
Weakening Failure Detectors for k-Set

Agreement Via the Partition Approach

Wei Chen1, Jialin Zhang2,�, Yu Chen1, and Xuezheng Liu1

1 Microsoft Research Asia
{weic,ychen,xueliu}@microsoft.com

2 Center for Advanced Study
Tsinghua University

zhanggl02@mails.tsinghua.edu.cn

Abstract. In this paper, we propose the partition approach and define
several new classes of partitioned failure detectors weaker than existing
failure detectors for the k-set agreement problem in both the shared-
memory model and the message-passing model. In the shared-memory
model with n + 1 processes, for any 2 ≤ k ≤ n, we first propose a par-
titioned failure detector ΠΩk that solves k-set agreement with shared
read/write registers and is strictly weaker than Ωk, which was conjec-
tured to be the weakest failure detector for k-set agreement in the shared-
memory model [19]. We then propose a series of partitioned failure de-
tectors that can solve n-set agreement, yet they are strictly weaker than
Υ [10], the weakest failure detector ever found before our work to cir-
cumvent any asynchronous impossible problems in the shared-memory
model. We also define two new families of partitioned failure detectors
in the message-passing model that are strictly weaker than the existing
ones for k-set agreement. Our results demonstrate that the partition ap-
proach opens a new dimension for weakening failure detectors related to
set agreement, and it is an effective approach to check whether a failure
detector is the weakest one or not for set agreement. So far, all previous
candidates for the weakest failure detectors of set agreement have been
disproved by the partitioned failure detectors.

Keywords: Failure detector, partitioned failure detectors, k-set agree-
ment.

1 Introduction

Failure detector abstractions are first proposed by Chandra and Toueg in [3] to
circumvent the impossibility result of consensus [9], and have since become a
powerful technique to encapsulate system conditions needed to solve many dis-
tributed computing problems. Among them the problem of k-set agreement has
received many attention from the research community. Informally, in k-set agree-
ment each process proposes some value and eventually all correct processes (those
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that do not crash) decide on at most k different values [4]. It has been shown
that k-set agreement cannot be solved in asynchronous systems when k or more
processes may crash [1,12,20]. In recent years, a number of studies have focused
on failure detectors for solving k-set agreement problem [21,18,11,16,17,19,10,7].
These studies form the collective effort in the pursuit of the weakest failure detec-
tor for k-set agreement, a goal yet to be reached. A particular candidate Ωk was
conjectured to be the weakest failure detector for wait-free k-set agreement [19]
in the shared-memory model.

Consider distributed shared-memory model with n + 1 processes. In a very
recent paper [10], Guerraoui et.al define a new class of failure detectors Υ and
show that among a wide range of failure detectors defined as eventually stable
failure detectors, Υ is the weakest one necessary to solve any impossible problem
in shared-memory distributed systems, and Υ solves the n-set agreement prob-
lem. The Υ failure detector disproves the conjecture on Ωk for the case of k = n.
For a general k, a generalized Υ k is proposed to solve k-set agreement, but only
when at most k processes may crash, so it does not disprove the conjecture on
Ωk for wait-free k-set agreement.

The eventually stable failure detectors encompass most failure detectors known
to solve distributed decision tasks in the shared-memory model prior to [10], as the
authors claimed. Therefore, as the title of their paper says, indeed Υ is the weak-
est failure detector ever found that solves any impossible problem in distributed
computing.

In this paper, we introduce a new breed of failure detectors — partitioned
failure detectors — that could be made strictly weaker than Ωk and Υ but are
still strong enough to solve the set agreement problem. Our motivation is based
on the following observation: In k-set agreement when k > 1, different processes
may decide on different values, and thus it is possible that processes may be
partitioned to different components, each of which decides on different values but
together they still decide on at most k values. In other words, k-set agreement
(with k > 1) exhibits the partition nature. The partitioned failure detectors are
defined by consistently applying a method that captures the partition nature to
weaken existing failure detectors, for which we called the partition approach.

In the partition approach, failure detectors partition the processes into mul-
tiple components and only processes in one of the components (called a live
component) are required to satisfy all safety and liveness properties (of an exist-
ing failure detector), while processes in other components only need to satisfy
safety properties. Since those processes in non-live components may generate
quite arbitrary failure detector outputs, intuitively the partitioned failure detec-
tors are a new breed that does not fall into the eventually stable failure detectors
covered by [10].

