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Quantum random number generators can provide genuine randomness by appealing to the fundamental
principles of quantum mechanics. In general, a physical generator contains two parts—a randomness
source and its readout. The source is essential to the quality of the resulting random numbers; hence, it
needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness.
However, in practice, the source is a complicated physical system, such as a light source or an atomic
ensemble, and any deviations in the real-life implementation from the theoretical model may affect the
randomness of the output. To close this gap, we propose a source-independent scheme for quantum random
number generation in which output randomness can be certified, even when the source is uncharacterized
and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source.
For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into
account the finite-key effect with the composable security definition. In the limit of large data size, the
length of the input random seed is exponentially small compared to that of the output random bit.
In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme
and achieve a randomness generation rate of over 5 × 103 bit=s.
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I. INTRODUCTION

Random numbers play important roles in many fields,
such as scientific simulation [1], cryptography [2], testing
fundamental principles of physics [3], and lotteries.
Different applications require different levels of random-
ness. In cryptography, input randomness is one of the
security foundations in communication protocols. In fact,
many commercial products for generating random numbers
exist in the market; such products function under various
information-theoretical or computational assumptions.
In computer science, random number generators (RNGs)

are based on generating pseudorandom numbers [4] in
which a random seed is expanded according to some
deterministic procedure. By definition, these RNGs pro-
duce sequences that are not truly random. Although these
sequences usually attain a perfect balance between 0s and
1s, strong long-range correlations exist which undermine
cryptographic security and may cause unexpected errors
in scientific simulations.
In contrast, hardware RNGs originating from physical

processes, such as noise in electric devices, nuclear fission,
and circuit and radial decay [5–11], are believed to be able
to offer better random numbers. However, it is unclear
whether they are truly random because these RNGs

normally involve complicated classical physics processes
that produce no randomness.
To solve this problem, the new field of quantum random

number generators (QRNGs) has emerged. These generators
stem from the uncertainty principle in quantum mechanics
and are therefore inherently random. Existing QRNG
methods include single-photon detection [12–15], vacuum-
state fluctuations [16], and quantum-phase fluctuations [17].
These approaches have developed to the point that some
commercial QRNG products are available [15,18–21].
A typical QRNG can be decomposed into two modules:

a randomness source (quantum-state preparation) and its
readout (measurement), as shown in Fig. 1. In general, the
source emits quantum states that are superpositions of the
measurement basis. The output (raw) random numbers are
the measurement results. In many QRNGs, a short random
seed is required to assist state preparation or measurement.
As an example, consider a simple QRNG that projects

the quantum state jþi ¼ ðjHi þ jViÞ= ffiffiffi
2

p
emitted from a

single-photon source on the horizontal and vertical polari-
zation bases jHi, jVi. This QRNG can be divided into two
modules, as shown in Fig. 1(a). Randomness is guaranteed
by the intrinsically probabilistic nature of quantum physics.
Hereafter, we denote jHi, jVi (jþi, j−i) as the Z-basis
(X-basis) eigenstates.
Existing practical QRNGs suffer from security loopholes

if the devices are not perfect. In the source readout model,
the measurement device can normally be trusted because of
its simple structure. For instance, in the previous example,
the measurement is a simple demolition measurement
on the polarization basis. In contrast, the randomness
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contained in a source, such as a laser or an atomic ensemble,
is normally difficult to characterize completely. If the source
malfunctions and emits classical signals instead of quantum
ones, the outputs may not be truly random. Consider the
worst-case scenario in which the devices are designed or
controlled by an adversary Eve. Eve can employ a pseudo-
RNG to output a fixed (from Eve’s viewpoint) string that
still appears random to Alice. More concretely, in the
example of the previous paragraph, when a dishonest source
emits Z-basis instead of X-basis eigenstates for the Z-basis
measurement, the output will just be a fixed string, as shown
in Fig. 1(b). From this perspective, with given measurement
devices, justifying the randomness in a source is crucial to
generating randomness.
Most existing QRNGs use complicated physical models

