
Exponential Lower Bounds for the PPSZ k-SAT Algorithm∗†

Shiteng Chen‡, Dominik Scheder§, Navid Talebanfard¶, Bangsheng Tang‖

Abstract
In 1998, Paturi, Pudlák, Saks, and Zane presented PPSZ,
an elegant randomized algorithm for k-SAT. Fourteen years
on, this algorithm is still the fastest known worst-case
algorithm. They proved that its expected running time on
k-CNF formulas with n variables is at most 2(1−εk)n, where
εk ∈ Ω(1/k). So far, no exponential lower bounds at all have
been known.

In this paper, we construct hard instances for PPSZ.

That is, we construct satisfiable k-CNF formulas over n

variables on which the expected running time is at least

2(1−εk)n, for εk ∈ O(log2 k/k).

1 Introduction

In 1998, Paturi, Pudlák, Saks, and Zane [PPSZ98,
PPSZ05] presented an elegant randomized algorithm
for the satisfiability problem of k-CNF formulas with
n variables. Their algorithm, henceforth called PPSZ,
is conceptually extremely simple to state:

Pick a variable x randomly from the vari-
ables of F . Try to determine the correct value
of x using some heuristic. If that fails, choose
the value of x randomly. Fix it to this value.
Repeat and good luck.

The heuristic they use checks whether the correct value
can be determined by resolution of bounded width: that
is, it builds all possible resolvents from the clauses of
the formula, but throws away those resolvents whose
size exceeds some parameter w. If at some point this
leads to the unit clause {x}, the algorithm knows that it
must set x to 1. If the unit clause {x̄} appears, surely x
must be 0. This procedure runs in time 2o(n) as long as

∗The authors acknowledge support from the Danish National
Research Foundation and The National Science Foundation of
China (under the grant 61061130540) for the Sino-Danish Center
for the Theory of Interactive Computation, and from the CFEM
research center (supported by the Danish Strategic Research
Council), within which this work was performed.

†This work was supported in part by the National Basic Re-
search Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant
61033001, 61061130540, 61073174.

‡Tsinghua University
§Aarhus University
¶Aarhus University
‖Tsinghua University

w ∈ o(n). Let us call this heuristic the strong heuristic,
denoted by P strong.

We also consider a weaker heuristic, Pweak. Instead
of trying to derive {x} or {x̄} using small-width resolu-
tion, it iterates over all subformulas G of F containing
up to w clauses, and checks whether G implies x or x̄ in
the logical meaning: G implies x if all satisfying assign-
ments of G set x to 1. By completeness of resolution,
{x} (or {x̄}) follows from G by a resolution proof as well
in which all clauses have size at most wk, simply because
G cannot contain more than wk variables. This means
that P strong with clauses up to width wk is at least as
strong as Pweak, considering subformulas up to size w.
This justifies the terms weak and strong.

In general, a heuristic P takes as input a formula
F and a variable x, and returns 0, 1, or “don’t know”.
We require that P be correct: if P (F, x) = 1, then F
implies x. If P (F, x) = 0, then F implies x̄. Note that
both Pweak and P strong fullfil this requirement.

1.1 PPSZ as Encoding Satisfying Assignments
Now we discuss PPSZ from a particular perspective.
The function encode below takes a satisfiable CNF for-
mula F , a satisfying assignment b of it, a permutation
π of the variables of F , and a heuristic P and outputs
an encoding c of b. F [xi 7→bi] is F simplified by replacing
xi by bi (will be defined more formally later). It is not
hard to see that one can reverse this procedure; that is,
given c, F , and π, one can reconstruct the original b.
The encoding c is never longer than the original b. It
might be much shorter.

Algorithm 1.1. encode(b, π, F , P)
1: c := the empty string
2: for xi ∈ vbl(F) in the order according to π do
3: if P (F, xi) =“don’t know” then
4: append bi to c
5: end if
6: F := F [xi 7→bi]

7: end for
8: return c

During a call to encode(b, π, F, P), some variables
of F are encoded into the result c, whereas some others
are skipped, because the heuristic P was able to deduce
their correct values. Let EncVbl(b, π, F, P) denote the

set of variables that have been encoded. So the length
of the string encode(b, π, F, P) equals the size of the set
EncVbl(b, π, F, P). From c, we can reconstruct b: there
is a procedure decode such that decode(c, π, F, P) = b.

If we do not know c, we might just take a random
bit string and hope that c is a prefix of it. This happens
with probability 2−|c|. This suggests the following
probabilistic algorithm for SAT: let c be a random bit
string, try to decode it, and hope that it works.

Algorithm 1.2. ppsz(F , π, P)
1: c← {0, 1}n, uniformly at random
2: b := decode(c, π, F, P)
3: return b

In most cases the algorithm will return junk, but if
we are lucky, it will return a satisfying assignment b.
The following lemma is not difficult to prove:

Lemma 1.1. ([PPSZ05]) Let b be a satisfying as-
signment of F . Then Pr[ppsz(F, π, P) = b] =
2−|encode(b,π,F,P)| .

We see that short encodings imply high success proba-
bility. We do not know, however, which permutation π
leads to a short codelength. Our algorithm will simply
choose a random permutation. Since x 7→ 2x is convex,
Jensen’s inequality implies that

E
π
[Pr[ppsz(F, π, P) = b]] ≥ 2−Eπ |encode(b,π,F,P)| .

The main theorem of Paturi, Pudlák, Saks, and Zane is:

Theorem 1.1. ([PPSZ05]) Let F be a satisfiable k-
CNF formula and b be a satisfying assignment. Then
Eπ[|encode(b, π, F, P)|] ≤ (1− εk)n, where εk ≈ π2

6k for
large k.

For a 3-CNF formula F that has a unique satisfying
assignment b, they show that Eπ[encode(b, π, F, P)] ≤
(2 ln 2− 1)n + o(1) ≈ 0.38n; this gives a randomized al-
gorithm of running time 1.308n for 3-SAT. Recently, Ti-
mon Hertli [Her11] proved that this algorithm achieves
the same running time bound even if the 3-CNF formula
has many satisfying assignments.

