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Generation of Massive Entanglement Through Adiabatic Quantum Phase Transition

in a spinor condensate
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We propose a method to generate massive entanglement in a spinor Bose-Einstein condensate from
an initial product state through adiabatic sweep of magnetic field across a quantum phase transition
induced by competition between the spin-dependent collision interaction and the quadratic Zeeman
effect. The generated many-body entanglement is characterized by the experimentally measurable
entanglement depth in the proximity of the Dicke state. We show that the scheme is robust to
practical noise and experimental imperfection and under realistic conditions it is possible to generate
genuine entanglement for hundreds of atoms.

Generation of massive entanglement, besides its inter-
est for foundational research of quantum theory, is of
great importance for applications in quantum informa-
tion processing and precision measurements. Entangle-
ment is a valuable resource that can be used to enhance
the performance of quantum computation, the security
of quantum communication, and the precision of quan-
tum measurements. For these applications, it is desir-
able to get as many particles as possible into entangled
states. However, entanglement is typically fragile and
many-particle entangled states can be easily destroyed
by decoherence due to inevitable coupling to the environ-
ment. As an experimental record, so far fourteen qubits
carried by trapped ions have been successfully prepared
into genuine entangled states [1]. Pushing up this number
represents a challenging goal in the experimental frontier.

The Bose Einstein condensate of ultracold atoms is
in a pure quantum mechanical state with strong col-
lision interaction. In a spinor condensate [2–4], the
spin-dependent collision interaction can be used to pro-
duce spin squeezing [5, 6], which is an indicator of
many-particle entanglement [8]. Spin squeezing has
been demonstrated in condensates in recent experiments
through spin-dependent collision dynamics [6, 7]. A
squeezed state is typically sensitive to noise and genera-
tion of substantial squeezing requires accurate control of
experimental systems, which is typically challenging. In
quantum information theory, the Dicke states are known
to be relatively robust to noise and they have important
applications for quantum metrology [9] and implementa-
tion of quantum information protocols [10]. For instance,
the three-particle Dicke state, the so-called W state, has
been proven to be the most robust entangled state under
the particle loss [11]. Because of their applications and
nice noise properties, Dicke states represent an important
class of many-body states that are pursed in physical im-
plementation. For a few particles, Dicke states have been
generated in several experimental systems [12] .

In this paper, we propose a robust method to generate
massive entanglement in the proximity of many-particle
Dicke states through control of adiabatic passage across
a quantum phase transition in a spinor condensate. Us-
ing conservation of the magnetic quantum number, we

show that sweep of the magnetic field across the polar-
ferromagnetic phase transition provides a simple method
to generate many-body entanglement in this mesoscopic
system. The generated many-body entanglement can
be characterized through the entanglement depth, which
measures how many particles have been prepared into
genuine entangled states [8, 13]. The entanglement depth
can be easily measured experimentally for this system
through a criterion introduced in Ref. [14]. We quantita-
tively analyze the entanglement production through the
entanglement depth and show that the scheme is robust
under noise and experimental imperfection. The scheme
works for both the ferromagnetic (such as 87Rb ) and the
anti-ferromagnetic (such as 23Na ) condensates. For the
anti-ferromagnetic case, we use adiabatic quantum phase
transition in the highest eigenstate of the Hamiltonian
instead of its ground state.

The system under consideration is a ferromagnetic (or
anti-ferromagnetic) spin-1 Bose Einstein condensate un-
der an external magnetic field, which has been realized
with 87Rb (or 23Na) atoms in an optical trap[4]. The
Hamiltonian for the spin-1 condensate can be divided
into two parts H = H0+Hi. The non-interacting Hamil-
tonian H0 and the interaction Hamiltonian Hi take re-
spectively the following forms [2, 4]

Ĥ0 =
∑

m,n=0,±1

ˆ

drψ̂†
m[−

~
2∇2

2M

+ U(r) − p(fz)mn + q(f2
z )mn]ψ̂n, (1)