[17,22] to quantify their sources. For example, the dimension
of the source is sometimes assumed to be a fixed known
number [23]. The underlying models implicitly assume
the existence of randomness in the first place, but this
assumption cannot be verified experimentally. Therefore, to
achieve truly reliable randomness, there is a strong motiva-
tion to avoid the use of such models. Note that removing
the dimension assumption is the key challenge to the
analysis for device-independent scenarios.
Thus, a QRNG without trusting the source (source

independent) is both theoretically and practically meaningful
and greatly needed. A device-independent QRNG [24] can
generate randomness without having to trust the devices.
This type of QRNG requires a short seed for device testing,
which is the reason why they are also called randomness
expansions [25–27]. By observing the violation of a certain
Bell’s inequality, such as the Clauser-Horne-Shimony-Holt
inequality [28], one can guarantee the presence of
randomness without any assumptions about the source

or the measurement device. The main drawback of device-
independent QRNGs is that they are not loss tolerant,
which typically imposes very severe requirements on
experimental devices. Furthermore, this type of QRNG
generates random numbers at rates that are very low for
practical applications. The highest speed of this type of
QRNG has, so far, been reported to be 0.4 bps [29].
Here, we propose a source-independent QRNG

(SIQRNG) scheme that is loss tolerant and hence highly
practical. In particular, our scheme allows the source to
have arbitrary and unknown dimensions. The loss-tolerance
property enables potential high-loss implementations of our
scheme, such as in integrated optic chips or with inefficient
but cheap single-photon detectors. We analyze the random-
ness of the scheme based on complementary uncertainty
relations. Our analysis takes into account several practical
issues, including finite-key-size effects, multiphoton com-
ponents in the source, initial seed length, and losses. The
analysis combines several ingredients from the security
proof of quantum key distribution (QKD), a rich subject
that has developed over the last two decades. These
ingredients include phase error correction [30], random
sampling [31], and the squashing model [32]. Since the
squashing model shows the equivalence between threshold
detectors and qubit detectors [32], our scheme allows the
source to have an unfixed finite dimension as well as an
infinite dimension. For simplicity, in the rest of the paper, we
assume a two-level (bit) output system. All our techniques
can be directly applied to cases with more outputs.
In many theoretical aspects, there are strong similarities

between QKD and QRNG. For example, the security
definition in QKD can be applied to the definition of
randomness in QRNG, and similar proof techniques can be
applied to both, as we do in the later analysis. However,
in some practical scenarios, there are subtle differences
between the two. For example, local randomness is free
in QKD but not in QRNG. A more crucial difference lies
in the trustworthy components of QKD and QRNG, in
practice. In QKD, the sender and receiver are two remotely
separated parties, so an adversary could intercept and
resend the transmitted signals in the quantum channel
and then take advantage of the imperfections of measure-
ment devices to perform attacks. Thus, compared to the
source, the measurement device becomes a more vulnerable
part of a QKD system.
Different from QKD, source and measurement devices in

QRNG are normally local, so attacks aimed at imperfec-
tions in measurement devices seem more artificial than
practical. The main purpose in studying the untrusted
device scenario in QRNG is to address device imperfec-
tions. This subtle difference may lead to deviations between
QKD and QRNG. For instance, it is reasonable to assume
that Alice can characterize the measurement device for
QRNG well and trust it during random number production.
Furthermore, compared to QKD, the source in QRNG

FIG. 1. Illustration of a generic QRNG setup in which we take
photon polarization as the example. H and V refer to horizontal
and vertical polarizations, respectively. PBS refers to a polarizing
beam splitter. (a) The source functions normally (trusted) and sends
superpositions of H and V polarizations, which offer quantum
randomness. (b) The source malfunctions (untrusted) and sends H
and V polarizations in a predetermined order, which should output
no genuine randomness. From the measurement result viewpoint,
one cannot distinguish these two cases.
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involves a complicated design so that the QRNG is fast
and convenient. For instance, in a recent experiment [33],
a QRNG was demonstrated based on measuring light-
emitting diode (LED) light with a mobile phone. Such
sources are hard to characterize and could possibly be
manipulated by Eve, but one can reasonably trust one’s
own mobile phone. From this viewpoint, the source in
QRNG is at least as problematic as the measurement. Thus,
in our work, we take the reasonable assumption that the
measurement device can be characterized well but not the
source. Note that the opposite scenario, where the source
rather than the measurement device of QRNG is trusted,
has also been recently investigated [34].
To show the practicality of the proposed scheme, we

provide a proof-of-principle experimental demonstration
by simply modifying a QKD system. We experimentally
examine the effect of different detector efficiencies on
the randomness generation rate. Under a practical total
transmittance, a high randomness generation rate can be
achieved.
The organization of the paper is as follows. In Sec. II, we

present our protocol. In Sec. III, we analyze the protocol
and calculate the min entropy of its output after inves-
tigating various practical scenarios. In Sec. IV, an exper-
imental demonstration of our protocol is performed.
Finally, we conclude in Sec. V.