In Paturi, Pudlák, Saks, and Zane [PPSZ05] and
Hertli [Her11], it suffices to consider the weak heuristic
(even if [PPSZ05] formulates the algorithm using the
strong heuristic). In fact, it suffices to check implication
by subformulas of up to D clauses, where D = w(n) can
be an arbitrarily slowly growing function of n.

1.2 Results All known positive results about PPSZ,
i.e., upper bounds on its expected running time, also
hold for a very weak heuristic. We complement this

with a lower bound on the running time that holds
for the strong heuristic P strong. This heuristic checks
implication by resolution of width bounded by w for
w ≤ ln(k)n/k.

Theorem 1.2. (Lower Bound for PPSZ) For ev-
ery sufficiently large k ∈ N, there exists a family Fn of
satisfiable k-CNF formulas over n variables such that

Pr[ppsz(F, P strong) is successful] ≤ 2−(1−εk)n

for εk ∈ O
(

log2 k
k

)
.

In other words, the “savings” are O(log2 k/k).
Contrast this with the upper bound in [PPSZ05], stating
that the savings are at least Ω(1/k).

Relation to ETH and Strong ETH Most com-
plexity theorists believe that there is no polynomial time
algorithm for k-SAT. But this does not rule out the
possibility of a 2

√
n time algorithm on formulas with n

variables. Such an algorithm does not run in polyno-
mial time, but it is far better than everything that is
known. In fact, most researchers do not believe in such
an algorithm either: The Exponential Time Hypothesis
(ETH), a conjecture formulated by Impagliazzo, Paturi,
and Zane [IPZ01] states that no algorithm solves 3-SAT
in time 2o(n). In fact, they prove that if 3-SAT can be
solved in subexponential time, then so can k-SAT for
every k ≥ 3.

Far from being subexponential, the best known
algorithms for k-SAT exhibit a running time of the form
2(1−εk)n, where εk → 0 as k grows. In words, for large k
they are not much better than exhaustive search. The
conjecture that this is necessarily so is known as Strong
ETH.

Looking into the running time in even more detail,
we see that several k-SAT algorithms exhibit savings
εk of order Ω(1/k): this is true for PPZ [PPZ99] and
Schöning’s algorithm [Sch99]. In fact, no algorithm, de-
terministic or randomized, of running time 2(1−ω(1/k))n

is known. This means that when constructing hard in-
stances, one should not only strive for exponential lower
bounds: one should try to obtain bounds of the form
2(1−εk)n, where the savings εk are not much larger than
1/k. Providing such lower bounds for the PPSZ algo-
rithm is the contribution of this paper.

It is also interesting to investigate the performance
of PPSZ on well-structured instances, e.g. instances
with small tree-widths. It is shown in [ACL+12] that
satisfiability of a formula φ with tree-width tw(φ) can
be determined in O∗(2tw(φ)) time by a specially tailored
algorithm, and this is essentially optimal assuming
ETH. Here we assume that tw(φ) is asymptotically
smaller than n, e.g. logO(1) n. Based on our hard

instances for PPSZ, we can construct an instance with
tree-width tw(φ) on which PPSZ performs poorly:
joining n/tw(φ) disjointed hard instances for PPSZ on
tw(φ) variables. The success probability of PPSZ on
this instance is the product of the success probabilities
of PPSZ on the disjointed hard instances. It is not
difficult to see, on this instance, PPSZ needs O(2Ω(n))
time to answer with a constant success probability,
which is worse than O∗(2tw(φ)).

Methods and Challenges Resolution is a cal-
culus for proving unsatisfiability of CNF formulas. It
has been widely studied, and many exponential lower
bounds are known. See Ben-Sasson and Wigder-
son [BSW01] for example. Resolution lower bounds
are important because, among other things, they im-
mediately translate into lower bounds for the so-called
DPLL style algorithm (named after Davis, Putnam, Lo-
gemann, and Loveland [DP60, DLL62]) on unsatisfiable
formulas. Alekhnovich, Hirsch, and Itsykson [AHI05]
prove exponential lower bounds for DPLL algorithms
on satisfiable formulas, using methods from resolution
lower bounds. Unfortunately, the PPSZ algorithm does
not fit into the framework of Alekhnovich, Hirsch, and
Itsykson: it is not a DPLL algorithm. Therefore, res-
olution methods do not directly apply. Our proof is,
however, to some extent inspired by their work.

A second challenge is to prove lower bounds of the
form 2(1−εk)n for εk → 0. Existence of such lower
bounds for DPLL algorithms is shown in [PI00]. In
resolution lower bounds, a central notion is the width of
a resolution derivation, which is the size of the largest
clause appearing in it. Though there are linear lower
bounds on the resolution width for k-CNF formulas (see
again Ben-Sasson and Wigderson [BSW01]), no lower
bound beyond n/2 + o(n) is known. In fact, if the k-
CNF formula is derived from a system A·x = b of linear
equations, where A has at most k 1’s in each row, then
the resolution width is at most n/2 + o(n): Ben-Sasson
and Impagliazzo [BSI10] show that such formulas always
have resolution refutations of width at most n/2 + o(n)
and size at most 2n/2+o(n). Our hard instances are based
on linear systems too; we therefore cannot use resolution
width lower bounds directly if we want to prove bounds
above 2n/2.

Following the framework of Ben-Sasson and
Wigderson [BSW01], one proves width lower bounds by
(i) defining a certain notion of boundary expansion on
the formula, (ii) showing that a small-width resolution
proof leads to a poorly expanding subformula, and (iii)
showing that this contradicts the expansion properties
of the formula. Unfortunately, this expansion method
will not give us any width lower bounds close to n. In-

stead, we show that from a successful run of PPSZ, we
obtain many subformulas F1, F2, . . . that are poorly ex-
panding in a very particular way: there is a set S such
that the “boundary” of each Fi falls almost completely
into S. We can show that for a formula with good ex-
pansion properties, this is not possible, even if |S| is
very close to n.