Ĥi =
1

2

ˆ

dr[c0 : n̂2(r) : +c1 : F̂
2(r) :]. (2)

whereψ̂m(r) denote the bosonic filed operators with the
spin index m = 1, 0,−1, corresponding to annihilation
of an atom of mass M in the Zeeman state m on the
hyperfine level F = 1. The atoms are trapped by the
spin-independent optical potentialU(r). The linear Zee-
man coefficient p = −gµBB, where g is the Landé g
factor, µB is the Bohr magneton, and B is the ex-
ternal magnetic field. The quadratic Zeeman coeffi-

cient q = (gµBB)2

∆Ehf
, where ∆Ehf is the hyperfine en-

ergy splitting. The symbol fµ (µ = x, y, z) denotes
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µ-component of the spin-1 matrix, and (fµ)mn is the
corresponding (m,n) matrix element. The particle den-

sity operator n̂(r) and the spin operator F̂ (r) are de-

fined respectively by n̂(r) =
∑1

m=−1
ˆ
ψ†
m(r)ψ̂m(r) and

F̂µ(r) =
∑1

m,n=−1(fµ)mn
ˆ
ψ†
m(r)ψ̂n(r). The interaction

coefficients c0 = 4π~2(a0 + 2a2)/3M , c1 = 4π~2(a2 −
a0)/3M , where as is the s-wave scattering lengths for
two colliding atoms with total spin s. We have c1 < 0
(c1 > 0) for 87Rb (23Na), which corresponds to ferro-
magnetic (anti-ferromagnetic) interaction, respectively.

For typical spinor condensates in experiments such
as87Rb and 23Na, we have c0 ≫ c1 , so the
spin-independent interaction dominates over the spin-
dependent interaction. In this case, to describe the
ground state in a spin-independent optical trap U(r), it
is good approximation to assume that different spin com-

ponents ψ̂m(r) of the condensate take the same spatial
wave function φ(r). This is the well-known single mode
approximation [3, 4], and under this approximation we

have ψ̂m ≈ âmφ(r), (m = 1, 0,−1), where am is the anni-
hilation operator for corresponding spin mode and φ(r)
is normalized as

´

dr|φ(r)|2 = 1. We consider a spinor
condensate with a fixed total particle number N as in ex-
periments and neglect the terms in the Hamiltonian that
are constant under this condition. The spin-dependent
part of the Hamiltonian is then simplified to

H = c′1
L
2

N
+

1
∑

m=−1

(qm2 − pm)a†mam (3)

where we have introduced the spin-1 angular momen-
tum operator Lµ =

∑

m,n a
†
m(fµ)mnan and defined

c′1 = c1N
´

dr|φ(r)|4/2. The linear Zeeman term
∑1

m=−1 pma
†
mam = pLz typical dominates in the Hamil-

tonianH , however, this term commutes with all the other
terms in the Hamiltonian, and if we start with an initial
state that is an eigenstate of Lz, the linear Zeeman term
has no effect and thus can be neglected. In this paper, we
consider an initial state with all the atoms prepared to
the level |F = 1,m = 0〉 through optical pumping, which
is an eigenstate of Lz. The system remains in this eigen-
state with magnetization Lz = 0, and the effective spin
Hamiltonian becomes

H = c′1
L
2

N
− qa†0a0. (4)

The ratio q/c′1 is the only tunable parameter in this
Hamiltonian, and depending on its value, the Hamil-
tonian has different phases resulting from competition
between the quadratic Zeeman effect and the spin-
dependent collision interaction.

We first consider the ferromagnetic case with c′1 < 0.
For the initial state, we tune up the magnetic field to
make the quadratic Zeeman coefficient q ≫ |c′1|. In this

limit, the second term −qa†0a0 dominates in the Hamil-
tonian H . The ground state of the Hamiltonian is given

by an eigenstate of a†0a0 with the maximum eigenvalue
N . This ground state can be prepared by putting all the
atoms to the Zeeman level |F = 1,m = 0〉through optical
pumping. Then we slowly ramp down the magnetic field
to zero. From the adiabatic theorem, the system remains
in the ground state of the Hamiltonian H and the final
state is the lowest-energy state ofHF = c′1L

2/N , which is
the Dicke state |L = N,Lz = 0〉 that maximizes L

2 with
the eigenvalue L(L+1). The Dicke state |L = N,Lz = 0〉
is a massively entangled state of all the particles.