II. PROTOCOL

A schematic of our SIQRNG protocol is shown in
Fig. 2(a). Here, we take an optical implementation as

the example, as shown in Fig. 2(b). All our results apply
similarly to other implementation systems. Quantum sig-
nals from the source first go through a modulator that
actively chooses between the X and Z bases. Then, a
polarizing beam splitter and two threshold detectors per-
form a projective measurement. Since two detectors are
used, there are four possible outcomes: no clicks (losses),
two single clicks, and double clicks. This implementation is
equivalent to the schematic setup of the squashing model
as discussed in Sec. III A. The details of the protocol are
presented in Fig. 3.

III. ANALYSIS

In this section, we analyze the randomness output of
the SIQRNG protocol. Strictly speaking, like device-
independent QRNGs, our scheme is a randomness expan-
sion scheme, in which a random seed is used to generate

FIG. 2. (a) Measurement model for SIQRNG. The quantum
state first passes through a squasher and is projected as either a
qubit or a vacuum. Then, the output qubit is measured in the X or
Z basis chosen by an active switch. There are two outcomes for
each basis measurement, corresponding to the two eigenstates
of the basis. (b) An optical implementation of the SIQRNG in (a),
as discussed in Sec. III A. Here, Pol-M refers to a polarization
modulator, PBS refers to a polarizing beam splitter, and D0 and
D1 are the threshold detectors.

FIG. 3. Source-independent QRNG with the finite-data-size
effect. The results are proven in Sec. III.
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extra independent randomness. The procedure of param-
eter estimation is an analog to the phase error rate
estimation in QKD postprocessing [36]. Randomness
extraction is mathematically equivalent to privacy ampli-
fication in QKD. The difference between the biased
measurement used here and the biased-basis choice
QKD protocol [39] is that the number of X-basis mea-
surements is a constant in our case, whereas in QKD,
this number must go to infinity when the data size is
infinitely large.

A. Squashing model

In the SIQRNG scheme, we assume that measurement
devices are trusted and well characterized. The key
assumption here is that the measurement setup is compat-
ible with the squashing model. In other words, a measure-
ment can be treated in two steps. First, the (unknown
arbitrary-dimensional) signal state emitted from the source
is projected to a qubit or vacuum. The projection is called a
squasher, as shown in Fig. 2(a). Then, the squashed qubits
are postselected by discarding the vacua and measuring
them in the X or Z basis. This assumption can be satisfied
when threshold detectors are used with random bit assign-
ments for double clicks [32]. For the protocol described
in Sec. II, the X-basis measurement results are used for
parameter estimation and are then discarded in postpro-
cessing. Thus, the random assignment can be replaced
by adding half of the double-click ratio to the X-basis
error rate.
In practice, it is a challenge to verify whether a meas-

urement setup is compatible with the squashing model.
Much effort has been put into this question [40]. The key
point here is to make the two detectors respond equally to
(four) different qubits and hence make the measurement
device basis independent [41]. This can be done by adding a
series of filters (including spectrum and temporal filters)
before the threshold detectors to ensure that the input states
stay within a proper set of optical modes [42], in which the
detectors have the same efficiencies [32,41]. One can further
assume that Alice uses a trusted source to calibrate the
measurement devices beforehand; that is, Alice performs a
quantum measurement tomography. A similar measurement
calibration procedure should be done in most current QKD
and QRNG realizations. Here, we emphasize that the
verification of the squashing model does not affect the
source-independent property of our scheme. Thus, we leave
detailed investigation on validating the measurement setting
for future works.
Similar to the QKD case [32], we can assume that the

squashing operator is held by Eve in the randomness
analysis. By this, we mean that Eve can choose a valid
operator, so long as the output is a qubit or a vacuum. In the
following discussions, we focus on the squashed qubits. We
need to determine the min entropy associated with these
qubits in the Z-basis measurement.

B. Complementary uncertainty relation

First, we show intuitively why the protocol works.
According to quantum mechanics, the outcome of projec-
ting the state jþi on the Z basis is random. Of course, in
reality, because of device imperfections, Alice would never
obtain a perfect state of jþi. Now, the key question for
Alice becomes how to verify that the source faithfully emits
the state jþi. This can be done by borrowing a similar
technique from the security analysis of QKD [30,43,44]
and considering an equivalent virtual protocol depicted in
Fig. 4, where we replace steps 5 and 6 by 50 and 60. In steps
3 and 4 of the protocol, Alice occasionally performs the
X-basis measurement and defines the phase error rate to be
the ratio of detecting j−i. In the virtual protocol, once Alice
knows the phase error rate by random sampling tests, she
can perform a phase error correction (step 50) before the
final Z-basis measurement (step 60). From the smart design
of the phase error correction procedure [30], Alice can
make it commute with the Z-basis measurement. Thus, she
can perform the Z-basis measurement (step 5) first and then
apply randomness extraction (step 6). At this stage, all the
states have already collapsed to classical results, and the
phase error correction procedure becomes randomness
extraction (or privacy amplification in QKD) [30,43,44].
Besides QKD, the argument here is similar to the one used
in Ref. [45], where one can consider the error correction
process 50 as distilling coherence or randomness extraction.
It has been proved that the phase error correction

