1,ON OFF� �� � , respectively. Let  
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( ) sup{ : }, { , }i i
nX t n W t i ON OFF� 	 � � ,then according to 

stochastic theory[33-34], ( ), { , }iX t i ON OFF��  forms 
Poisson process. Construct new time interval sequence 
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� ,where , {1,2,3, }n n n
RP ON OFFT T T n� � �  �{1,2,3, } .

Let 0 1
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�
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1{ }n
RP nT �

� forms a new stochastic process:  

( ) sup{ : }nX t n W t� 	              (15) 
Based on renewal theory, ( )X t  is an alternative renewal 

process, whose renewal interval is RPT . Assume 
,ON OFFT T are exponentially distributed, the probability 

density function of RPT  is the convolution of ( )ONf t and 

( )OFFf t : 
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Then the probability density function of RPT is: 
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The derivation of ( )RPf t  is prepared for later use in  
section B.

B. Joint Parameter Optimization Model 
The parameter optimization of spectrum sensing is a 

tradeoff between sensing accuracy and sensing efficiency. In 
fact, such an attitude towards spectrum sensing leads to a 
multi-objective optimization problem. Referring to [16] [17] 
and [18], we formulate our sensing duration and period
tradeoff problem as follows: 
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Where CP is collision possibility of cognitive user and 

primary user, so (1 )CP� is the probability of safely 
completing data transmission. Fig.5 illustrates the possible 
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collision cases, where   is the number of collision occurred 
during transmission of secondary user. Then the 
corresponding optimization model is: 
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Till now, CP is yet not presented. Based on the result of 

( )RPf t  derived in section A, CP can be obtained by means 
of calculating the probability of collision.  

� �

� �

(a) (b)

(c) (d)

0 � 1,  case I �

T �� T ��

T ��T ��
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OL
cT

OL
bTt

Figure 5. Possible primary-secondary user collision when secondary user 
access spectrum hole 

It’s easy to see that only sub-figure (a) is the desirable 
probability of (1 )CP� : 

0 ( )RPRES T T �� " � �       (21) 

Where ( )RPRES T  is residual life of renewal interval of 

RPT , according to [35], we have : 
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The probability of residual life of renewal life is [35]: 
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Now the final optimization model can be formed as 
follows: 
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C. Trade-off between sensing accuracy and sensing 
efficiency 

Since accuracy and efficiency cannot be obtained, 
tradeoff needs to be made to find the optimal results of 
spectrum opportunity. From optimal model above, we now 
carry on to get the final optimal sensing parameters. 

For the multi-objective optimization problem, one can 
first fixes one parameter and get the first optimal value, then 
fixes the second parameter to get the second optimal value. 
Such a deed is not pervasive in solving every similar 
problem but it works well with us since optimal value can be 
obtained with whole positive real numbers and optimal pair 
of values surely exists. We now perform derivate with 
respect to � and T , respectively: 
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The maximal value can be got by letting both of (26) be 0. 
Then we have: 

2 2

2 2

1 2
, ,

1 2
2 , ,

1( , ) [ ]exp( ) [(1 ) ( ) / )] 0

( , ) ( )exp( ) [(1 ) ( ) / )] 0

M n OFFN N
OFF OFF

M n OFFN N
OFF OFF

T TT F F P P
T

T TT F F P P
T T T

� �

� �

� �� � � �
� � �

� � �� � � �
� �

�

�

# � �� � � � � � �
#

� # � �
 � � � � �

#�

(27)

By solving equations of (27), one can get the optimal 
sensing duration and sensing periods.  

IV. NUMERICAL RESULTS

Based on the proposed tradeoff scheme, we conduct our 
simulation with Matlab 2010a. In order to show clearly the 
scheme effect, spectrum opportunity is set relatively larger to 
offer more spectrum holes for secondary access. Simulation 
parameters are set below in Table 1. 

TABLE I. SIMULATION PARAMETER SETTING

Parameter Value
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2

ON

OFF

M

n

P
W
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�

�
�
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0.1
10
  1
10

KHz

�
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Fig.6 illustrates the spectrum opportunity secondary user 
can get with various spectrum sensing duration. The curve is 
gradually increasing first and then starts to decrease, so 
maximal value does exist. For this scenario, the optimal 
value lies between 3 and 5, according to different sensing 
periods. For different sensing periods, optimal sensing 
duration is not the same, but the optimal points do exist. 

1 2 3 4 5 6 7 8 9 10 11 12

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Sensing Duration

S
pe

ct
ru

m
 O

pp
or

tu
ni

ty

 

 

T=60

T=80

T=100

Figure 6. Spectrum opportunity with various sensing duration 

Fig.7 gives the spectrum opportunity secondary user can 
get with various spectrum sensing periods and the peak 
points appears between 120 and 160, according different 
sensing duration. The curve of this figure is somewhat 
similar to that of Fig.6, the reason of this is we always 
consider one variable by means of fixing another.  
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Figure 7. Spectrum opportunity with various sensing periods 

Fig.8 and Fig.9 present the joint optimal results with 
various SRN ration at the radio front-end of secondary user 
and missed detection rate, respectively. From this figure, we
can safely arrive at the conclusion that given received signal 
strength and interference constraints, one can get the optimal 
sensing parameters for energy detection based on Neyman-
Pearson criterion.
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Figure 8. Optimal sensing parameter optimization with different SNR 
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Figure 9. Optimal sensing parameter optimization with different missed 
detection rate 

V. CONCLUSION

Spectrum sensing aims to find spectrum holes as much as 
possible, as fast as possible and as reliable as possible. 
Unfortunately, these metrics are contradictive with each 
other, partially improve one metric always results in 
performance degeneration of other metrics. This paper is the 
very instance of such conclusion. Based on Neyman-Pearson 
criterion, this paper models the spectrum sensing problem to 
be a joint optimization problem. Tradeoff is performed in 
setting sensing duration and sensing period to reach a 
maximal spectrum opportunity for secondary users. Future 
works includes complexity analysis of proposed tradeoff 
scheme and other performance metrics optimization. 
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