The above simple argument illustrates the possibility
to generate massive entanglement through an adiabatic
passage. To turn this possibility into reality, however,
there are several key issues we need to analyze carefully.
First, we need to know what is the requirement of the
sweeping speed of the parameter q to maintain an adia-
batic passage. In particular, this adiabatic passage goes
through a quantum phase transition where the energy
gap approaches zero in the thermodynamical limit. So
the evolution cannot be fully adiabatic for a large sys-
tem. It is important to know how the energy gap scales
with the particle number N for this mesoscopic system.
Second, due to the non-adiabatic correction and other
inevitable noise in a real experimental system, the final
state is never a pure state and quite different from its
ideal form |L = N,Lz = 0〉. For a many-body system
with a large number of particles, the state fidelity is al-
ways close to zero with presence of just small noise. So
we need to analyze whether we can still generate and con-
firm genuine many-particle entanglement under realistic
experimental conditions.

To analyze the entanglement behavior, first we quanti-
tatively calculate the phase transitions during this adia-
batic passage and analyze how the energy gap scales with
the particle number N . The mean-field phase diagram
for the Hamiltonian (3) is well known [4]. However, in
typical mean field calculations one fixes the parameters
p, q to obtain the ground state of the Hamiltonian (3),
and this ground state in general has varying magnetiza-
tion 〈Lz〉. For our proposed adiabatic passage, we should
fix Lz = 0 and find the ground state of the Hamiltonian
(4) instead of (3) as the linear Zeeman term is irrelevant.
We perform exact numerical many-body calculation in
the Hilbert space with Lz = 0 to find the ground state
of the Hamiltonian (4) and draw the condensate frac-
tion in the the Zeeman level |F = 1,m = 0〉, N0/N with

N0 ≡
〈

a†0a0

〉

, in Fig.1 as we ramp down the parameter q.

Control of the magnetic field can only sweep the param-
eter q from the positive side to zero. Further sweep of q
to the negative side can be obtained through ac-Stack ef-
fect induced by a microwave field coupling the hyperfine
levels |F = 1〉 and |F = 2〉, as demonstrated in experi-
ments [15]. The curve in Fig. 1 shows two second-order
phase transitions at the positions q/ |c′1| = ±4 , where
the condensate fraction N0/N drop first from 1 to a pos-
itive number r (0 < r < 1) and then to 0. The transition
point at q/ |c′1| = 4 agrees with the mean field prediction,
however, there is a significant discrepancy for the tran-
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Figure 1: The order parameter
√

〈N0/N〉 shown as a function
of the quadratic Zeeman coefficient q in the unit of |c′1| for
the total atom number N = 10

5. Two second-order phase
transitions take place at q/ |c′1| = ±4.

sition at q/ |c′1| = −4 . Mean field calculation under a
fixed parameter p = 0 predicts a transition at q/ |c′1| = 0,
where the magnetization 〈Lz〉 abruptly changes [4]. For
the adiabatic passage considered here, due to the conser-
vation of Lz the transition at q/ |c′1| = 0 is postponed to
the point q/ |c′1| = −4.

Besides prediction of the phase transition points, the
exact many-body calculation can show evolution of en-
tanglement for the ground state and scaling of the energy
gap with the particle number N at the phase transition
points. The scaling of the energy gap is important as it
shows the relevant time scale to maintain the adiabatic
passage. In Fig. 2(a), we show the energy gap ∆ (de-
fined as the energy difference between the ground state
and the first excited state) in the unit of |c′1| as a func-
tion of q/ |c′1| for N = 104 particles. The gap attains
the minimum at the phase transition points and is sym-
metric with respect to the transitions at q/ |c′1| = ±4 .
In Fig. 2(b), we show how the energy gap at the phase
transition point scales with the particle number N . In
the log− log plot, the points are on a line, which can be
well fit with the polynomial scaling ∆ = 7.4N−1/3. The
energy gap decreases slowly with increase of the particle
number N , which suggests it is possible to maintain an
adiabatic passage for typical experimental systems with
N ∼ 105.