We study the partitioned failure detectors in both the shared-memory model
and the message-passing model. In the main part of this paper, we apply the
partition approach to failure detectors Ωk and Υ in the shared-memory model
to define weaker failure detectors. More specifically, we first define a new class
of failure detectors ΠΩk by applying static partitions to Ωk. We show that ΠΩk
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Fig. 1. Relationship diagram for failure detectors in the shared-memory model (n ≥ 3).
If A → B, then A can be transformed into B. If there is no directed path from A to
B, then A cannot be transformed into B (Footnote 1 contains the only exception).

is strong enough to solve k-set agreement with shared read/write registers but
it is not comparable with Υ , for all k = 2, 3, . . . , n. One direct consequence is
that ΠΩk is strictly weaker than Ωk (because Ωk is stronger than Υ ), which
disproves the conjecture that Ωk is the weakest failure detector for wait-free
k-set agreement in the shared-memory model for any k ≥ 2. Moreover, ΠΩk is
the first failure detector class that solves k-set agreement (for generic k) but
is incomparable with Υ . For example, even though failure detector ΠΩ2 solves
2-set agreement, it is not stronger than Υ .

Next, we define failure detectors weaker than Υ but are still strong enough to
solve n-set agreement. We achieve this by mixing some of the properties of ΠΩk

and Υ and define another class of partitioned failure detectors ΠΩΥ k. We show
that for any 1 ≤ k ≤ n, ΠΩΥ k can still solve n-set agreement but it is strictly
weaker than both ΠΩk and Υ . Moreover, as k increases, the strength of ΠΩΥ k is
strictly weakened. Hence, we find a family of n different failure detector classes
strictly weaker than Υ , which is the weakest one ever found before our work.

Figure 1 characterizes the exact relationship among all failure detectors we
proposed in this paper for the shared-memory model and the previously defined
ones Ωk and Υ . Note that every nonexistent directed path in the figure corre-
sponds to an impossible transformation from the source class to the destination
class, with only one exception.1 Since Υ is already very weak, one can imagine
that it would be very delicate to define the new partitioned failure detectors
and prove that they are incomparable to or strictly weaker than Υ . Indeed,
the definitions of failure detectors are subtle, and the proofs of the impossible
transformations are the most delicate and technically involved.

We also apply the partition approach to failure detectors Ωk × Σ in the
message-passing model, where Σ is the class of quorum failure detectors needed
to work with Ωk to solve k-set agreement in the message-passing model. We
1 The exception is the following problem that is still open: Can ΠΩk be transformed

into ΠΩΥ k−1 for any k ≥ 2? However, we have proven that ΠΩk+1 cannot be trans-
formed into ΠΩΥ k−1 for any k ≥ 2.



126 W. Chen et al.

define two new families of partitioned failure detectors that are strictly weaker
than Ωk × Σ but are strong enough to solve k-set agreement in the message-
passing model. These partitioned failure detectors are different from the ones
in the shared-memory model in that they integrate the partition of quorums in
their definitions. Moreover, one family of failure detectors incorporates dynamic
splitting of partitions, while all failure detectors in the shared-memory model
are statically partitioned.

Our results not only show a number of new failure detectors that are strictly
weaker than existing ones such as Ωk and Υ , but more importantly, they demon-
strate the power of the partition approach: The partition approach opens a new
dimension for weakening various failure detectors related to set agreement, and
it is an effective approach to check whether a failure detector could be the weak-
est one solving set agreement or not. Using the approach, we have successfully
shown that (1) Ωk is not the weakest failure detector for k-set agreement in the
shared-memory model for any k ≥ 2; (2) Υ is not the weakest failure detector
for n-set agreement in the shared-memory model; and (3) Ωk × Σ is not the
weakest failure detector for k-set agreement in the message-passing model for
any k ≥ 2. So far, all failure detectors that were considered as the candidates
for the weakest failure detectors for set agreement have been disproved using
our partition approach. Therefore, we believe that partitioned failure detectors
demonstrate the flexibility in achieving set agreement, and it is important to use
the partition approach as an effective research tool in our pursuit to the ultimate
weakest failure detectors for set agreement.

The rest of the paper is organized as follows. Section 2 provides the shared-
memory model used in our paper. Section 3 defines ΠΩk and shows how it solves
k-set agreement. Section 4 defines ΠΩΥ k. Section 5 provides a central place to
show the relationship among all failure detectors in the shared-memory model as
captured by Figure 1. Section 6 summarizes the results in the message-passing
model. We conclude the paper in Section 7. Further results including some k-set
agreement algorithms and all correctness proofs are covered by two technical
reports [7,5] on message-passing model and shared-memory model, respectively.

2 Model

We consider asynchronous shared-memory distributed systems augmented with
failure detectors. Our model is the same as the model in [10], which is based on
the models of [13,14,2]. We provide the necessary details of the model below.

We consider a system with n+1 processes P = {p1, p2, . . . , pn+1} where n ≥ 1.
Let T be the set of global time values, which are non-negative integers. Processes
do not have access to the global time. A failure pattern F is a function from T
to 2P , such that F (t) is the set of processes that have failed by time t. Failed
processes do not recover, i.e., F (t) ⊆ F (t+1) for all t ∈ T . Let correct(F ) denote
the set of correct processes, those that do not crash in F . A process is faulty if it
is not correct. A failure detector history H is a function from P ×T to an output
range R, such that H(p, t) is the output of the failure detector module of process
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p ∈ P at time t ∈ T . A failure detector D is a function from each failure pattern
to a set of failure detector histories, representing the possible failure detector
outputs under failure pattern F .