Another challenge is more specific for PPSZ. Pa-
turi, Pudlák, Saks, and Zane [PPSZ05] and Ti-
mon Hertli [Her11] use Jensen’s inequality to bound
Eπ

[
2−|encode|

]
≥ 2−E[|encode|]. The latter expres-

sion is much more accessible. For us, the inequality
goes in the wrong direction. If |encode(b, π, F, P)| is
o(n) for even a single permutation π, then PPSZ’s suc-
cess probability is at least 2−o(n). We need to make sure
that |encode(b, π, F, P)| is large for every b and every
π. We define

codelength(b, F, P) := min
π
|encode(b, F, π, P)|

and

codelength(F, P) := min
b

codelength(b, F, P) ,

where the minimum is taken over all satisfying assign-
ments b.

Theorem 1.3. For every sufficiently large k ∈ N, there
is a family Fn of satisfiable k-CNF formulas over n
variables such that

codelength(F, P strong) ≥ (1− εk)n

for some εk ∈ O((ln k)2/k), and Fn has at most 2εkn

satisfying assignments.

By Lemma 1.1, this means that the success
probability of PPSZ on such a formula is at most∑

b∈sat(F) 2−codelength(b) ≤ 2−(1−εk)n. Thus, Theo-
rem 1.3 implies Theorem 1.2.

1.3 Notation Here we introduce some notation that
will be used throughout the remaining part of the paper.
For a vector v over F2, we denote by supp(v) the set
{i | vi = 1}. For a matrix M , supp(M) is the union of
supp(r) over all rows r of M . For a CNF formula F ,
vbl(F) denotes the set of variables occurring there. For
a literal u, vbl(u) denotes the one underlying variable.
For a formula F , a variable x ∈ vbl(F) and b ∈ {0, 1},
F [x7→b] denotes the simplied F after setting the value
of x to the constant b. Furthermore, for a subset
S of variables and an assigment b, F [xS 7→bS] is the
simplified formula F after setting the value of variables
in S according to b. The binomial distribution of n
experiments with success probability p will be denoted
by Bin(n, p).

2 The Hard Instances

We base our construction of hard instances on linear
equations of the form M · x = 0. Form M ∈ Fn×n

2 by
setting each entry to 1 with probability k/n. One can
write the system M ·x = 0 as a CNF formula by writing
each constraint m ·x = 0 as an equivalent CNF formula.
The following theorem holds.

Theorem 2.1. Let F denote the CNF formula encod-
ing the system M · x = 0. Then with high probability
over the choice of M ,

codelength(F, P strong) ≥ (1− εk)n

for some εk ∈ O((ln k)2/k).

2.1 Transformation into a k-CNF formula The
bulk of the work is to prove Theorem 2.1. In addition,
we have to show (i) that M · x = 0 does not have too
many solutions and (ii) how to transform M · x = 0
into a k-CNF formula. Both (i) and (ii) are rather
straightforward. We state the needed key lemmas and
give the proofs in the appendix.

Proposition 2.1. With high probability over the
choice of M , the system M · x = 0 has at most 2εkn

solutions, where εk ∈ O(ln2(k)/k).

Proposition 2.2. Let F be a CNF formula over n
variables, T ⊆ [n] a set of variables, and b∗ be a
satisfying assignment. Set F ′ := F [xT 7→b∗

T]. Then
codelength(F ′, P strong) ≥ codelength(F, P strong)− |T |.

Proposition 2.3. Choose M ∈ Fn×n
2 by setting every

entry to 1 with probability k/n. Call a row excessive if
it has more than 2ek 1’s. The expected total number of
1’s in the excessive rows is O(nk/2k).

Combining these two lemmas, we take our formula
F , which is not a k-CNF formula, and set to 0 all the
variables that occur in clauses of size bigger than 2ek.
The resulting formula F ′ is a 2ek-CNF formula, and by
Lemma ??,

codelength(b′, F ′) ≥ (1−O(ln2 k/k)−O(k/2k))n
≥ (1−O(ln2 k/k))n

for all satisfying assignments b′ of F ′. Thus, Theo-
rem 1.3 follows from Theorem 2.1.

3 Proof of Theorem 2.1

3.1 Overview Choose M ∈ Fn×n
2 by setting every

entry to 1 with probability k/n. Let F denote the
CNF formula encoding the system M · x = 0. Suppose

the conclusion of Theorem 2.1 does not hold. That is,
there is a satisfying assignment b and a permutation
π such that the set S = EncVbl(b, π, F, P strong) is too
small: |S| ≤ (1−c ln2 k/k)n for some c to be determined
later. We show that with high probability, this does not
happen.

Definition 3.1. (Step Matrix) Let s ∈ N. A ma-
trix L is an s-step matrix if the rows a1,a2, . . . of A
satisfy

|supp(ai) \ (supp(a1) ∪ . . . ∪ supp(ai−1))| ∈ [s, 4s] .

(3.1)

In words, each new row introduces at least s and at most
4s new 1’s.

We need some parameters. Define τ := 129 ln2 k/k,
` := 4 ln k and w := ln(k)n/k.

Lemma 3.1. (Existence of a step matrix)
Suppose |EncVbl(b, π, F, P strong)| ≤ (1 − 2τ)n. Then
there exists (1) a set U ⊂ [n] of τn variables, (2)
an n/k-step matrix L of dimension ` × n and (3) an
(` × τn)-matrix Z in which every row has at most w
1’s such that

L ·MU = Z(3.2)

where MU is the n × |U |-matrix M restricted to the
variables in U .

This lemma is the main technical challenge in the
proof of Theorem 2.1, and its detailed proof will be given
in Section 3.3. From the lemma and next propositions,
the theorem follows immediately:

Proposition 3.1. There are at most
(

n
τn

)
ways to

choose U , at most
(

n
4`n/k

)` ways to choose L, and at

most
(

τn
≤w

)` ways to choose Z.

Here, we use
(

a
≤b

)
as a short-hand for

(
a
0

)
+
(
a
1

)
+

. . .+
(
a
b

)
. The proof of this proposition and the following

propositions are rather straightforward. We give them
in the appendix.

Proposition 3.2. For each fixed U , L, and Z,

Pr[L ·MU = Z] ≤ e−`τn/2 ,

where the probability is taken over the choice of M .