(randomness extraction) can be efficiently done with
Toeplitz-matrix hashing [35]. Suppose the number of qubits
measured in the Z basis is nz and the phase error rate is epz;
then, the number of bits sacrificed in the phase error
correction is given by

nzHðepzÞ þ te; ð1Þ

and the probability that the phase error correction fails is
2−te [36]. Here, HðeÞ ¼ −e log e − ð1 − eÞ logð1 − eÞ is
the binary Shannon entropy function, all the log is base 2
throughout the paper, and te is the parameter Alice picks up
by balancing the failure probability and the final output
length. Then, the number of final random bits is given by

K ≥ nz − nzHðepzÞ − te: ð2Þ

FIG. 4. An equivalent protocol of source-independent QRNG.
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In practice, Alice needs to prepare a Toeplitz matrix of size
nz × ½nz − nzHðepzÞ − te� for randomness extraction.
We note that the failure probability 2−te quantifies

fidelity between the state that results from the phase error
correction and the ideal state jþi⊗nz . In the composable
security definition [46,47], a trace-distance measure secu-
rity parameter εt should be employed. Its relation to the
fidelity measure εf is given by [31]

εt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfð2 − εfÞ

q
: ð3Þ

In the following, we use the fidelity measure for the failure
probability, which, in the end, can be conveniently con-
verted to the trace-distance measure security parameter.
To construct the Toeplitz matrix of size nz × ½nz−

nzHðepzÞ − te�, Alice needs to use nz þ nz − nzHðepzÞ −
te − 1 random bits. Thanks to the leftover hash lemma [48],
the Toeplitz hashing extractor can be proven to be a strong
extractor. In other words, the output random bits are
independent of the random bits used in the construction
of the Toeplitz matrix [49]. Thus, the Toeplitz matrix can
be reused.
Our result can also be derived via a different but elegant

approach by employing a newly developed seminal uncer-
tainty relation [50] and extending the leftover hash lemma
[48] to the quantum scenario [51]. Interestingly, the result
from that approach yields a security parameter (in trace-
distance measure) that is of the order of 2−te=2, which is
consistent with ours. Such techniques have been success-
fully applied in some applications, including QRNGs [23].

C. Finite key analysis

In practice, the QRNG only runs for a finite time;
consequently, the sampling tests for the X-basis measure-
ments will suffer from statistical fluctuations. In the param-
eter estimation step, the key parameter epz in Eq. (2) should
be estimated (bounded) from the finite-data-size effect.
In the random sampling test, Alice measures the

squashed qubits in the X basis and obtains the error rate
ebx. Remember that, as required in the squashing model,
this error rate includes half of the double-click ratio.
Henceforth, we simply call this error rate the X-basis error
rate. Recall that the phase error rate epz is defined as the
error rate if the quantum signals measured in the Z basis are
measured in the X basis. When the sampling size is large
enough, epz can be well approximated by ebx.
Before presenting the details of the random sampling

analysis, we establish a notation. Suppose Alice receives n
squashed qubits and randomly chooses nx of them to be
measured in the X basis, leaving the remaining nz ¼ n − nx
qubits in the Z basis. Let the ratio of X-basis measurements
be qx ¼ nx=n, the number of errors Alice finds in theX basis
be k, and the total number of errors be m if Alice measured
all qubits in the X basis. Then, the number of errors in the

qubits measured in the Z basis is m − k, which is the key
parameter we need to determine through random sampling.
The quantity m − k ¼ nzepz determines the randomness
extraction rate. Define the lower bound of epz by

epz ≤ ebx þ θ; ð4Þ

where θ is the deviation due to statistical fluctuations.
Following the random sampling results of Fung et al.
[31], we can bound the probability when Eq. (4) fails,