Processes communicate with each other by writing to and reading from shared
atomic registers. A deterministic algorithm A using a failure detector D is a col-
lection of n + 1 deterministic automata, one for each process. Processes execute
by taking steps. In each step, a process p: (a) reads from a shared register to ob-
tain a value, or writes a value to a shared register, or queries its failure detector
module, based on its current local state; and (b) transitions its current state to
a new state, based on its current state, the value returned from the read or from
the failure detector module, and the algorithm automaton on p. Each step is com-
pleted at one time point t, but the process may crash in the middle of taking its
step. A run of algorithm A with failure detector D under a failure pattern F is an
infinite sequence of steps such that every correct process takes an infinite number
of steps and no faulty process takes any step after it crashes.

We say that a failure detector class C1 is weaker than a failure detector class
C2, if there is a transformation algorithm T such that using any failure detector
D2 ∈ C2, algorithm T implements a failure detector D1 ∈ C1. By implementing D1

we mean that for any run of algorithm T with failure detector D2 under a failure
pattern F , T generates the outputs of D1 as a distributed variable D1-output such
that there exists failure detector history H ∈ D1(F ) and H(p, t) = D1-output(p, t)
for all p ∈ P and all t ∈ T , where D1-output(p, t) is the value of the variable D1-
output on p at time t. If C1 is weaker than C2, we denote it as C1 � C2 and also
refer to it as C2 can be transformed into C1. if C1 � C2 and C2 �� C1, we say that
C1 is strictly weaker than C2 and denote it as C1 ≺ C2. If C1 � C2 and C2 � C1, we
say that C1 and C2 are equivalent and denote it as C1 ≡ C2.

In k-set agreement with 1 ≤ k ≤ n, each process proposes a value, and
makes an irrevocable decision on one value. It needs to satisfy the following
three properties: (1) Validity: If a process decides v, then v has been proposed
by some process. (2) Uniform k-Agreement: There are at most k different decision
values. (3) Termination: Eventually all correct processes decide.

Two related failure detector classes are Ωk and Υ . Failure detectors in Ωk out-
put a subset of P of size at most k, and there is a time after which all processes
always output the same nonempty set, which contains at least one correct pro-
cesses. Failure detectors in Υ also output a subset of P , and there is a time after
which all processes always output the same nonempty set, which is not exactly
the set of correct processes.

3 Failure Detector ΠΩk

3.1 Specification of ΠΩk

The class of partitioned failure detectors ΠΩk is obtained by applying static
partitions to Ωk, as explained below. The output of ΠΩk for process p is a tuple
(isLeader, lbound, cid), where isLeader is a boolean value indicating whether this
process is a leader or not, lbound is a non-negative integer indicating the upper
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bound on the number of possible leaders in p’s partitioned component, and cid
is a component ID drawn from an ID set I or is a special value ⊥ �∈ I. The cid
output indicates the component the process belongs to and could be ⊥ for an
initial period before the failure detector decides on a partition.

For a failure detector output x, we use x.v to denote the field v of x, where v
could be isLeader, lbound, or cid in the case of ΠΩk. We say that a process p is
an eventual leader (under a failure pattern F and a failure detector history H)
if p is correct and there is a time after which the isLeader output on p is always
True.

A partition of P is π = {P1, . . . , Ps}, where s ≥ 1 and Pi’s are non-empty
subsets of P such that they do not intersect with one another and their union
is P . For a process p, we use π[p] to denote the partitioned component that
contains p. For a component Pj ⊆ P (under a failure pattern F and a failure
detector history H), we define lbound(Pj) = max{H(p, t).lbound | t ∈ T , p ∈ Pj \
F (t)},2 and Leaders(Pj) = {p ∈ Pj ∩ correct(F ) | ∃t, ∀t′ > t, H(p, t′).isLeader =
True}. The value lbound(Pj) is the maximum lbound value among processes in
component Pj , while Leaders(Pj) is the set of eventual leaders in Pj .

A failure detector D is in the class ΠΩk if for any failure pattern F and any
failure detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of
P , such that the following properties hold. First, the cid output needs to satisfy
these properties:

(ΠC1) The cid outputs on all correct processes eventually always output non-⊥
values. Formally, ∃t0 ∈ T , ∀p ∈ correct(F ), ∀t ≥ t0, H(p, t).cid �= ⊥.

(ΠC2) The non-⊥ cid outputs distinguish different components. Formally, ∀t1,
t2 ∈ T , ∀p1 �∈ F (t1), ∀p2 �∈ F (t2), (H(p1, t1).cid �= ⊥ ∧ H(p2, t2).cid �= ⊥) ⇒
((H(p1, t1).cid = H(p2, t2).cid) ⇔ (π[p1] = π[p2])).

Next, the isLeader and lbound outputs satisfy the following set of safety and
liveness properties. The safety property is:

(ΠΩ1) The sum of the maximum lbound outputs in all partitioned components
does not exceed k. Formally,

∑s
j=1 lbound(Pj) ≤ k.