We combine these two propositions:

Proposition 3.3. The probability that there exists a
set U and matrices L and Z as described in Lemma 3.1
is at most(

n

τn

)
·
(

n

4`n/k

)`

·
(

τn

≤ w

)`

· e−2 ln k
k τn .

For our choice of parameters, this is o(1).

Thus, it is very unlikely that there exists a sat-
isfying assignment b and a permutation π such that
|EncVbl(b, π, F, P strong)| ≤ (1− 2τ)n. This finishes the
proof of Theorem 2.1.

3.2 The Connection Between PPSZ and Linear
Algebra Since our formula F is derived from a system
of linear equations, there is a connection between reso-
lution proofs and Gaussian row operations. Ben-Sasson
and Impagliazzo [BSI10] call this concept Gaussian refu-
tation and attribute it to personal communication with
Mikhail Alekhnovich. Since we could not find a concise,
ready-to-use lemma in the literature, we will develop
the concept ourselves here, and give complete proofs in
the appendix.

Suppose F is a CNF formula and C is a clause. We
say F implies C if every satisfying assignment of F also
satisfies C. A literal u ∈ C is critical if F implies C,
but not C \ {u}. That means there is some satisfying
assignmnet b that satisfies F and C, but not C \ {u}.

Lemma 3.2. (Gaussian Resolution) Let F be a
CNF formula encoding the system of linear equations
M · x = b. Suppose there is a resolution derivation

C1, C2, . . . , Cm ,

where each Ci is either a clause of F or the resolvent
of two clauses Ci1 , Ci2 for i1, i2 < i. Then there exist
linear constraints of the form

c1 · x = z1, c2 · x = z2, . . . , cm · x = zm ,

where each constraint is either a row of the system
M · x = b, or ci = ci1 + ci2 and zi = zi1 + zi2 for some
i1, i2 < i. In particular, all ci are linear combinations of
rows of M . Furthermore, for all 1 ≤ i ≤ m it holds that
(i) supp(ci) ⊆ vbl(Ci), (ii) every x with ci · x = zi

satisfies Ci, (iii) if a literal u ∈ Ci is critical, then
vbl(u) ∈ supp(ci).

3.3 Proof of Lemma 3.1 In this section we prove
Lemma 3.1. A proof of this lemma for Pweak (namely,
replacing P strong with Pweak in the statement), which
is similar in structure but technically simpler, is given
in the appendix.

Consider a run of PPSZ. Suppose there is a satisfy-
ing assignment b and a permutation π such that S :=
EncVbl(b, π, F, Pweak) has size s := |S| ≤ (1 − 2τ)n.
From F [xS 7→bS], one can successively derive all the re-
maining variables by resolution of width at most w.
For simplicity, assume that S = {1, . . . , s} and π =
(1, . . . , n). For each variable xj , s + 1 ≤ j ≤ n, there
exists a resolution proof

C
(j)
1 , . . . , C(j)

mj
= (x<j 6= b<j ∨ xj = bj)

=: C(j) ,(3.3)

such that |vbl(C(j)
i) \ {1, . . . , j − 1}| ≤ w. This

follows from the fact that one can derive xj = bj from
F [x<j=b<j] using width-w-resolution. Note that the
literal xj = bj is critical in the clause C(j): the satisfying
assignment b does not satisfy (x<j 6= b<j). We apply
Lemma 3.2 to the sequence (3.3) and obtain a sequence
of vectors:

c(j)
1 , c(j)

2 , . . . , c(j)
mj

=: c(j) .(3.4)

Since the literal xj = bj is critical in C(j), we conclude
that j ∈ supp(c(j)). Since supp(c(j)) ⊆ vbl(C(j)) =
{1, . . . , j}, it follows that max supp(c(j)) = j. Since
every c(j) is a linear combination of rows of M , there
are vectors

r(j)
1 , r(j)

2 , . . . , r(j)
mj

=: r(j)(3.5)

such that r(j)
i ·M = c(j)

i and each r(j)
i in the sequence

either contains exactly one 1 or is the sum of two
previous vectors in the sequence. Writing the r(j)’s for
s + 1 ≤ j ≤ n as an (n − s) × n matrix R gives the
following equation:

The right side has full rank n − s(≥ 2τn), and so does
R. Take the τn first rows of R to be R′ and let U be
the last τn variables. Let MU be the restriction of M
to these variables. This gives:

Matrix R′ has full rank τn, so |supp(R′)| ≥ τn. For
general S and π, we can do the same: Let T be the
first τn variables of [n] \ S processed by PPSZ, and U
the last τn variables. Form R′ by restricting R to the
rows corresponding to T and restrict M to the columns
corresponding to U .

Observation 3.1. Let c(j)
i be a row vector occurring in

the Gaussian resolution derivation (3.4) for some j ∈ T .
Then |supp(c(j)

i) ∩ U | ≤ w.

This is because all but w variables occurring in
each clause in the resolution proof must come before
j; however, the variables of U come after T in the
permutation π.

We build an `×n-matrix L as follows by successively
adding rows to it until |supp(L)| > τn − 2n/k. Start
with L being a 0 × n-matrix, i.e., not containing any
rows. We build a temporary matrix A, starting with A
being 0× n-matrix and iteratively adding rows of R′ to
it. Since R′ is full rank, |supp(R′)| ≥ τn. Note that as
long as |supp(L)| ≤ τn − 2n/k, there is some point in
time where |supp(A) \ supp(L)| first exceeds 2n/k.

At this point, there are two cases. First, suppose
that we have arrived at a matrix A with 2n/k ≤
|supp(A) \ supp(L)| ≤ 4n/k:

L

A

0

0∗

1

1
1

1

1
1

1 1

1
1

1
11

1

∈ [2n/k, 4n/k]

Let r denote a random linear combination of the rows
of A. Note that E[|supp(r) \ supp(L)|] ∈ [n/k, 2n/k].
Thus there is some linear combination r providing at
least n/k and at most 4n/k new 1’s. Add this row to
L. Note that r ·MU = 0.