εθ ¼ Probðepz > ebx þ θÞ

≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qxð1 − qxÞebxð1 − ebxÞn
p 2−nξðθÞ; ð5Þ

where ξðθÞ ¼ Hðebx þ θ − qxθÞ − qxHðebxÞ − ð1 − qxÞ
Hðebx þ θÞ. Note that in the unlikely event that ebx ¼ 0,
the failure probability is unbounded, and one should rederive
the failure probability or simply replace ebx with a small
value, say, 1=nx.
In practice, the failure probability εθ is normally picked

to be a small number depending on applications. In later
data postprocessing, we pick up εθ ¼ 2−100. Once εθ is
fixed, there is a trade-off between qx and θ for the ratio of
the final random bit length over the raw data size. Thus, the
number of samples for the X-basis measurement should be
optimized for the randomness extraction rate.
One key property for the random sampling is that the nx

locations of the X-basis measurements are randomly
chosen from the total n locations; i.e., the ð nnxÞ cases are
equally likely to occur. Then, Alice needs a random seed
with a length of

nseed ¼ log

�
n
nx

�
≤ nx log n: ð6Þ

The effect of loss on the seed length will be discussed in
Sec. III D. In Appendix A, we show that nx can remain a
constant, given the failure probability, when n is large.
Then, in the large data size limit, the seed length is
exponentially small compared to the length of the output
random bit. Therefore, we reach an exponential random-
ness expansion.

D. Practical issues

Multiphotons.—In our protocol, the source is allowed to
emit multiphotons since its dimension is assumed to be
uncharacterized. In other words, these components do not
affect the randomness of the final output. In practice,
multiphotons may introduce double clicks when threshold
detectors are used [32]; these double clicks directly
contribute to the error rate term ebx. Thus, when the
multiphoton ratio is very high, the double-click ratio will
increase to a point at which the upper bound on information
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leakage epz increases to one-half; at that point, no random
bits can be extracted according to Eq. (2) and Alice simply
aborts the protocol.
Loss.—The loss tolerance of our protocol is guaranteed

by the squashing model in which the measurement is
assumed to be basis independent [32]. This assumption can
be guaranteed by the fact that the basis is chosen after
losses. Alice does not anticipate the positions of losses, so
she effectively decides the (random) positions for X-basis
measurements before losses. The effect of loss only
decreases the number of effective X measurements, but
the positions of effective X measurements are still uni-
formly random in squashed qubits; this fulfills the require-
ment of random sampling. The detailed proof is shown in
Appendix B.
Basis-dependent detector efficiency.—Our protocol

assumes that the efficiencies of the detectors are the same.
In practice, efficiency mismatches would cause the meas-
urement to be different for the two bases (basis dependent).
A viable way to deal with this imperfection is to recalculate
the rate as a function of the ratio between the efficiencies of
the two bases, employing the technique used in QKD [41].
As indicated by the result in QKD [41], the random number
generation rate will slightly decrease when there is a
small mismatch in detector efficiencies. More precisely,
we denote the ratio between the minimum and maximum
efficiencies of the two detectors as r ≤ 1; then the key size
becomes rnzð1 −H½ðebx þ θÞ=r�Þ − te bits. We leave a
detailed analysis of this imperfection for future work.
Double clicks.—Our analysis takes into account the

effect of double clicks by adding half of the double-click
ratio to the X-basis error rate, as required in the squashing
model. This is also essentially why multiphoton states can
be used on the source side without affecting final random-
ness. Note that double clicks should not be discarded freely
in the measurement. Otherwise, a security loophole will
appear, namely, a strong pulse attack [52]. In a strong pulse
attack, Eve always sends strong signals (with many
photons) in the Z basis. Suppose she sends a strong state
in jHi; if Alice chooses the Z-basis measurement, a valid
raw random bit will be obtained, but if she chooses the X
basis, a double click is likely to happen. In our protocol,
when Alice chooses the X-basis measurement, she should
get an error (resulting in j−i) with a probability of one-half.
If Alice simply discards all double clicks, Eve’s attack will
not be noticed. This attack cannot be explained by a qubit
measurement. This is intuitively why the squashing model
requires random assignments for double clicks.
Basis choice.—When choosing X- or Z-basis measure-

ments, an input random string of length N (as a seed) is
needed. Suppose the number of X-basis measurements to
be performed is Nx; then, Alice chooses Nx positions out of
N with equal probability, i.e., with probability ðNNx

−1Þ. Then,
she needs a seed length of logðNNx

Þ. This is similar to Eq. (6),
with the difference that before the measurement, Alice does

not know the positions of losses. More details on how to
dilute a short random seed to a longer (partially random)
one are provided in Appendix C.
Intensity optimization.—The intensity of the source

should be optimized to maximize the randomness gener-
ation rate. With increasing intensity, the detection rate will
increase, along with an increases in the double-click rate
(and hence, epz increases). There exists a trade-off between
nz and epz, as shown in Eq. (2).