The liveness part specifies that there exists one partitioned component Pj such
that:

(ΠΩ2) Eventually lbound outputs by all processes in Pj are the same. Formally,
∃t0 ∈ T , ∀t1, t2 ≥ t0, ∀p1 ∈ Pj \ F (t1), ∀p2 ∈ Pj \ F (t2), H(p1, t1).lbound =
H(p2, t2).lbound.

(ΠΩ3) Eventually the isLeader outputs on any correct process in Pj do not
change. Formally, ∃t0 ∈ T , ∀t > t0, ∀p ∈ Pj \ F (t), H(p, t).isLeader =
H(p, t0).isLeader.

(ΠΩ4) There is at least one eventual leader. Formally, |Leaders(Pj)| ≥ 1.
(ΠΩ5) The number of eventual leaders is eventually bounded by the lbound

outputs. Formally, ∃t0 ∈ T , ∀t ≥ t0, |Leaders(Pj)| ≤ H(p, t).lbound.

2 As a convention, max ∅ = 0.
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We call a component that satisfies the liveness properties (ΠΩ2–5) a live com-
ponent, and other components non-live components. Let ki = lbound(Pi). Intu-
itively, each component Pi has a failure detector with the safety properties of
Ωki restricted to Pi,3 while at least one component Pj also satisfies all liveness
properties of Ωkj . Intuitively, this is to guarantee that when running a k-set
agreement algorithm with ΠΩk, each component Pi may decide on at most ki

values, so with (ΠΩ1) there are at most k decisions, while the live component
Pj can make progress and decide eventually.

The strength of ΠΩk is fully characterized by Figure 1. We defer to Section 5
as a central place to study and compare the strength of all proposed failure
detectors and avoid repetitions. We summarize the strength of ΠΩk comparing
with Ωk and Υ in the following theorem.

Theorem 1. The followings hold regarding the strength of ΠΩk. (1) ΠΩ1 ≡ Ω1.
(2) ΠΩk ≺ Ωj for all k ≥ 2, j ≥ 1, and k ≥ j. (3) ΠΩk �� Ωj and Ωj �� ΠΩk

for all k ≥ 2 and k < j ≤ n. (4) ΠΩk ≺ ΠΩk−1 for all k ≥ 2. (5) ΠΩk �� Υ and
Υ �� ΠΩk, for all k ≥ 2.

The key result is that ΠΩk is incomparable with Υ for all k ≥ 2. Therefore,
ΠΩk is a new class of failure detectors that is strictly weaker than Ωk, but is
strong enough to solve k-set agreement in shared-memory systems with arbitrary
failure patterns. It is the only class known (to our best knowledge) that solves
k-set agreement with arbitrary failure patterns and is strictly weaker than Ωk

and is incomparable with Υ .4

3.2 Solving k-Set Agreement with ΠΩk

The algorithm using ΠΩk to solve k-set agreement is based on an extension of
the k–converge algorithm presented in [21]. The original k–converge algorithm
forces every participant to use the same value of “k”. With ΠΩk failure detectors,
we need processes in each component to try to converge on some decisions,
the number of which is bounded by the lbound output of the failure detector.
Therefore we extend the k–converge algorithm by moving “k” into the parameter
of the routine and rename the routine to converge(). We adjust the specification
of converge() as follows.

Routine converge() takes in three parameters: � is the upper bound on the
number of values can be committed (this parameter corresponds to the “k” in
k–converge), p is the process identifier, and v is the input value of the process.
It outputs a pair (c, v′), where c is a boolean and v′ is one of the input value.
When p outputs (c, v′), we say that p picks v′, and if c = True, we say that p
commits to v′. The routine satisfies the following properties: (1) C-Termination:
Every correct process picks some value. (2) C-Validity: If a process p picks value

3 In [6] we show that a variation of failure detectors that output isLeader and lbound,
named Ω′′

k , is equivalent to Ωk failure detectors.
4 The Υ k failure detector proposed in [10] only solves k-set agreement in systems with

at most k failures.
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Shared variables:
Register D, initially ⊥
converge() instances: converge[ ][ ]

Output of failure detector ΠΩk on process pi:
isLeaderi, lboundi, cidi

Code for process pi:
1 v ← the input value of pi

2 repeat
3 cid← cidi

4 until cid �= ⊥
5 r ← 0
6 repeat
7 c← False
8 if isLeaderi = True then
9 r ← r + 1
10 (c, v)← converge[cid][r](lboundi, i, v)
11 if c = True then
12 D ← v; return (D)
13 until D �= ⊥
14 return (D)

Fig. 2. k-set agreement algorithm using ΠΩk

v, then some process q invoked converge() with parameter v. (3) C-Agreement:
If a process p commits to a value, then at most �max values are picked, where
�max is the maximum � that processes pass into converge(). (4) Convergence: If
all processes use the same value in the � parameter (� > 0), and if there are no
more than � distinct input values, then every process that picks a value commits.
The first two properties are the same as in [21], while the last two properties
are adjusted to accommodate different input values of �. Although the interface
and the specification are changed, the algorithm is exactly the same as in [21],
and the proof only needs some minor adjustment. The algorithm and its proof
are included in [5].