In the second case, assume |supp(A) \ supp(L)| >
4n/k. This means that the last row we added to A
increased supp(A) \ supp(L) from below 2n/k to above
4n/k.

L
0

1

1
1

1

1

1

A
0∗ 1

1 11

2n/k

4n/k

1 1 1 1 1 1 1 1 1 1

1

1

1

Thus, the last row r of R′ we added to A contains at
least 2n/k 1’s that are not in supp(L). At this point,
recall that c := r · M has been derived by Gaussian
resolution

c(j)
1 , . . . , c(j)

mj
=: c(3.6)

of some variable xj with j ∈ T . We need the
following proposition:

Proposition 3.4. Let U ⊆ [n] and a ∈ N, a ≥ 1. Let
r1, . . . , rt ∈ Fn

2 be a sequence of vectors as in (3.5).
Then either |supp(rt) \ U | ≤ a, or there is an ri in the
sequence for which |supp(ri) \ U | ∈ [a/2, a].

Proof. Assume |supp(rt) \ U | > a. Note that the
sequence r1, . . . , rt is obtained from a resolution proof
and thus it follows from Lemma 3.2 that for each 1 ≤
i ≤ t, |supp(ri)| = 1 or ri = ri1 + ri2 for some i1, i2 < i
which implies supp(ri) ⊆ supp(ri1)∪supp(ri2). But this
gives supp(ri) \ U ⊆ (supp(ri1) \ U) ∪ (supp(ri2) \ U)
and consequently |supp(ri) \ U | ≤ |supp(ri1) \ U | +
|supp(ri2) \ U |. Combining this sub-additivity with
the fact that |supp(r1) \ U | = 1 and |supp(rt) \ U | >
a, it follows that there must be some ri satisfying
|supp(ri) \ U | ∈ [a/2, a]. �

By Proposition 3.4, there is some r′ in the sequence
such |supp(r′) \ supp(L)| ∈ [n/k, 2n/k]. We add r′

to L. Note that r′ · M =: c′ is a row vector in the
sequence (3.6). By Observation 3.1, this means that
|supp(c) ∩ U | ≤ w. Consequently, r′ ·MU has at most
w 1’s.

Let us summarize: Every row in L introduces at
least n/k and at most 4n/k 1’s. This means, we can
repeat this process at least τn

4n/k − 1 = τk/4− 1 ≥ 4 ln k

times. This finishes the proof of Lemma 3.1.

Acknowledgements

We are grateful to Periklis Papakonstantinou, Pavel
Pudlák, and Rahul Santhanam for inspiring discussions.

References

[ACL+12] E. Allender, S. Chen, T. Lou, P. Papakonstanti-
nou, and B. Tang. Width-parameterized SAT: time-
space tradeoffs. ECCC TR12-027, 2012.

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and
Dmitry Itsykson. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formu-
las. J. Autom. Reasoning, 35(1-3):51–72, 2005.

[BSI10] Eli Ben-Sasson and Russell Impagliazzo. Random
CNF’s are hard for the polynomial calculus. Compu-
tational Complexity, 19(4):501–519, 2010.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs
are narrow - resolution made simple. J. ACM,
48(2):149–169, 2001.

[DLL62] Martin Davis, George Logemann, and Donald
Loveland. A machine program for theorem-proving.
Comm. ACM, 5:394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing
procedure for quantification theory. J. Assoc. Comput.
Mach., 7:201–215, 1960.

[Her11] Timon Hertli. 3-SAT faster and simpler - unique-
SAT bounds for PPSZ hold in general. In Rafail
Ostrovsky, editor, FOCS, pages 277–284. IEEE, 2011.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Fran-
cis Zane. Which problems have strongly exponential
complexity. J. Comput. System Sci., 63(4):512–530,
2001. Special issue on FOCS 98 (Palo Alto, CA).

[PI00] P. Pudlák and R. Impagliazzo. A lower bound for dll
algorithms for k-sat (preliminary version). In Proceed-
ings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms, pages 128–136. Society for Indus-
trial and Applied Mathematics, 2000.

[PPSZ98] Ramamohan Paturi, Pavel Pudlák, Michael E.
Saks, and Francis Zane. An improved exponential-time
algorithm for k-SAT. In FOCS, pages 628–637. IEEE
Computer Society, 1998.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E.
Saks, and Francis Zane. An improved exponential-time
algorithm for k-SAT. J. ACM, 52(3):337–364, 2005.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis
Zane. Satisfiability coding lemma. Chicago J. Theoret.
Comput. Sci., pages Article 11, 19 pp. (electronic),
1999.

[Sch99] Uwe Schöning. A probabilistic algorithm for k-SAT
and constraint satisfaction problems. In FOCS ’99:
Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, page 410, Washington,
DC, USA, 1999. IEEE Computer Society.

In this appendix we state the proofs that are missing
in the main part of the paper. For convenience, we do
not only give the proofs, but also repeat the statements
of the propositions and lemmas. Therefore, we also
repeat the original numbering.

A Remaining Proofs

Proposition A.1. (Proposition 2.1) With high
probability over the choice of M , the system M · x = 0
has at most 2εkn solutions, where εk ∈ O(ln2(k)/k).

Proof. We compute the expected number of solutions
to M · x = 0. This is∑

x∈Fn
2

Pr[M · x = 0] .(A.1)

Each summand depends only on the number of 1’s in
the vector x. If x has exactly w 1’s, then

Pr[M · x = 0] = (Pr[Bin(w, k/n) ≡ 0 mod 2])n =: pn
w .

Thus, (A.1) is

n∑
w=0

(
n

w

)
pn

w .

We divide this sum into two parts: for w above a certain
threshold, Bin(w, k/n) is even with probability close to
1/2. For w below this threshold, that pw might be close
to 1. But there are few such x in the first place. We
can compute pw as follows.

Fact A.1. pw = 1+(1−2k/n)w

2 .

Proof. Set a = k/n. We write pw explicitely:

pw =
∑

0≤i≤w, even

(
w

i

)
ai(1− a)w−i .