With this understanding, we now turn to our main
task to characterize entanglement generation with this
adiabatic passage. For this purpose, we need to have
a quantity to measure entanglement in the proximity of
the Dicke state and this measure should be accessible
to experimental detection. Due to non-adiabatic correc-
tions and inevitable noise in real experiments, we cannot
assume that the system is in a pure state and the en-
tanglement measure should work for any mixed states.
Many-body entanglement can be characterized in differ-
ent ways, and a convenient measure is the so-called en-
tanglement depth which measures how many particles
in an N -particle system have been prepared into gen-
uine entangled states given an arbitrary mixed state of
the system [8, 13, 14]. A quantity to measure the en-
tanglement depth for N spin-1/2 particles has been pro-
vided in Ref. [14] based on measurements of the collec-
tive spin operators. It is straightforward to generalize
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Figure 2: (a) The energy gap ∆ in the unit of |c′1| shown as
a function of q/ |c′1| with the total particle number N = 10

4.
(b) The stars show the scaling of the energy gap ∆/ |c′1| at
the phase transition point with the particle number N in the
log-log plot. The solid line is a linear fit to the data points
with ∆ = 7.4N−1/3.

this quantity to the case of N spin-1 particles. For N
spin-1 particles, the collective spin operator is defined

by L =
∑N

i=1 li, where li denotes the individual spin-
1operator. In terms of the bosonic mode operators, the
collective spin operator has the standard decomposition
Lµ =

∑

m,n a
†
m(fµ)mnan (µ = x, y, z; m,n = 0,±1). To

characterize entanglement in the proximity of the Dicke
state |L = N,Lz = 0〉, we measure the quantity

ξ =

〈

L2
x

〉

+
〈

L2
y

〉

N(1 + 4 〈(∆L2
z)〉)

(5)

If ξ > m, from the arguments that lead to theorem 1
of Ref. [14] we conclude that the system has at least
genuine m-particle entanglement (i.e., the entanglement
depth is bounded by m from below). For the ideal
Dicke state |L = N,Lz = 0〉, one can easily verify that
ξ = N + 1 > N , so all the N particles are in a genuine
entangled state. The final state of real experiments is in
general a complicated mixed state which is impossible to
be read out for many-particle systems. The power of the
measure in Eq. (5) is that it gives an experimentally con-
venient way to bound the entanglement depth in this case
through simple detection of the collective spin operators
even through the system state remains unknown.

Now we show how the entanglement measure defined
in Eq. (5) evolves when we adiabatically sweep the pa-
rameter q in the Hamiltonian (4). We ramp down the
parameter q linearly from q = 6 |c′1| to 0 with a constant
speed, starting from the initial product state with all the
particles in the level |F = 1,m = 0〉. The entanglement
depth ξ (in the unit of N) of the final state is shown in
Fig. 3(a) and 3(b) as a function of the sweeping speed v

(in the unit of |c′1|
2

by taking ~ = 1) for N = 103 and
N = 104, respectively. We can see that the entangle-
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Figure 3: The normalized entanglement depth ξ/N (solid
lines) and the excitation probability Pe (star points) for the
final state shown as functions of the sweeping speed v (in the

unit of |c′1|
2
) for the number of particles N = 10

3 (a) and
N = 10

4 (b). The parameter q in the Hamiltonian (4) is
ramped down linearly from q = 6 |c′1| to 0 at a constant speed
v, starting from the initial product state with all the particles
in the level |m = 0〉.
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Figure 4: Scaling of the required sweeping time T (in the unit
of 1/ |c′1|) with the particle number N as we fix the entangle-
ment depth of the final state to be0.3N (bottom curve), 0.5N
(middle curve), and0.7N (top curve), respectively.

ment depth increases abruptly from a few to the order of

N when the speed v decreases below |c′1|
2
. In the same

figure, we also show the excitation probability of the fi-
nal state (the probability to be not in the ground state).
For a small number of particles, the excitation probabil-
ity typically correlates with the entanglement depth, and
they jump roughly around the same value of the sweep-
ing speed. However, for a large number of particles (e.g.,
N ≥ 104), we can have the entanglement depth of the
order of N while the excitation probability is near the
unity as shown in Fig. 3(b). This indicates that the en-
tanglement in the proximity of the Dicke state is quite
robust. Even when the sweep is not fully adiabatic and
most of the atoms are excited to the low-lying excited
states (meaning that the state fidelity decrease to almost
zero), we can still have the entanglement depth close to N
(meaning all the particles are still genuinely entangled).