Based on the converge() routine, we provide an algorithm to solve k-set agree-
ment using ΠΩk in Figure 2. The algorithm is straightforward. We use cid output
of failure detectors to isolate each component and make sure only processes in
the same component could run the same instance of converge() routine. Within
a component, only those processes with isLeader output being True can run
converge() instances. Each converge() instance only uses the output of the pre-
vious converge() instance as the input, which is important to guarantee the
safety of the algorithm. In any converge() instance if some process p commits to
a value v, then p writes v to a shared variable D and decides on v, and eventually
all correct processes will see a non-⊥ D value and decide. The following theorem
summarizes the correctness of the algorithm.

Theorem 2. Algorithm in Figure 2 solves k-set agreement using failure detec-
tors in ΠΩk, for any k ≥ 1.

Proof. It’s obvious that k-set Validity holds.
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For Uniform k-Agreement, we only need to consider decisions made in line 12,
since decisions made in line 14 do not generate new decision values. Consider
every component Pi. If some process decides in line 12, we consider the earliest
such decision, say by a process p ∈ Pi. Process p decides v because it commits to
v in an instance converge[cid][r](). By the C-Agreement property of converge(),
at most �max values can be picked in this converge[cid][r]() instance, where
�max is the maximum lbound values in the input of this instance. Since the
algorithm guarantees for any r′ > r, instances converge[cid][r′]() only uses the
values picked in instance converge[cid][r](), we know that there are at most �max

values can be decided in line 12 by processes in component Pi. By definition,
�max ≤ lbound(Pi). Then, by property (ΠΩ1), there are at most k values that
can be decided. So Uniform k-Agreement holds.

For k-set Termination, first by property (ΠC2) all correct processes eventu-
ally exit the loop in lines 2–4. In the live component Pj that satisfies (ΠΩ2–5),
eventually there is at least one correct process and at most � processes in Pj

invoking converge(), where � is the eventually converged lbound output value.
Moreover, all these processes invoke converge() with the same first parameter
value �. Thus, the C-Termination and Convergence properties guarantee that
all correct processes in Pj eventually commit to some value in some converge()
instance. Therefore, eventually D is written. Once D is written, all correct pro-
cesses eventually decide. �

4 Failure Detector ΠΩΥ k

After defining ΠΩk, our next step is to find a mixture of ΠΩk and Υ such that
the new failure detectors are weaker than both and are still strong enough to
solve n-set agreement. Since we know that ΠΩk and Υ are not comparable, it
immediately means that the new failure detectors are strictly weaker than both
ΠΩk and Υ . This leads us to the discovery of failure detectors ΠΩΥ k.

The output of ΠΩΥ k for process p is a tuple (S, lbound, cid), where S is a
subset of P that informally matches the output of Υ , and lbound and cid outputs
have the same value range and same informal meaning as the ones in ΠΩk. For
a component Pj , let correct(Pj) = correct(F ) ∩ Pj , the set of correct processes
in Pj (under a failure pattern F ).

A failure detector D is in the class ΠΩΥ k if for any failure pattern F and any
failure detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P ,
such that the following properties hold. The cid properties and safety properties
are the same as ΠΩk, namely (ΠC1), (ΠC2), and (ΠΩ1). The liveness part
specifies that there exists one partitioned component Pj such that (ΠΩ2) of
ΠΩk and the following property hold:

(ΠΥ1) Pj contains at least one correct process, and eventually all correct pro-
cesses in Pj output the same S ⊆ Pj such that S is not the set of correct
processes in Pj and either S �= ∅ or the number of correct processes is
bounded by the eventual lbound output. Formally, correct(Pj) �= ∅ ∧ ∃S0 ⊆
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Pj , S0 �= correct(Pj), ∃t0, (∀p ∈ correct(Pj), ∀t > t0, (H(p, t).S = S0 ∧ (S0 �=
∅ ∨ |correct(Pj)| ≤ H(p, t).lbound))).

We call a component that satisfies the liveness properties (ΠΩ2) and (ΠΥ1) a
live component, and other components non-live components. Intuitively, in the
live component Pj , the S output behaves almost the same as the output of Υ ,
except that S may eventually stabilize to ∅, in which case the number of correct
processes in Pj must be bounded by the eventual lbound output. This mixture is
important in making ΠΩΥ k strictly weaker than Υ . In particular, ΠΩΥ 0 is well-
defined since lbound outputs could always be 0. However, in ΠΩΥ 0 the above
mixture of requirements on S and on lbound is gone, and we will show that ΠΩΥ 0

is equivalent to Υ (the proof is not straightforward though).
The follow theorem summarizes the results on the strength of ΠΩΥ k com-

paring with ΠΩk and Υ , which is captured in Figure 1 and will be studied in
Section 5. The key result is that ΠΩΥ k is strictly weaker than Υ for any k ≥ 1,
and as k increases, its strength is strictly weakened. Therefore, we found a new
family of n classes of failure detectors that are all strictly weaker than Υ . It not
only shows that Υ is not the weakest failure detector ever, but also suggests that
there are still quite some room under Υ to fit in non-trivial failure detectors.