Define and observe:

A :=
w∑

i=0

(
w

i

)
ai(1− a)w−i = 1 ,

B :=
w∑

i=0

(
w

i

)
(−a)i(1− a)w−i = (1− 2a)w .

In A + B, all terms for odd i cancel out:

A + B =
∑

i even

(
w

i

)
2ai(1− a)w−i = 2pw .

Therefore, pw = A+B
2 = 1+(1−2a)w

2 . �

Fixing w0 := ln(k)n/k, above the threshold we now
have

n∑
w=w0

(
n

w

)
pn

w =
n∑

w=w0

(
n

w

)(
1 + (1− 2k/n)w

2

)n

≤
n∑

w=w0

(
n

w

)(
1 + (1− 2k/n)w0

2

)n

≤ (1 + (1− 2k/n)w0)n

< (1 + e−2kw0/n)n

= (1 + e−2 ln(k))n

= (1 + 1/k2)n ≤ en/k2
.

Below the threshold, there are at most

w0∑
w=0

(
n

w

)
≤
(

en

w0

)w0

≤
(

ek

ln(k)

)ln(k)n/k

≤ e2 ln2(k)n/k .

Thus both above and below the threshold the expected
number of x such that M ·x = 0 is at most 2O(ln2(k)n/k).
�

Proposition A.2. (Proposition 2.2) Let F be a
CNF formula over n variables, T ⊆ [n] a set of
variables, and b∗ be a satisfying assignment. Set
F ′ := F [xT 7→b∗

T]. Then codelength(F ′, P strong) ≥
codelength(F, P strong)− |T |.

Proof. Let b′ be a satisfying assignment of F ′

and π′ be a permutation of vbl(F ′) achiev-
ing |S| = codelength(F ′, P strong), where
S = encode(b′, π′, F ′, P strong). Let b be the as-
signment to the variables vbl(F) that agrees with b′ on
vbl(F ′) and with b∗ on the rest. Note that b satisfies
F . Define a permutation π of vbl(F) as follows: first
take the variables of T , in an arbitrary order, then
the variables of vbl(F ′), according to their order in
π′. Should there be leftover variables, insert them at
any point. What is |encode(b, π, F, P strong)|? Note
that encode first processes the variables in T . Thus,
it will arrive at the formula F ′ after that. From then
on, it will encode exactly |encode(b′, π′, F ′, P strong)|
variables. Therefore, |encode(b, π, F, P strong)| ≤
|T |+ |encode(b′, π′, F ′, P strong)|. �

Proposition A.3. (Proposition 2.3) Choose M ∈
Fn×n

2 by setting every entry to 1 with probability k/n.
Call a row excessive if it has more than 2ek 1’s. The
total number of 1’s in the excessive rows is O(nk/2k).

Proof. Fix w ≥ 2ek. What is the probability that a row
has at least w 1’s? This is at most(

n

w

)(
k

n

)w

≤
(en

w

)w
(

k

n

)w

=
(

ek

w

)w

≤ 2−w .

Note that M has n rows. The expected total number of
1’s in excessive rows is at most

n

∞∑
w=2ek

w · 2−w = n

∞∑
i=0

(i + 2ek)2−i−2ek

= n2−2ek

(∞∑
i=0

i2−i +
∞∑

i=0

2ek2−i

)
= n2−2ek(2 + 4ek) ∈ O(nk/2k).

This completes the proof. �

Proposition A.4. (Proposition 3.1) There are at
most

(
n
τn

)
ways to choose U , at most

(
n

4`n/k

)` ways to

choose L, and at most
(

τn
≤w

)` ways to choose Z.

Proof. U is a set of τn variables, so there are
(

n
τn

)
ways

to choose U . As for L, it is an n/k-step matrix of
dimensions `×n. This means that every row introduces
at most 4n/k new 1’s. Thus, every row has at most
4`n/k 1’s. There are

(
n

4`n/k

)
ways to choose such a row,

and ` such rows to choose. Finally, Z is an `×τn-matrix
in which each row contains at most w 1’s. Thus, there
are

(
τn
≤w

)` such matrices. �

Proposition A.5. (Proposition 3.2) For each fixed
U , L, and Z,

Pr[L ·MU = Z] ≤ e−`τn/2 ,

where the probability is taken over the choice of M .

Proof. MU has τn columns, each of which is chosen
independently. Thus, it suffices to show that

Pr[L ·m = z] ≤ e−`/2(A.2)

for every column m of M and the corresponding column
z of Z. Let r1, . . . , r` be the rows of L. We prove that
for 1 ≤ i ≤ ` it holds that

Pr[ri ·m = zi | ∀ i′ < i, ri′ ·m = zi′] ≤ e−1/2 .

(A.3)

From here, (A.2) follows by the chain rule of conditional
probabilities.

To show (A.3), write ri = rold + rnew, where rnew

contains exactly those 1’s that are not in r1, . . . , ri−1.
Since L is an n/k-step matrix, |supp(rnew)| ≥ n/k.
Denote by E the condition that ri′ ·m = zi for all i′ < i.
Then

Pr[ri ·m = zi |E] = Pr[rnew ·m + rold ·m = zi | E]
= Pr[rnew ·m = zi + rold ·m | E].(A.4)

Since rnew only contains 1’s that are not present in any
previous ri′ , the random variable rnew ·m is independent
of rold ·m and E . Define y := zi + rold ·m and estimate

Pr[rnew ·m = y] .

We write m = |supp(rnew)| and p = k/n. Note that

Pr[rnew·m = y] =
{

Pr[Bin(m, p) is even] when y = 0
Pr[Bin(m, p) is odd] when y = 1

The probability that Bin(m, p) is even is:

Pr[Bin(n/k, k/n) is even] =
1 + (1− 2k/n)n/k

2

≤ 1 + e−2

2
≤ e−1/2 .

The probability that Bin(m, p) is odd is at most 1/2.
Thus, we see that Pr[rnew ·m = y] ≤ e−1/2, no matter
what y is. This concludes the proof. �

Proposition A.6. (Proposition 3.3) The probabil-
ity that there exists a set U and matrices L and Z as
described in Lemma 3.1 is at most(

n

τn

)
·
(

n

4`n/k

)`

·
(

τn

≤ w

)`

· k−2τn .(A.5)

For our choice of parameters this is o(1).