As the energy gap ∆ at the phase transition point de-
creases with the atom number N , one expects that the
required sweeping time T to get substantial entangle-
ment increases with N . However, this increase is very
slow. First, ∆ increases slowly with N by the scaling
∆ ∝ N−1/3 as shown in Fig. 2(b). Second, for a large

N even when ∆T < 1 and a significant fraction of the
atoms get excited during the sweep, we can still observe
substantial entanglement as the entanglement depth of
the low-lying excited states is still high as shown in Fig.
3(b). To see the the quantitative relation between the
required sweeping time T and the particle number N , we
fix the entanglement depth of the final state to be a sig-
nificant number (e.g., with ξ = 0.3N, 0.5N, or 0.7N) and
draw in Fig. 4 the scaling of T (in the unit of 1/ |c′1|) as
a function of N . When N ≥ 103, the curve of |c′1|T is
almost flat, increasing by a modest 20% when the atom
number grows by an order of magnitude.

All the calculations above are done for the ferromag-
netic case with c′1 < 0 by assuming an adiabatic sweep
of the Hamiltonian (4) in its ground state. For the anti-
ferromagnetic case with c′1>0 (such as 23Na), we can
perform an adiabatic sweep along the ground state of
the Hamiltonian −H (or the highest eigenstate of the
Hamiltonian H in Eq. (4)). Then, all the calculations
above equally apply to the anti-ferromagnetic case. The
only difference is that initially the parameter q needs to
be set to the negative side with q = −6 |c′1| when the
atoms are prepared into the level |m = 0〉. As mentioned
before, q can be switched to both the positive and the
negative sides, through ac-Stack shift from a π-polarized
microwave field that couples the hyperfine levels |F = 1〉
and |F = 2〉 [15]. An advantage of using 23Na instead of
87Rb is that it is has a larger spin-dependent collision rate
|c′1| and thus allows a faster sweep of the parameter q. If
we take the peak condensate density about 1014cm−3,
c′1/~ is estimated to be about −2π×7Hz for 87Rb atoms
and 2π × 50Hz for 23Na atoms.

Finally, we briefly discuss how the noise influence en-
tanglement generation in this scheme. First, in the prox-
imity of the Dicke state the entanglement depth mea-
sured through Eq. (5) is very robust to the dephasing
noise (dephasing between the Zeeman levels caused by,
e.g., a small fluctuating magnetic field). As shown in Ref.
[14], even with a dephasing error rate about 50% for each
individual atom, the entanglement depth ξ remains about
N/2, which is still large. The entanglement depth is more
sensitive to the bit-flip error that increases

〈

∆L2
z

〉

in Eq.
(5), which can be caused by imperfect preparation of the
initial state, atom loss during the adiabatic sweep, or
imperfection in the final measurement of the collective
spin operators. The detection error can be corrected
through simple data processing using the method pro-
posed in Ref. [16] as long as its error rate has been cali-
brated. The initial state |F = 1,m = 0〉 can be prepared
efficiently through optical pumping and remaining atoms
in the |F = 1,m = ±1〉 levels can be blown away through
microwave coupling to the |F = 2〉 levels that are unsta-
ble under atomic collisions. The atomic loss should be
small as the sweeping time T is assumed to be much
shorter compared with the life time of the condensate.
Only loss of atoms in the components |F = 1,m = ±1〉
can increase the fluctuation

〈

∆L2
z

〉

. Assume the loss rate

is p during the sweep, the resultant
〈

∆L2
z

〉

is estimated
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by
〈

∆L2
z

〉

∼ Np(1 − p)/6. For a large number of atoms
with Np≫ 1, the entanglement depth in Eq. (5) is then
estimated by ξ ∼ 3/ (2p) . If we take p about 1%, it is
possible to prepare a remarkable number of hundreds of
atoms into genuine entangled states.
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