Theorem 3. The followings hold regarding the strength of ΠΩΥ k. (1) ΠΩΥ 0 ≡
Υ . (2) ΠΩΥ k ≺ ΠΩΥ k−1 for all k ≥ 1. (3) ΠΩj �� ΠΩΥ k for all 1 ≤ k ≤ n
and 1 ≤ j ≤ n. (4) ΠΩΥ k � ΠΩj for all k ≥ j ≥ 1. (5) ΠΩΥ k �� ΠΩj for all
j ≥ k + 2 and k ≥ 1.

The algorithm that solves n-set agreement using ΠΩΥ k is based on the algorithm
using Υ in [10], with modifications to (a) isolate the algorithm for each individual
component; (b) obtain the size of each component; and (c) deal with the case
that S = ∅ in the live component. The full algorithm and its proof are included
in [5].

5 Comparing Failure Detectors

This section is the central place to show all the results captured in Figure 1
and stated in Theorems 1 and 3. Since Υ is already a very weak failure detec-
tor, one can imagine that it would be a subtle and delicate task to show that
under Υ there are still such structure in which a series of failure detectors have
various strengths. Indeed, besides those obvious transformations, other results
on possible or impossible transformations are quite delicate and require subtle
techniques to prove them (and a few of them are still open). These proofs really
show the subtle relationship between the failure detectors. Unfortunately, due to
the space constraint, we can only include the full proofs in [5]. To compensate,
we provide intuitive ideas and proof outlines for some key proofs.

5.1 Possible Transformations

For possible transformations, we need to prove all the arrows in Figure 1. Most
transformations are obvious from the failure detector definitions.
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Lemma 1. (1) ΠΩk � ΠΩk−1; (2) ΠΩΥ k � ΠΩΥ k−1; (3) ΠΩk � Ωk; (4)
ΠΩΥ k � Υ .

Proof. The first two parts hold directly by the definition of failure detectors.
The last two parts hold because we can treat Ωk and Υ as a special case of
partitioned failure detectors with only a single component P . �

Lemma 2. ΠΩΥ k � ΠΩk for all k ≥ 1.

Proof Outline. For the transformation from ΠΩk to ΠΩΥ k, the idea is for each
component to come up with the set of at most lbound leaders, then the S output
of ΠΩΥ k is the complement of the leader set with respect to the component, and
lbound and cid outputs of ΠΩΥ k are copied from ΠΩk. The key is that for a live
component, the leader set stabilizes and contains at least one correct process.
Therefore, its complement S cannot be the set of correct processes. Moreover,
if S = ∅, it means that all processes in the component are eventual leaders, in
which case the lbound must be at least the number of correct processes in the
component. The transformation still needs to solve the problem of estimating the
membership of each component, which is addressed in the full transformation
algorithm and its proof in [5]. �

Lemma 3. (1) Ω1 � ΠΩ1; (2) Υ � ΠΩΥ 0

The transformations for the above lemma are not straigthforward [5].

5.2 Impossible Transformations

Proving the impossible transformations is the critical step to establish the results
of this paper. For these proofs, it is sometimes convenient to view it as an
adversary trying to defeat any possible transformations. The adversary can (a)
see the current output generated by a transformation; (b) manipulate the outputs
of the failure detector to be transformed; (c) schedule the executions of processes;
and (d) crash processes to prevent the transformation from succeeding.

Among all the impossible transformations captured by the non-existent di-
rected path in Figure 1, several of them are critical ones, meaning that their
impossibility implies the rest impossible transformations. This is based on the
fact that if we show that C1 �� C2, then for all C3 � C1 and all C4 � C2, we have
C3 �� C4. The following lemma shows one such critical impossible transforma-
tions.

Lemma 4. ΠΩ2 cannot be transformed into Υ , i.e., ΠΩ2 �� Υ .

Proof Outline. We know that Ωn can be transformed to Υ easily by taking the
complement of the Ωn output. The reason that this transformation cannot be
adapted to ΠΩk is that ΠΩk allows a live component Pj in which all processes
are eventual leaders and lbound stabilizes to |Pj |. If we take the complement of
the leader set in Pj with respect to Pj we get an empty set. The proof explores
this basic idea.
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In the case of ΠΩ2, suppose for a contradiction that there is a transformation
T from ΠΩ2 to Υ . The adversary constructs a run in which the ΠΩ2 has a
partition π = {P1, P2}, where P1 = {p}. It sets lbound of every process to 1
and p’s isLeader always to True, making P1 a live component of ΠΩ2. It will
manipulate the isLeader outputs for processes in P2 to create a contradiction.
Whenever the S output of Υ in P stabilizes to some subset Si, the adversary
suppresses all processes in P \ Si (i.e., prohibit these processes from taking any
steps) for long enough time to force T to stabilize the S output to a different
set Si+1 �= Si, because Si appears to be the exact set of correct processes. Once
T changes the S output, the adversary releases the suppressed processes so that
they take some steps, and then it repeats the procedure for Si+1, and so on. The
adversary can keep doing so because P \ Si contains either p or some process in
P2, and thus it can always set isLeader of some process in P \Si to True without
violating the ΠΩ2 requirement. The result is that the adversary forces T into an
infinite run in which the S output never stabilizes, a contradiction. �

Lemma 4 implies that for all ΠΩk with k ≥ 2, ΠΩk cannot be transformed into
Υ . This is the first key result. Moreover, because ΠΩk can be transformed into
ΠΩΥ k, Lemma 4 further implies that ΠΩΥ k is strictly weaker than Υ , the second
key result of the paper. Next lemma shows another key result of the paper.

Lemma 5. Υ cannot be transformed into ΠΩn when n ≥ 2.

Proof Outline. Suppose there is a transformation T . If the partition of ΠΩn

generated by transformation T contains only a single component, then the proof
is the same as proving Υ cannot be transformed into Ωn in [10]. If the partition
of ΠΩn has at least two components, let P1 be one of the components. The
adversary first sets the Υ output to P \ P1, and then repeatedly suppress the
leader processes in all components that are potentially live components for ΠΩn

(these are called quasi-live components in the proofs), the purpose of which is
to construct an infinite run in which there is no live component. The only way
the transformation can counter this measure is by setting the lbound outputs of
processes in P1 to |P1|. But the adversary can counter this again by crashing all
processes in P1, setting Υ output to P1, and re-apply the suppression technique.
The result is a run in which no live component exists. The key is that the
adversary need to wait until the lbound output on P1 is at least the size of a
component to crash the component. This guarantees that the transformation
cannot set lbound on P \ P1 to |P \ P1| to defeat the adversary. �

Lemma 4 and 5 establish that Υ and ΠΩk with k ≥ 2 are not comparable.
Together with the possible transformations of Lemma 2, they immediately imply
that ΠΩΥ k is strictly weaker than both Υ and ΠΩk for any k ≥ 2.

Next lemma summarizes all other critical impossible transformations proven
so far. The proofs to these results are technically involved and can be found
in [5].

Lemma 6. The following results hold: (1) Ωk �� ΠΩk−1 for any k ≥ 2. (2)
ΠΩΥ k �� ΠΩΥ k−1 for any k ≥ 1. (3) ΠΩk+1 �� ΠΩΥ k−1 for any k ≥ 2.
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In conclusion, Theorem 1 is implied by Lemma 1(1)(3), Lemma 3(1), Lemma 4,
Lemma 5 and Lemma 6(1). Theorem 3 is implied by Lemma 1(2)(4), Lemma
3(2) and Lemma 6(2)(3).

There are still an open problem left before we can completely characterize all
relationships in Figure 1. It is whether ΠΩk can be transformed into ΠΩΥ k−1 for
any k ≥ 2. We conjecture that this transformation is impossible. If so, Figure 1
is indeed a full characterization of all relationships.

6 Results in the Message-Passing Model

Partition approach can also be applied in the message-passing model to define
weaker failure detectors for k-set agreement. We briefly summarize some of the
results we obtained in the message-passing model. The complete results are
included in [7].

In the message-passing model, it is shown in [17] that besides Ωk a majority of
correct processes is required to solve k-set agreement. The majority requirement
can be generalized to the class of quorum failure detectors Σ defined in [8]:
a failure detector in Σ outputs a set of processes called quorum such that:
(Σ1) any two quorums intersect; and (Σ2) eventually all quorums contain only
correct processes. Thus, we applied the partition approach to the class of failure
detectors Ωk × Σ to define weaker failure detectors.5

We first applies static partitions to Ωk × Σ and define Πk, which is similar
to ΠΩk but replacing the cid output with the quorum output. More specifically,
the output of a failure detector D in Πk for process p is a tuple (isLeader, lbound,
Quorum), where isLeader is a Boolean value indicating whether this process is
a leader, lbound is a non-negative integer indicating the upper bound on the
number of possible leaders in p’s partitioned component, and Quorum ⊆ P . A
failure detector D is in the class Πk if for any failure pattern F and any failure
detector history H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P , such
that H satisfies the following set of safety and liveness properties. The safety
properties are (ΠΩ1) as for ΠΩk and the following two properties related to the
quorum outputs:

(ΠΣ1) The quorum output of a process p is always contained within p’s parti-
tioned component. Formally, ∀t ∈ T , ∀p �∈ F (t), H(p, t).Quorum ⊆ π[p].