Proof. The expression in (A.5) follows from the two
previous propositions via a union bound. Let us
evaluate it for our choice of parameters. Recall that
τ = 129 ln2(k)/k, w = ln(k)n/k and ` = 4 ln(k). Thus,
4`n/k = 16w.

(A.5) ≤
(

n

τn

)
·
(

n

16w

)`

·
(

τn

≤ w

)`

· k−2τn

≤
(

n

τn

)
·
(

n

16w

)2`

· wl · k−2τn

≤
(

ek

129 ln2(k)

)τn

·
(

k

16 ln(k)

)32w`

· wl · k−2τn

≤ kτnk32w` · k4 ln n · k−2τn

≤ k32w`−τn+4 ln n

Focus on the exponent: 32w` − τn = 128 ln2(k)n/k −
129 ln2(k)n/k = − ln2(k)n/k. Thus, (A.5) ≤
k− ln2(k)n/k+ln n = o(1). In fact, it is exponentially
small. �

B Gaussian Resolution

Lemma B.1. (Gaussian Resolution, Lemma 3.2)
Let F be a CNF formula encoding the system of linear

equations M · x = b. Suppose there is a resolution
derivation

C1, C2, . . . , Cm ,

where each Ci is either a clause of F or the resolvent
of two clauses Ci1 , Ci2 for i1, i2 < i. Then there exist
linear constraints of the form

c1 · x = z1, c2 · x = z2, . . . , cm · x = zm ,

where each constraint is either a row of the system
M ·x = b, or ci = ci1 +ci2 and zi = zi1 +zi+2 for some
i1, i2 < i. In particular, all ci are linear combinations of
rows of M . Furthermore, for all 1 ≤ i ≤ m it holds that
(i) supp(ci) ⊆ vbl(Ci), (ii) every x with ci · x = zi

satisfies Ci, (iii) if a literal u ∈ Ci is critical, then
vbl(u) ∈ supp(ci).

Proof. We apply induction over the length of the se-
quence. It suffices to prove the lemma for i = m. For
all smaller i < m, just apply the lemma to the subse-
quence ending at i. So consider Cm. If it is a clause of
F , then it comes from some linear constraint c · x = b.
Clearly, supp(c) = vbl(Cm), and every x with c · x = b
satisfies Cm.

So suppose Cm is the resolvent of two previous
clauses Ck, C`. Without loss of generality, Ck = xj∨C ′

k

and C` = x̄j ∨ C ′
`. By induction, there are correspond-

ing linear constraints ck · x = zk and c` · x = z`. We
consider two cases.

Case 1. j ∈ supp(ck)∩ supp(c`): We define cm :=
cj + ck and zm := zj + zk. Note that j 6∈ supp(cm),
and therefore supp(cm) ⊆ (supp(ck)∪ supp(c`))\{j} ⊆
vbl(C ′

k)∪ vbl(C ′
`) = vbl(Cm), by induction. This shows

(i). For (ii), suppose x does not satisfy Cm. We show
that cm · x = zm + 1. Since x does not satisfy Cm, it
satisfies neither C ′

k nor C ′
`. Without loss of generality,

xj = 0. So x does not satisfy Ck and x + ej does not
satisfy C`. By induction, this means that

ck · x = zk + 1
c` · (x + ej) = z` + 1 .

Adding these two equations gives

ck · x + c` · x + c` · ej = zk + z` ⇔
(ck + c`) · x + c` · ej = zm ⇔

cm · x + 1 = zm .

The last equation follows since c` has a 1 at position j:
by assumption j ∈ supp(c`). This shows (ii).

Case 2. j 6∈ supp(ck) or j 6∈ supp(c`): Without
loss of generality, j 6∈ ck. In this case, simply set

cm := ck and zm = zk. Obviously, (i) holds. For (ii)
suppose x does not satisfy Cm. If xj = 0 then x does
not satisfy Ck either, so ck · x = zk + 1 by induction,
and we are done. If xj = 1, define y = x + ej . Note
that y does not satisfy Ck, and therefore ck ·y = zk +1.
But ck has a 0 at position j, therefore ck · y = ck · x
and ck · x = zk + 1. Again, we are done.

It remains to prove (iii). Let u ∈ Cm be a critical
literal. We have to show that vbl(u) ∈ supp(cm). Since
u is critical, F does not imply C ′

m := Cm \ {u}, thus
there is an assignment x satisfying F but not C ′

m. Since
F implies Cm, x satisfies Cm. Thus, u is the unique
satisfied literal in Cm. Let xj be the underlying variable
of u. Define y := x + ej . Observe that y does not
satisfy u, and thus does not satisfy C either. By (ii), this
means that cm · y = zm + 1. However, x is a satisfying
assignment, thus M ·x = b and cm ·x = zm, since every
constraint is a linear combination of constraints of the
original system. We summarize:

cm · y = zm + 1
cm · x = zm .

Adding these two equations gives

1 = cm · (y + x) = cm · ej .

This means that cm has a 1 at position j, i.e., j ∈
supp(cm). This shows (iii) and concludes the proof. �

C Proof of Lemma 3.1 for Pweak

Recall that Pweak is the heuristic checking implication
by small subformulas. Here, small means at most
w := n/k. We will prove Lemma 3.1 for Pweak (namely,
replacing P strong with Pweak in the statement). We do
this because the proof is much simpler and clearer than
for P strong, especially for a reader who is unfamiliar with
resolution.

Let b be a satisfying assignment of F and π a per-
mutation such that S := EncVbl(b, π, F, Pweak) has size
s := |S| ≤ (1− 2τ)n. By the assumption of Lemma 3.1,
such b, π and S exist. For the moment suppose S =
{1, . . . , s} and π = (1, 2, . . . , n). From F [xS 7→bS], ppsz
can successively infer xs+1, xs+2, . . . , xn. This means,
there are subformulas Gs+1, . . . , Gn of F from which
P strong infers the variables xs+1, . . . , xn: ∀j, |Gj | ≤ w,
and every satisfying assignment x of Gj with x<j = b<j

also satisfies xj = bj . Every clause of F comes from
a row of M . Thus, the subformulas Gs+1, . . . , Gn

correspond to sets Rs+1, . . . , Rn of rows of M where
|Rj | ≤ w = n/k, and every x with Rj · x = 0 and
x<j = b<j satisfies xj = bj .