IV. EXPERIMENT DEMONSTRATION

In this section, we perform a proof-of-principle exper-
imental demonstration to show the practicality of the
SIQRNG scheme. Our experiment setup consists of two
parts: the source, owned by an untrusted party Eve, and
the measurement device, owned by the user Alice. The
schematic diagram is shown in Fig. 5.
On Eve’s side, a laser, labeled as S, with a wavelength of

850 nm and a repetition rate of 1 MHz is used as a photon
source. The power of the laser is adjusted to be one photon
per pulse. Instead of assuming each state is a qubit system,
each pulse that the laser sends is a coherent state of infinite
dimensions. The pulse of the laser is then modulated to jþi
polarization by a linear polarizer (LP) and a fiber polari-
zation controller (FPC1). Between the source and the
measurement device, we put a fiber attenuator (FA) to
simulate different losses in the system.
On Alice’s side, first a series of filters need to be applied to

ensure the measured optical mode is pure before entering the
threshold detectors, as required by the squashing model. For
demonstration purposes, we use a single-mode fiber to play
the role of a filter. Ideally, frequency and temporal filters
should also be added to further purify the optical mode in

FIG. 5. Experiment setup of SIQRNG. S: laser source;
LP: linear polarizer; FPC: fiber polarization controller; FA: fiber
attenuator; BS: beam splitter; PBS: polarizing beam splitter; TD:
time delay implemented with a 12-m fiber; PD: photon detector.
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order to make the photons indistinguishable. For demon-
stration purposes, a biased beam splitter (BS1) with a ratio of
1∶49 is used to passively choose the X or Z basis. Finally,
Alice records when the photon detector (PD) clicks. The
detector is time-division-multiplexed by adding four time
delays, TD1–TD4 (60 ns each), in the optical paths so that it
can simulate four detectors that detect the outcomes of both
bases and each bit value. The gate width and the dead time of
the detector are 10 and 50 ns, respectively.
The phase error rate, as calculated in Eq. (4), is plotted in

Fig. 6. The typical values of the related experimental
parameters are listed as follows. The raw key size is
N ¼ 106, the dark count is 0.002, the detector efficiency
(without a FC adaptor) is 45%, the misalignment error of
the source is 2%, and the failure probability is εθ ¼ 2−100.
The figure shows that the error rate increases as the loss
becomes large. This is because the effect of dark counts
becomes dominant when the loss is high. Because of
statistical fluctuations, the phase error rate increases when
the data size shrinks. Note, in particular, that the phase error
rate can go beyond 20% under high losses, which does not
yield any key rates in most QKD protocols. Nevertheless,
random numbers can still be generated in our SIQRNG
scheme.
The relation between the randomness generation rate

and the loss is plotted in Fig. 7. It can be seen that the
randomness generation rate becomes lower with a larger
loss, which is consistent with Fig. 6. Under practical
detector efficiency, the randomness generation rate still
achieves a relatively high rate of 5 × 103 bit=s. Note that
the intensity of the source is fixed in our experimental
demonstration. In practice, the intensity of the source can
be increased to compensate the loss, and actually, the
maximum randomness generation rate in our scheme is
mainly limited by the dead time of the detector. For our

detector with a dead time of 50 ns, the maximum random-
ness generation rate is 1 bit=50 ns ¼ 20 Mbps, which
requires the source to be a single photon source with a
repetition rate of 20 Mbps. For practical implementations
with coherent-state sources, the randomness generation rate
can reach the order of 2 Mbps after taking into account
various errors and finite-data-size effects.
After obtaining the random bits, we apply the Toeplitz-

matrix hashing [35] on the raw data to obtain final random
numbers. To test the randomness, we further perform
two statistical tests on the output of our SIQRNG, the
autocorrelation test, and the NIST test suite [53]. The
autocorrelation is defined as
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FIG. 6. Relation between the phase error rate and the loss. The
big error bars are caused by a very conservative estimation of
statistical fluctuations and also partially by the fluctuation of
experimental parameters for different losses.
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FIG. 7. Dependency of randomness generation rate on the loss.
The data points on the figure are taken to be the lower bound of
the rate, evaluated by random sampling. The security parameter is
εt ¼ 2 × 2−50.
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FIG. 8. The autocorrelation function of the raw data and the
final data. The x axis is the lag j between the sampled data Xi and
Xiþj, while the y axis is the autocorrelation RðjÞ defined in
Eq. (7). Data sizes of both the raw data and the final data are on
the order of 107. The autocorrelation of the final data is
significantly smaller than the raw data in absolute value. Because
of finite-key-size effects, the autocorrelation cannot be zero even
for perfectly random strings.
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RðjÞ ¼ E½ðXi − μÞðXiþj − μÞ�
σ2

; ð7Þ

where j is the lag between the samples, Xi is the ith sample
bit, μ and σ are the average and the variance of the sample,
and E stands for expectation. The result of the autocorre-
lation test of raw data and final data is shown in Fig. 8. It
can be seen that the autocorrelation is substantially reduced
in the final data. The result of NIST tests on the final data is
shown in Fig. 9. We can see that all tests are passed.

V. CONCLUSION

We have proposed a source-independent and loss-
tolerant QRNG scheme and experimentally demonstrated
it in a passive basis choice realization. From an exper-
imental point of view, the beam splitter itself, as part of the
measurement device, may also be uncharacterized. Thus, it
would also be interesting to demonstrate our scheme with
an active basis choice in the future. In fact, when the source
operates properly, the speed of our protocol is comparable
to that of a trusted polarization-based QRNG whose
frequency is limited only by single photon detectors—
approximately 100 Mbps [54].
Some current realizations of QRNG experiments could

be converted to our SIQRNG protocol. For example, an
LED could be used as the source, as regular QRNG [33].
Since the polarizations of a LED are random, it would be
convenient to add a polarizer for the jþi direction to make
the source-polarized light. Since the detector can work in a
gated mode, it does not matter whether the light source is
continuous or pulsed. This shows why the repetition rate
is limited only by single-photon detectors. Viewed from

another angle, such a setup could also be used to test
quantum features of macroscopic sources.
For future projects, it would be interesting to investigate

other loss-tolerant self-testing QRNG schemes. Essentially,
we are aiming to design a QRNG to tolerate large losses
and generate fast random numbers simultaneously, given
the minimum assumptions of a practical setup.
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Note added.—Upon completion of this work, we noticed a
related work [23], in which the uncertainty relation is
employed to quantify entropy in QRNG and finite-key
effects are taken into consideration with smooth min
entropies. The work also aimed at provable randomness
with untrusted sources. However, it makes a strong
assumption on the dimension of the source, which turns
out to be the key barrier for source-independent QRNG.
Moreover, the practical imperfections, such as multipho-
tons, device imperfections, and losses, are not considered.
Our work, on the other hand, uses the squashing model
for an arbitrary dimension system and takes into account
imperfections in practical scenarios.

APPENDIX A: CALCULATION OF THE NUMBER
OF EFFECTIVE X-BASIS MEASUREMENTS

In this appendix, we show that in the asymptotic limit,
the number of effective X-basis measurements is indepen-
dent of n. Our starting point is Eq. (5) and εθ < 2−100.
Notice that normally n is smaller than 1012 < 240 to ease
fast postprocessing; thus, the term 1=

ffiffiffi
n

p
and the other

polynomial terms in Eq. (5) play a relatively small role in
making εθ < 2−100. In the following, we consider only the
exponent in Eq. (5).
For ease of notation, let x ¼ ebx, y ¼ ebx þ θ, and

q ¼ qx. Then, the exponent of Eq. (5) becomes

n½Hðð1 − qÞyþ qxÞ − qHðxÞ − ð1 − qÞHðyÞ�;
and the inequality εθ < 2−100 is approximately equivalent to

n½qðHðð1 − qÞyþ qxÞ −HðxÞÞ
þ ð1 − qÞðHðð1 − qÞyþ qxÞ −HðyÞÞ� ≥ 100: ðA1Þ
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FIG. 9. The P value of the statistical tests. The x axis lists the
names of statistical tests in the NIST test suite. The final data size is
91 Mbit, which is extracted from 115-Mbit raw data. To pass each
test, the P value should be at least 0.01, and the proportion of
sequences that satisfy P > 0.01 should be at least 96%. It can be
seen in the figure that the P values of all tests are greater than 0.01.
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Since q is very small, one can make three approximations:

Hðð1 − qÞyþ qxÞ −HðyÞ ≈ −H0ðyÞqðy − xÞ; ðA2Þ

q½Hðð1 − qÞyþ qxÞ −HðxÞ� ≈ qðHðyÞ −HðxÞÞ; ðA3Þ

and

q2 ≈ 0: ðA4Þ

Then, by applying Eqs. (A2) and (A3), the inequality (A1)
becomes

n½qðHðyÞ −HðxÞÞ − ð1 − qÞðH0ðyÞqðy − xÞÞ�≳ 100:

ðA5Þ

Applying Eq. (A4) yields

n½qðHðyÞ −HðxÞÞ −H0ðyÞqðy − xÞ�≳ 100; ðA6Þ

and rearranging terms, we have

q ≳ 100

n½HðyÞ −HðxÞ −H0ðyÞðy − xÞ� : ðA7Þ

Substituting the definitions of x and y, we obtain

q≳ 100

n½Hðebx þ θÞ −HðebxÞ −H0ðebx þ θÞθ� : ðA8Þ

Finally, we substitute q ¼ nx=n and get

nx ≈
100

Hðebx þ θÞ −HðebxÞ −H0ðebx þ θÞθ ; ðA9Þ

which is independent of n.

APPENDIX B: PROOF OF THE RANDOM
SAMPLING PROPERTY FOR A TYPE

OF QRNG INPUT AFTER LOSS

In this appendix, we first restate the setting. In the
idealistic protocol, the measurement device chooses its
measurement basis after confirming that the state received
from the source is not a vacuum (or equivalently, not lost).
In practice, confirming whether a state is a vacuum is
usually done by observing whether detectors in the meas-
urement device click or not. Thus, it is desirable for the
measurement device to choose its basis before confirming
whether loss happens.
We prove that for a specific input that defines the

measurement basis choices before the potential loss, the
positions of nx valid X-basis measurements (after excluding
loss events) are randomly drawn from the positions of the
total of n valid measurements. This proves that the random

sampling technique from Fung et al. can still be applied
when the measurement basis is chosen before the loss.
For ease of presentation, we state the input that specifies

the measurement choices before the loss as follows. The
input is a string of length N ¼ Nx þ Nz that contains Nx 0s
and Nz 1s. The ðNNz

Þ possibilities for choosing the positions
ofNz 1s from the totalNx þ Nz positions are equally likely.
Here, 0 stands for an X-basis measurement and 1 stands
for a Z-basis measurement. After loss, the numbers of
valid X-basis measurements and Z-basis measurements
are denoted by nx and nz, respectively, with a total string
length of

n ¼ nx þ nz: ðB1Þ

We need to show that the output is uniform for the ðnxþnz
nz

Þ
possibilities of choosing the positions of nz 1s from the
total n positions.
The proof proceeds through a symmetry argument.

The input is symmetric; i.e., if we exchange the indices
of two positions, the distribution will not change. Suppose
that the initial positions are 1; 2;…; n and the probability
of choosing specific positions for Nz 1s from the total N
positions is

p ¼ 1

ðNxþNz
Nz

Þ : ðB2Þ

For ease of presentation, denote the left positions after loss
as i1 < i2 < � � � < in. Then, each possibility with nx 0s in
the left n positions has the same probability,

p1 ¼ p ×

�
N − n
Nx − nx

�
; ðB3Þ

which proves our claim.
As a side remark, we see that the proof does not depend

on whether the loss is basis dependent or independent.
Thus, the same property also holds for a more general class
of losses that could be useful in other settings. Another
remark is that independent and identically distributed input
also satisfies the property, as in the work of Fung et al.

APPENDIX C: RANDOM SEED DILUTION

The input is either given directly or expanded from a
uniformly random seed. Here, we provide a method for
performing the expansion. The expansion is straightforward
since the input is also uniformly random within its support.
We can simply map a uniform seed of length logðNc1Þ
bijectively to the input support, which is the ðNc1Þ possibility
of choosing the positions of c1 0s from the string of length
N. Then, we obtain the desired input. Furthermore, note that
this construction is deterministic; thus, input randomness is
only needed for the uniformly random seed of length n.
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For the input of our protocol, the ratio of the initial
random seed length to the number of runs N becomes
negligible as N goes to infinity because the number of
X-basis measurements c1 is a constant, as derived in
Appendix A. More precisely, the min entropy of the input,
as well as the length of the uniformly random seed, has
an upper bound given by

log

�
N
c1

�
≤ c1 logN: ðC1Þ

Note that since the detector completely controls this
random seed length, calculating the exact input min entropy
is possible. This is very different from estimating the error
rate in the finite-key analysis section, in which we can only
estimate the range of the error rate with a high probability
of success. Apart from the input specified in the main text,
independent and identically distributed bit strings are also a
possible choice for the input. Finally, we remark that the
reason to include this input seed length analysis is to make
our QRNG composable.
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