(ΠΣ2) The quorum outputs in the same partitioned component always in-
tersect. Formally, ∀t1, t2 ∈ T , ∀p1 �∈ F (t1), ∀p2 �∈ F (t2), π[p1] = π[p2] ⇒
H(p1, t1).Quorum ∩ H(p2, t2).Quorum �= ∅.

The liveness part specifies that there exists one partitioned component Pj such
that the properties (ΠΩ2–5) of ΠΩk hold plus the following:

(ΠΣ3) Eventually the quorum outputs by all processes in Pj contain only cor-
rect processes. Formally ∃t0 ∈ T , ∀t ≥ t0, ∀p ∈ Pj \ F (t), H(p, t).Quorum ⊆
correct(F ).

5 Given two classes of failure detectors C1 and C2, class C1 ×C2 is the cross-product of
the two, i.e., C1 × C2 = {(D1,D2) | D1 ∈ C1,D2 ∈ C2}.
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ΠS
1

Π2

Π1

Ωk × Σ

Πk

ΠS
k

Πk−1

Ωk−1 × Σ

Ω2 × Σ

Ω1 × Σ

ΠS
k−1

ΠS
2

Fig. 3. Relationship diagram for failure detectors in the message-passing model. All
failure detector classes in the diagram can be used to solve k-set agreement (n ≥ 2k−2
is required to show that transformations from Ωk ×Σ to ΠS

k−1 and stronger classes are
impossible).

From the definition, we can see that Πk follows the partition approach and is
a static partitioning of Ωk × Σ: each component Pi has a failure detector with
all the safety properties of Ωki × Σ resticted to Pi where ki = lbound(Pi) and∑

ki ≤ k, while at least one component Pj also satisfies all liveness properties
of Ωkj × Σ.

Next we further weaken Πk by allowing dynamic splitting of components
during the run, which leads to the definition of ΠS

k . Failure detectors in ΠS
k

output a tuple (isLeader, lbound,Quorum, cid). Informally, a failure detector in
ΠS

k allows partitioned components to further split during the run, but it uses
cid to differenciate different components and requires the quorum outputs in
a component after the splitting intersects with all quorum outputs before the
splitting. The formal definition is included in [7].

With the new families of failure detectors {Πz}1≤z≤k, and {ΠS
z }1≤z≤k, we

compare their strengths with {Ωz ×Σ}1≤z≤k. Based on a siginificant amount of
proof work, we summarize their relationship with a nice lattice structure shown
in Figure 3. Several important results are summarized by the lattice. First, as
we expected Πk weakens Ωk × Σ,6 and ΠS

k further weakens Πk for all k > 1.
Second, even failure detectors in Π2 with just two components is not strong
enough to be transformed into Ωk × Σ, and even failure detectors in ΠS

2 with
only one dynamic split is not strong enough to be transformed into Πk. This
shows that partitioning and dynamic splitting are indeed efficient techniques
that weaken failure detectors. Third, for all z ≥ 2, none of the classes Ωz × Σ,
Πz, and ΠS

z can be transformed into Ωz−1 ×Σ, Πz−1, or ΠS
z−1. In fact, using a

result in [17] we further show that Ωz × Σ, Πz, and ΠS
z are not strong enough

to solve (z − 1)-set agreement. In [7], we further show that the lattice structure

6 Actually, Πk weakens Σ in all cases, and weakens Ωk in most cases.



Weakening Failure Detectors for k-Set Agreement 137

in Figure 3 still holds (under certain mild assumptions) even if we assume that
a majority of processes are correct in the system model.

Finally, we design a new algorithm in the message-passing model that solves
k-set agreement using ΠS

k . The algorithm is based on the Paxos algorithm struc-
ture [15], but has significant new additions with much more complicated proofs
to deal with the subtleties introduced by dynamic splittings of partitioned failure
detectors.

7 Concluding Remarks

In [5] we further demonstrate the partition approach by defining a new failure
detector ΠΥ , which is the result of applying the approach directly to Υ . We show
that ΠΥ is enough to solve n-set agreement but is strictly weaker than Υ . ΠΥ is
stronger than ΠΩΥ n−1 but is incomparable with ΠΩΥ k for k ≤ n − 2.

We have shown that the partition approach is effective in weakening a num-
ber of failure detectors for k-set agreement. However, the partition approach
proposed is still an informal method, and sometimes it requires ad-hoc adjust-
ments. One future direction is to see how the approach and the partitioned
failure detectors can be formally treated. In particular, it would be interesting
to see if one could formally define a general class of partitioned failure detectors
and define the weakest failure detectors among all partitioned failure detectors
for k-set agreement.

The discovery of failure detectors even weaker than Υ may suggest that the
conjecture made in [10] that n-set agreement is the minimum decision task in
terms of minimum information required might not be true. This is another re-
search direction to see if there is any other decision task strictly weaker than
n-set agreement in terms of failure information needed to solve the problem.
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