Lemma C.1. Let M be a matrix. The unit vector ej

is in the row span of M if and only all solutions x of
M · x = 0 satisfy xj = 0.

Proof. The “only if” direction is easy: If ej ∈
rowspan(M), then there exists a row vector r such that
r · M = ej . Now xj = ej · x = r · M · x = 0.
For the other direction, note that the set of solutions
x is the kernel of M , which in turn is rowspan(M)⊥.
Every x ∈ rowspan(M)⊥ satisfying xj = 0 means
that ej ⊥ rowspan(M)⊥, which in turn means ej ∈(
rowspan(M)⊥

)⊥ = rowspan(M). �

Corollary C.1. Let M be a matrix with n columns,
S ⊂ [n], j ∈ [n] \ S, and b be a solution to M · x = 0.
If all x with M · x = 0 and xS = bS satisfy xj = bj,
then there is a row vector m ∈ rowspan(M) such that
supp(m) \ S = {j}.

Proof. Take the system M ·x = 0 and replace xi by the
constant bi for each i ∈ S. This gives a new system

M ′ · x′ = c(C.6)

Every solution to (C.6) satisfies x′j = bj . The restriction
b′ := b[n]\S is a solution to (C.6). If y is a solution to
M ′ · x′ = 0, then y + b′ is a solution to (C.6), and
therefore yj +bj = bj . So every solution y of M ′ ·x′ = c
satisfies yj = 0. By Lemma C.1, ej ∈ rowspan(M ′).
So there exists a row vector r such that r ·M ′ = ej .
How does m := r ·M compare to r ·M ′ = ej? It has
additional coordinates: i ∈ S. However, the coordinates
i ∈ [n] \ S \ {j} are still 0. Thus, supp(m) \ S = {j}. �

The corollary implies that there are sets
Rs+1, . . . , Rn of rows of M such that |Rj | ≤ w
and∑

i∈Rj

mi = (∗, . . . , ∗, 1, 0, . . . , 0) ,∀j : s + 1 ≤ j ≤ n

where the 1 is at the jth position. Here, mi is the ith

row of M . If we let ri denote the characteristic vector
of Rj , then

∑
i∈Rj

mi = rj · M . Let R denote the
(n− s)× n-matrix with rows rj , s + 1 ≤ j ≤ n. We see
that the matrix M satisfies the following equation:

Every row of R contains at most w 1’s. Note that the
upper triangle at the end of R ·M implies that R ·M

is full rank, and R has full rank n − s ≥ 2τn, too. Let
us look at the “upper half” of that equation, that is, let
R′ consist of the τn first rows of R. R′ has rank τn and
satisfies the following equation:

Finally, let U ⊆ [n] be the last τn variables, and MU

the matrix M restricted to the variables in U . We get:

Of course, we can come up with these matrices for any
π and S. Simply let T be the first τn variables of [n]\S
processed by PPSZ, and U the last τn variables. Form
R′ by restricting R to the rows corresponding to T and
restrict M to the columns corresponding to U .

A näıve union bound. We would like to proceed
as follows: first, estimate the probability for given R′

that R′ · MU = 0. Second, perform a union bound
over (i) all choices of R′, (ii) all choices of S, (iii) all
choices of T . A direct union bound is bound to fail,
though: note that with probability (1− k/n)τn2

, MU is
all-0 and thus satisfies the equation. This probability is
small, but only singly exponentially small. How many
choices of R′ are there? There are τn rows, and in each
row we choose w entries to be 1. Thus, there are

(
n
w

)τn

choices, which is of order 2Ω(n log n). There is no way of
surviving this union bound.

A cleverer union bound. Instead of performing
a union bound over all R′, we argue as follows. If
R′ ·MU = 0, then there is a very structured matrix L,
the step matrix, such that L ·MU = 0, too. Indeed L
is so structured that there are only exponentially many
choices of L. This is the reason why we want to prove
the existence of such a step matrix.

We are now ready to explain how to construct the
step matrix L.

Proof. [Proof of Lemma 3.1 for Pweak] We successively
build L by adding rows to it. Each such row will be a
linear combination of rows of R′. This makes sure that

L ·MU = 0. Suppose we have built up parts of L and
want to find a new row we can add to it. For this we
build a temporary matrix A.

Grow a matrix A with n columns by adding rows
of R′ to it. Note that R′ has full rank, therefore
|supp(R′)| ≥ τn. As long as |supp(L)| ≤ τn − 2n/k,
since |supp(R′)| ≥ τn there is a point in time where
|supp(A) \ supp(L)| ≥ 2n/k for the first time. At this
point, |supp(A) \ supp(L)| ≤ 3n/k, since the last row
adds at most w = n/k 1’s.

L

A

0

0∗

1

1
1

1

1
1

1 1

1
1

1
11

1

∈ [2n/k, 3n/k]

Take a random linear combination of the rows in
A. This has at most 3n/k 1’s outside supp(L) and,
on expectation, at least n/k 1s outside supp(L).
Thus, there is some linear combination r with
n/k ≤ |supp(r) \ supp(L)| ≤ 3n/k. Add this row to L.

Since |supp(L)| is 0 at the beginning and grows by
at most 3n/k in each step, we can grow L for at least

|supp(R′)|
3n/k

≥ τk

3
≥ 129 ln(k)

3
≥ 4 ln(k) .

steps. This final matrix L satisfies L ·MU = 0, since
every row of L is a linear combination of rows of R′. This
is even better then required: Lemma 3.1 just states that
L ·MU has at most ln k

k n 1’s per row. The dimensions
of L are 4 ln(k)× n, and it is an n/k-step matrix. This
finishes the proof of the Lemma 3.1 for Pweak. �

