
Settling the Complexity of Two-Player Nash Equilibrium

Xi Chen
Department of Computer Science

Tsinghua University
Beijing, P.R.China

xichen00@mails.tsinghua.edu.cn

Xiaotie Deng
Department of Computer Science

City University of Hong Kong
Hong Kong SAR, P.R.China

deng@cs.cityu.edu.hk

Abstract

We prove that the problem of finding a Nash equilibrium
in a two-player game is PPAD-complete.

1 Introduction

Almost sixty years ago, Morgenstern and von Neumann
[17] advocated the study of game theory with its applica-
tions to economic behavior. A central mathematical result
applied to their game theoretical study is von Neumann’s
existence theorem [22] of equilibrium in the two-player
zero-sum game model, where one player’s gain is the loss
of the other. The proof is equivalent to the duality property
of polytopes, which also forms the mathematical foundation
of Dantzig’s linear programming method for optimization
problems [8] , as well as Yao’s principle for finding algo-
rithmic lower bounds [23]. Nash proposed in the middle
of the last century to study the more general non-zero sum
games, and proved that there exists a set of (mixed) strate-
gies, now commonly referred to as a Nash equilibrium, one
for each player, such that no player can benefit if it changes
its own strategy unilaterally.

While the problem of computing a Nash equilibrium in
a two-player zero-sum game is solvable in polynomial time
since linear programming is, as by Khachiyan’s ellipsoid
algorithm [15], the existence proof of Nash equilibria re-
lied on Kakutani’s fixed point theorem (a generalization of
Brouwer’s fixed point theorem [1]), for which it is known
that, in the functional oracle model, any algorithm solving
the fixed point problem would unconditionally require an
exponential number of function evaluations [12, 3]. The
particular path following algorithm developed by Lemke
and Howson [16] was recently proven to require, even in
the best case for some instances, an exponential number of
steps, by Rahul Savani and Bernhard Von Stengel [21]. For
the original two-player Nash equilibrium problem, despite
much effort in the last half century, no significant progress

has been made on characterizing its algorithmic complex-
ity, though both hardness results and algorithms have been
developed for various modified versions.

An exciting breakthrough, which stated that computing
Nash equilibria is indeed hard, was recently made by Das-
kalakis, Goldberg and Papadimitriou [9], for games among
four players or more. An approximation version, within an
exponentially small factor, was proven to be complete in
the PPAD (polynomial parity argument, directed version
) class, introduced by Papadimitriou in his seminal work
about fifteen years ago [19]. The work was improved to the
three-player case by Chen and Deng [4], Daskalakis and Pa-
padimitriou [10], independently, and with different proofs.
Those results leave the two-player Nash equilibrium the last
open problem, which has been referred to as one of the two
“most concrete open problems” at the boundary of P [18],
in the long sequel of search for an efficient solution.

Finding a Nash equilibrium in a two-player game could
be easier for several reasons. Firstly, the zero-sum version
can be solved in polynomial time by linear programming.
Secondly, it admits a rational number solution of polyno-
mial size [7], while it is not known if every game among
three or more players has an exact solution of polynomial
size. Finally, an important technique employed in the pre-
vious hardness proofs, that colors vertices (or players) of
a graphical game, does not seem possible to work down to
the two-player case.

The reduction of Daskalakis, Goldberg and Papadimitr-
iou [9] started with a PPAD-complete problem named 3-
DIMENSIONAL BROUWER, a discrete fixed point problem
in 3D space; then reduced it to a zero point problem by us-
ing a small sampling cube, and approximated through a set
of selected points in the cube. They continued to reduce
the zero point problem to the problem of finding an ap-
proximate Nash equilibrium in a degree-3 graphical game
(graphical games were first proposed in [14]), and further
to the four-player Nash equilibrium problem by a recent
result of Goldberg and Papadimitriou [11]. The construc-
tion shows deep ways of manipulations one can make use

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

of Nash’s equilibrium theorem. For example, it induces an
alternative proof for Brouwer’s fixed point theorem using
Nash’s equilibrium theorem.

In this work, we settle the computational complexity of
the two-player Nash equilibrium problem with a PPAD-
completeness proof, with innovative ideas to simplify the
proof structure, and most importantly, to overcome difficul-
ties in the previous proofs. In the overall structure, we by-
pass the graphical game model and derive a direct reduction
from 3-DIMENSIONAL BROUWER to 2-NASH, the approx-
imation version of the two-player Nash equilibrium prob-
lem. Because any exact equilibrium is also an approximate
equilibrium by the definition of 2-NASH, the problem of
finding an exact equilibrium of a two-player game (which
is denoted by NASH in [20]) is PPAD-hard. On the other
hand, it was known by Cottle and Dantzig [7] that the two-
player case admits a rational solution of polynomial size
and thus, NASH lies in PPAD by Papadimitriou using the
Lemke-Howson algorithm [16, 20]. Our result immediately
implies that NASH is PPAD-complete.

Several ideas are crucial to our reduction. First, we use
the matching pennies game by splitting each choice into a
pair of strategies [11], so that in every Nash equilibrium of
the game, the sum of the probabilities for each pair of split-
strategies is a constant. This property allows us to encode
boolean variables and (approximations of) real numbers in
an innovative way. Second, we perturb the matching pen-
nies game by adding a set of logic and arithmetic gadgets,
which require the encoding of paired strategies to follow a
set of approximate functional relationships independently.
By adding a gadget, we perturb some rows or columns of
the matching pennies. An important idea is to make the co-
efficients of the matching pennies game significantly larger
than the magnitude of the perturbations. In every approx-
imate Nash equilibrium of the resulting game, the sum of
the probabilities for each pair of split-strategies will remain
very close to uniform. At the same time, the perturbations
will force the two probability vectors to satisfy all the rela-
tionships (or constraints) dictated by the gadgets.

The structure of our reduction is clear (and simpler than
previous work), and the proof of the correctness is carried
out step by step. However, there are indeed quite a few in-
novations in this series of work [11, 9, 4, 10], and it may
require extra effort to understand many of the intermediate
results. For example, in the definition of 3-DIMENSIONAL

BROUWER, a fixed point is a unit cube which has all four
function values (or colors) on its eight vertices. But not
every such unit cube would have an interior sampling cube
that averages the values on the eight vertices to zero. This
is the trickiest part in the concept of discrete fixed points
proposed by Daskalakis, Goldberg, and Papadimitriou [9].
They define it in one version (a unit cube with all four fun-
ction values) for its PPAD-hardness, and use it in a more

restricted version (the values on the unit cube allow an in-
terior sampling cube to average them to zero), in a mathe-
matically sound way as guaranteed by Nash’s equilibrium
theorem, for the PPAD-hardness result of 4-NASH. Nev-
ertheless, one can verify the existence of such a cube, in-
dependent of this proof, by using either Brouwer’s degree
theory, or its discrete version [3]. This is especially clear
if we start our proof from the 2D discrete fixed point result
of PPAD-completeness [2]. We can enumerate other puz-
zles that are not easily understandable at first glance, but
we refrain ourselves to do so. The first time readers would
benefit from going through all the proofs presented in the
paper. Persistent thinkers can carefully figure out the sub-
tleties, by getting familiar to the methodology of using Nash
equilibria to solve the fixed point problem.

The novelty of our proof techniques not only settles this
open problem in a direction regarded impossible by many
but also opens up new possibilities for stronger hardness
results for related problems (see, e.g., [6, 13]). We expect
them to be useful not only to Algorithmic Game Theory but
also to a wider range of problems arisen from Economics
and Operations Research.

2 Preliminaries

A two-player game G is defined by a pair of m × n ma-
trices (A = (ai,j) ,B = (bi,j)), where the m rows and the
n columns, respectively, are the pure strategies of the first
and the second players. If the first player chooses strategy i
and the second player chooses strategy j, then their payoffs
are ai,j and bi,j , respectively.

A mixed strategy of a player is a probability distribution
over its pure strategies. We use P

n to denote the set of all
probability vectors in R

n, i.e., non-negative vectors whose
entries sum to 1. A profile of mixed strategies is a pair of
mixed strategies (x ∈ P

m,y ∈ P
n), one for each player.

We use Ai to denote the ith row vector of A, and Bi to
denote the ith column vector of B.

Definition 1. A Nash equilibrium of game G = (A,B) is a
profile of mixed strategies (x,y) such that

Aiy > Ajy =⇒ xj = 0, ∀ 1 ≤ i, j ≤ m;
xT Bi > xT Bj =⇒ yj = 0, ∀ 1 ≤ i, j ≤ n.

Informally speaking, a Nash equilibrium is a profile of
mixed strategies such that no player can gain by unilater-
ally changing to a different mixed strategy, while the other
player remains unchanged. As a tool to carry out the proof,
we will also use the following notion of approximate Nash
equilibria, an innovation introduced by Daskalakis, Gold-
berg, and Papadimitriou [9].

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

Definition 2. An ε-Nash equilibrium of game G = (A,B)
is a profile of mixed strategies (x,y) such that

Aiy > Ajy + ε =⇒ xj = 0, ∀ 1 ≤ i, j ≤ m;
xT Bi > xT Bj + ε =⇒ yj = 0, ∀ 1 ≤ i, j ≤ n.

Obviously, an exact equilibrium is also an approximate
equilibrium as defined above. Therefore, hardness in find-
ing an approximate Nash equilibrium implies hardness in
finding an exact Nash equilibrium.

2.1 PPAD and 2-Nash

PPAD is a class of search problems defined by its com-
plete problem: ANOTHER END OF DIRECTED LINES (or
END OF LINE) [20].

The input instance of the problem is a directed graph
of an exponential number of vertices (which are numbered
from 1 to 2n), each with at most one incoming edge and at
most one outgoing edge. In the graph, vertex 1 is a source
vertex which has one outgoing edge but no incoming edge.
The graph is generated by a pair of polynomial-time com-
putable functions out and in such that, given a vertex k,
out(k) returns the vertex pointed to by k and in(k) returns
the vertex points to k, where nil is returned if no such vertex
exists. The output is a sink vertex, or a source other than 1.

A search problem belongs to class PPAD if there is a
polynomial-time reduction which reduces the problem to
ANOTHER END OF DIRECTED LINES.

Definition 3 (2-NASH and NASH). The input instance of
problem 2-NASH is a pair (G, 0k) where G is a two-player
game, and the output is a 2−k-Nash equilibrium of G.

The input of problem NASH is a two-player game G and
the output is an exact Nash equilibrium of G.

2.2 3-Dimensional Brouwer

Definition 4. For each n ≥ 1, we define a set

An = { r ∈ Z
3

∣∣ 0 ≤ ri ≤ 2n − 1,∀ 1 ≤ i ≤ 3 }.

and its boundary Bn = { r ∈ An | ∃ i, ri = 0 or 2n − 1 }.

In [9], the following search problem was proposed and
proven to be complete in PPAD.

Definition 5 (3-DIMENSIONAL BROUWER). The input is
a pair (C, 0n) where C is a circuit with 3n input bits and
6 output bits ∆+

1 , ∆−
1 , ∆+

2 , ∆−
2 , ∆+

3 and ∆−
3 . It specifies

a function φ of a very special form. For each r ∈ An, we
define a cubelet in [0, 1]3 as

{ q ∈ R
3

∣∣ ri2−n ≤ qi ≤ (ri + 1)2−n, ∀ 1 ≤ i ≤ 3 }

and use cr to denote its center point. Function φ is defined
on the set of 23n centers. For every center cr, where r ∈
An, φ(cr) ∈ {e1, e2, e3, e4} ⊂ Z

3 and is specified by the
output bits of C(r) as follows:

• ∆+
1 = 1, other five bits are 0: φ(cr) = e1 = (1, 0, 0);

• ∆+
2 = 1, other five bits are 0: φ(cr) = e2 = (0, 1, 0);

• ∆+
3 = 1, other five bits are 0: φ(cr) = e3 = (0, 0, 1);

• ∆−
1 = ∆−

2 = ∆−
3 = 1, and other three bits are 0:

φ(cr) = e4 = (−1,−1,−1).

For all r ∈ An, the six output bits of C(r) are guaranteed
to fall into one of the four cases above. C also satisfies the
following boundary condition:

For each r ∈ Bn, if there exists 1 ≤ i ≤ 3 such
that ri = 0, letting l be the largest index such that
rl = 0, then φ(cr) = el; otherwise, φ(cr) = e4.

A vertex of a cubelet is said to be panchromatic if, among
the eight cubelets adjacent to it, there’re four that have all
four vectors e1, e2, e3 and e4. The output of problem 3-
DIMENSIONAL BROUWER is a panchromatic vertex of φ.

Notation 1. We use Size[C] to denote the number of logic
gates plus the number of input and output variables in C,
and |C | to denote the number of bits used in its binary en-
coding. Clearly, we always have 3n < Size[C] < |C |.

3 The Reduction

In this section, we will describe a reduction from prob-
lem 3-DIMENSIONAL BROUWER to 2-NASH. In section 4,
we will prove the correctness of the reduction.

3.1 Sketch of the Reduction

Let pair U = (C, 0n) be an input instance of problem 3-
DIMENSIONAL BROUWER, and m be the smallest integer
such that K = 2m > |(C, 0n) |2 where |(C, 0n) | = |C | +
n. We will construct a two-player game GU in which both
players have 2K strategies. It has the following property:

Property 1. Given any ε-Nash equilibrium (x,y) of game
GU , where ε = 2−(m+4n), a panchromatic vertex of func-
tion φ can be computed in polynomial time.

To build GU = (AU ,BU), we insert a (valid) collection
of gadgets SU = {T1, T2, ..., Tl } into a prototype game
G∗ = (A∗,B∗), where l ≤ K. Formally, from each gadget
Ti ∈ SU , one can generate (Figure 2) a pair of 2K × 2K
matrices (L[Ti],R[Ti]). Then

AU = A∗ +
∑

T∈SU

L[T] and BU = B∗ +
∑

T∈SU

R[T].

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

We will prove that, every ε-Nash equilibrium (x,y) of
game GU must satisfy a set of l + 1 constraints. First, we
prove that 0 ≤ AU − A∗,BU − B∗ ≤ 1, which implies
a constraint P on vectors x and y (Lemma 1). Secondly,
every gadget Ti in SU requires (x,y) to satisfy a constraint
P[Ti]. These constraints {P,P[T1],P[T2], ...,P[Tl]} on
(x,y) allow us to prove Property 1, and thus, the correct-
ness of the reduction.

3.2 Nodes, Values and Capacities

Arbitrarily choose two sets VA and VI such that |VA| =
|VI | = K. Here we don’t care what the elements actually
are. Elements in VA are called arithmetic nodes, and ele-
ments in VI are called internal nodes.

To clarify our presentation, we always use v to denote a
node in VA and w to denote a node in VI . Furthermore, we
arbitrarily pick two 1 − 1 correspondences CA and CI . CA

maps VA to [K] = {1, 2, ...,K} and CI maps VI to [K].
Clearly, one choice is that VA = VI = [K] and CA =

CI = I , where I is the identity map from [K] to itself.
Let (x,y ∈ P

2K) be a profile of mixed strategies. For
every arithmetic node v ∈ VA, we let x[v] = x2k−1 and
xC [v] = x2k−1 + x2k, where k = CA(v). x[v] and xC [v]
are called the value and capacity of node v in (x,y), res-
pectively. Similarly, for every w ∈ VI , we let y[w] = y2t−1

and yC [w] = y2t−1 + y2t, where t = CI(w). y[w] and
yC [w] are called the value and capacity of w in (x,y) res-
pectively.

3.3 The Prototype Game G*

GU is obtained by perturbing the payoffs of a zero-sum
game G∗ = (A∗,B∗), which is a variation of the matching
pennies game [9] with an exponentially large payoff para-
meter M = 24(m+n)+1. A∗ is a K × K block diagonal
matrix where each diagonal block is a 2 × 2 matrix:

A∗ =

M M 0 0 · · · 0 0
M M 0 0 · · · 0 0
0 0 M M · · · 0 0
0 0 M M · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · M M
0 0 0 0 · · · M M

and B∗ = −A∗. Note that, at an exact Nash equilibrium
of G∗, the sum of probabilities at strategies 2k − 1 and 2k
is a constant for all k, for both players. In addition, we
define a class L of two-player games, and prove that all the
ε-Nash equilibria of games in L satisfy a constraint P . All
the games we will construct belong to this class.

Definition 6. A 2K × 2K two-player game G = (A,B)
belongs to class L if

0 ≤ ai,j − a∗
i,j , bi,j − b∗i,j ≤ 1, ∀ 1 ≤ i, j ≤ 2K.

Notation 2. By x = y ± ε where ε > 0, we mean y − ε ≤
x ≤ y + ε. Let x,y be two points in R

3, then x = y ± ε
means xi = yi ± ε, for all i : 1 ≤ i ≤ 3.

Lemma 1 (Constraint P). Let (x,y) be an f -Nash equili-
brium of G = (A,B) ∈ L with f ≤ 1. Then for all v ∈ VA

and w ∈ VI , xC [v] = 1/K ± ε and yC [w] = 1/K ± ε,
where ε = 2−(m+4n).

Proof. We let Ai denote the ith row vector of A, and Bj

denote the jth column vector of B.
By the definition of class L, for each 1 ≤ t ≤ K, the

2t− 1st and 2tth entries of rows A2t−1 and A2t are within
[M,M + 1] and all other entries in them are within [0, 1].
Let w = C−1

I (t) ∈ VI , then for any y ∈ P
2K ,

MyC [w] ≤ A2t−1y,A2ty ≤ MyC [w] + 1. (1)

Similarly, for each 1 ≤ k ≤ K, letting v = C−1
A (k), then

−MxC [v] ≤ xT B2k−1,xT B2k ≤ −MxC [v] + 1. (2)

Now suppose (x,y) is an f -Nash equilibrium of G with
f ≤ 1. We first prove that for each pair of v and w with
CA(v) = CI(w), say they equal to l, if yC [w] = 0 then
xC [v] = 0. First note that yC [w] = 0 implies there exists
a node w′ ∈ VI with capacity yC [w′] > 1/K. Suppose
CI(w′) = k �= l. By Inequality (1),

A2ky − max (A2ly,A2l−1y) > M/K − 1 > 1 ≥ f.

Since (x,y) is an f -Nash equilibrium of game G, we have
x2l = x2l−1 = 0, and thus, xC [v] = 0.

Next we show that xC [v] = 1/K ± ε for all v ∈ VA. To
derive a contradiction, we assume that this statement is not
true. Then there exist v, v′ ∈ VA such that xC [v] − xC [v′]
> ε. Let k = CA(v) and k′ = CA(v′). By Inequality (2),

xT B2k′ − max
(
xT B2k,xT B2k−1

)
> Mε − 1 ≥ f.

This implies yC [w] = 0 for node w ∈ VI with CI(w) = k,
and in turn implies xC [v] = 0, which contradicts with our
assumption that xC [v] > xC [v′] + ε > 0.

We can similarly prove that yC [w] = 1/K ± ε, for all
nodes w ∈ VI .

Let P denote the following constraint on (x,y):

[xC [v] = 1/K ± ε,yC [w] = 1/K ± ε,∀v ∈ VA, w ∈ VI].

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

3.4 Gadgets

First, we define a function named BUILDGAME. Given
a collection of gadgets S, it builds a two-player game G =
(A,B) = BUILDGAME(S) as follows:

A = A∗ +
∑
T∈S

L[T] and B = B∗ +
∑
T∈S

R[T].

The construction of L and R is presented in Figure 2.
Formally, a gadget T = (G, v1, v2, v, c, w) is a 6-tuple.

Here G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬ } is
the type of the gadget. We totally need nine types of gad-
gets. Each of them implements an arithmetic or logic con-
straint P[T], which requires the values of nodes v, v1 and v2

to satisfy certain functional relationship. The requirements
for logic gadgets will hold exactly and the requirements for
arithmetic ones will hold approximately. Their functionali-
ties are similar to those proposed in [9] but there are subtle
differences in the construction. For example, we don’t have
a simple multiplication gadget but a gadget for multiplica-
tion with a predefined constant (G×ζ).

In gadget T , v1 ∈ VA ∪ {nil} and v2 ∈ VA ∪ {nil} are
the first and second input nodes, respectively. v ∈ VA is the
output node, and w ∈ VI is the internal node. Parameter
c ∈ R ∪ {nil} is only used in Gζ and G×ζ gadgets.

Every gadget has an output node v ∈ VA and an inter-
nal node w ∈ VI , but different types of gadgets may have
different number (0,1 or 2) of input nodes: a Gζ gadget
has no input node, so when type G = Gζ , v1 = v2 = nil;
G=, G×ζ and G¬ gadgets have one input node, so when
G ∈ {G=, G×ζ , G¬ }, we have v1 ∈ VA and v2 = nil;
when G ∈ {G+, G−, G<, G∧, G∨ }, v1 �= v2 ∈ VA.

Parameter c is only used in Gζ and G×ζ gadgets: when
type G = Gζ , we have c ∈ R and 0 ≤ c ≤ 1/K − ε; when
G = G×ζ , 0 ≤ c ≤ 1; otherwise, c = nil.

Definition 7 (Valid Collection). Let S be a collection of
gadgets. S is said to be valid if for every two gadgets T
and T ′ in S, where T = (G, v1, v2, v, c, w) and T ′ = (G′,
v′
1, v

′
2, v

′, c′, w′), v �= v′ and w �= w′.

We will prove that if S is a valid collection, then every
ε-Nash equilibrium (x,y) of G = BUILDGAME(S) must
satisfy a set of |S |+ 1 constraints {P } ∪ {P[T], T ∈ S }.
More exactly, let T = (G, v1, v2, v, c, w), then P[T] re-
quires the values of nodes v1, v2 and v (that is, x[v],x[v1]
and x[v2]) to approximately satisfy certain arithmetic or
logic relationship, which depends on the type G of T . For
example, if G = G+, then

P[T] = [x[v] = min(x[v1] + x[v2],xC [v]) ± ε].

The nine types of constraints are summarized in Figure 1.

G+: P[T] = [x[v] = min(x[v1] + x[v2],xC [v]) ± ε]

Gζ : P[T] = [x[v] = c ± ε]

G×ζ : P[T] = [x[v] = min(cx[v1],xC [v]) ± ε]

G=: P[T] = [x[v] = min(x[v1],xC [v]) ± ε]

G<: P[T] =

[
x[v] =B 1 if x[v1] < x[v2] − ε
x[v] =B 0 if x[v1] > x[v2] + ε

]

G−: P[T] =

[
min(x[v1] − x[v2],xC [v]) − ε ≤ x[v]

x[v] ≤ max(x[v1] − x[v2], 0) + ε

]

G∨: P[T] =

[
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

]

G∧: P[T] =

[
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0
x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1

]

G¬: P[T] =

[
x[v] =B 0 if x[v1] =B 1
x[v] =B 1 if x[v1] =B 0

]

Figure 1. Constraint P[T]

Remark 1. Notice that, no matter what G is, the constraint
P[T] has nothing to do with the value of its internal node.

Notation 3. For a mixed strategy profile (x,y), x[v] =B 1
means x[v] = xC [v], and x[v] =B 0 means x[v] = 0.

Among the nine types of gadgets, G∧, G∨ and G¬ are
logic gadgets. They will be used to simulate the logic gates
in C. Associated with (x,y), the value of v ∈ VA repre-
sents Boolean 1 (x[v] =B 1) if x[v] = xC [v]; it encodes
Boolean 0 (x[v] =B 0) if x[v] = 0.

From Figure 1, the logic constraints implemented by the
three logic gadgets are effective only when the values of
their input nodes are representations of binary bits.

Formally, we have the following theorem, with proof in
Section 3.5.

Theorem 1. Let S be a valid collection of gadgets, game
G = BUILDGAME(S), and (x,y) be any ε-Nash equilib-
rium of G. Then for every T ∈ S, constraint P[T] is satis-
fied by (x,y).

Next, we prove that pair (x,y) also satisfies constraint
P . From Lemma 1, it’s only necessary to prove that G ∈
L. For any gadget T , L[T] and R[T] are generated by the
algorithm in Figure 2. They have the following property:

Property 2. Let T = (G, v1, v2, v, c, w), L[T] = (Li,j),
and R[T] = (Ri,j). Let k = CA(v) and t = CI(v). Then

1. i �= 2k or 2k − 1 ⇒ Li,j = 0, ∀ 1 ≤ j ≤ 2K;

2. j �= 2t or 2t − 1 ⇒ Ri,j = 0, ∀ 1 ≤ i ≤ 2K;

3. i = 2k or 2k − 1 ⇒ 0 ≤ Li,j ≤ 1, ∀ 1 ≤ j ≤ 2K;

4. j = 2t or 2t − 1 ⇒ 0 ≤ Ri,j ≤ 1, ∀ 1 ≤ i ≤ 2K.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

L[T] and R[T], where T = (G, v1, v2, v, c, w)

Set L[T] = (Li,j) = R[T] = (Ri,j) = 0

k = CA(v), k1 = CA(v1), k2 = CA(v2), and t = CI(w)

G+:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k2−1,2t−1 = R2k−1,2t = 1

Gζ :

{
L2k−1,2t = L2k,2t−11
R2k−1,2t−1 = 1, Ri,2t = c,∀ 1 ≤ i ≤ 2K

G×ζ :

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = c, R2k−1,2t = 1

G=:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k−1,2t = 1

G−:

{
L2k−1,2t−1 = L2k,2t = 1
R2k1−1,2t−1 = R2k2−1,2t = R2k−1,2t = 1

G<:

{
L2k−1,2t = L2k,2t−1 = 1
R2k1−1,2t−1 = R2k2−1,2t = 1

G∨:

{
L2k−1,2t−1 = L2k,2t = R2k1−1,2t−1 = 1
R2k2−1,2t−1 = 1, Ri,2t = 1/(2K), ∀ 1 ≤ i ≤ 2K

G∧:

{
L2k−1,2t−1 = L2k,2t = R2k1−1,2t−1 = 1
R2k2−1,2t−1 = 1, Ri,2t = 3/(2K), ∀ 1 ≤ i ≤ 2K

G¬:

{
L2k−1,2t = L2k,2t−1 = 1
R2k1−1,2t−1 = R2k1,2t = 1

Figure 2. Matrices L[T] and R[T]

So (L[T],R[T]) can be viewed as a perturbation to the
prototype game G∗. Lemma 2 below follows directly from
Definition 7 and Property 2.

Lemma 2. If S is valid, then G = BUILDGAME(S) ∈ L.

As a corollary of Lemma 1, every ε-Nash equilibrium of
game G satisfies constraint P .

3.5 Proof of Theorem 1

Theorem 1 is a direct corollary of nine propositions, one
for each type of gadgets. Below we only include the proof
for the property of G+ gadgets to illustrate how such prop-
erties are established.

Proposition 1 (Gadget G+). Let gadget T = (G+, v1, v2,
v, nil, w). Let k = CA(v) and t = CI(w).

We let A∗
i and Li denote the ith row vectors of A∗ and

L[T] respectively, B∗
j and Rj denote the jth column vectors

of B∗ and R[T], respectively.
If G = (A,B) is a two-player game in L, and satisfies

A2k−1 = A∗
2k−1 + L2k−1, A2k = A∗

2k + L2k; (3)

B2t−1 = B∗
2t−1 + R2t−1, B2t = B∗

2t + R2t, (4)

then every ε-Nash equilibrium (x,y) of G satisfies P[T].

Proof. Since A∗
2k−1 = A∗

2k and B∗
2t−1 = B∗

2t, from (3),
(4) and Figure 2, we have

xT B2t−1 − xT B2t = x[v1] + x[v2] − x[v] and

A2k−1y − A2ky = y[w] − (yC [w] − y[w]).

If x[v] − (x[v1] + x[v2]) > ε, then the first equation shows
y[w] = y2t−1 = 0, since (x,y) is an ε-Nash equilibrium.
On the other hand, since G ∈ L, (x,y) satisfies P and thus,
yC [w] = 1/K ± ε
 ε. By the second equation, we have
x[v] = x2k−1 = 0, which contradicts with our assumption
that x[v] > x[v1] + x[v2] + ε > 0.

If x[v]−(x[v1]+x[v2]) < −ε, then the first equation im-
plies that y[w] = yC [w]. By the second equation, we have
x[v] = xC [v]. Since xC [v] = x[v] < x[v1]+x[v2], we have
x[v] = xC [v] > xC [v]−ε = min(x[v1]+x[v2],xC [v])−ε
and the proposition is proven.

Proof of Theorem 1. Let T = (G, v1, v2, v, c, w) be one of
the gadgets in the valid collection S. We only consider the
case that G = G+.

Since S is valid, we know from Lemma 2 that G ∈ L.
From Property 2 and Definition 7, none of the rows A2k−1,
A2k and columns B2t−1, B2t is modified by gadgets in S
except the T above, and G satisfies both conditions (3) and
(4) in Proposition 1. As a result, every ε-Nash equilibrium
of G satisfies constraint P[T].

3.6 Sampling Network

In this subsection, we build a network of gadgets which
will be referred as a sampling network. It is a basic compo-
nent in the construction of SU and GU .

Notation 4. Let S be a valid collection of gadgets. A node
v ∈ VA (or w ∈ VI) is unused in S if none of the gadgets
in S uses v (or w) as its output node (or internal node).

Given a valid collection S, we use UNUSED[S] to denote
the number of unused arithmetic nodes in S.

Let S be a valid collection, and T be a gadget such that
S ∪ {T } is sill valid. We will use INSERT(S, T) to denote
the insertion of T into S.

Notation 5. For every r ∈ An, we use ∆+
i (r) and ∆−

i (r)
to denote the output bits ∆+

i and ∆−
i of C evaluated at r.

Definition 8. A real number a ∈ R
+ is poorly-positioned

if there exists an integer 1 ≤ t ≤ 2n − 1, such that | a −
t2−n | ≤ (3n + 1)Kε. Otherwise, a is well-positioned.

For a well-positioned a ∈ R
+, we let π(a) denote the

integer k : 0 ≤ k ≤ 2n − 1 such that
∣∣a − (k + 1/2)2−n

∣∣ = min
0≤k′≤2n−1

∣∣a − (k′ + 1/2)2−n
∣∣.

Since a is well-positioned, k is unique and well defined.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

EXTRACTBITS(S, v, v1, v2, ..., vn)

1: pick unused nodes v1, v2, ..., vn+1 ∈ VA and w ∈ VI

2: INSERT (S, (G=, v, nil, v1, nil, w))

3: for j from 1 to n do

4: pick unused vj1, vj2 ∈ VA and wj1, wj2, wj3, wj4 ∈ VI

5: INSERT (S, (Gζ , nil, nil, vj1, 2
−(m+j), wj1))

6: INSERT (S, (G<, vj1, vj , v
j , nil, wj2))

7: INSERT (S, (G×ζ , vj , nil, vj2, 2
−j , wj3))

8: INSERT (S, (G−, vj , vj2, vj+1, nil, wj4))

Figure 3. Function ExtractBits

First, we combine different types of gadgets to extract
bits of integer π(a) from a. The technique was first devel-
oped in [9].

Let S be a valid collection with UNUSED[S] ≥ 4n + 1.
Let v be an arithmetic node, and v1, v2, ..., vn ∈ VA be n
unused nodes in S. We now insert 4n + 1 gadgets into S
by invoking the function EXTRACTBITS(S, v, v1..., vn) in
Figure 3. We let S ′ denote the collection S after executing
EXTRACTBITS.

Let G′ = BUILDGAME(S ′). We claim that, in every ε-
Nash equilibrium (x,y) of G′, if Kx[v] is well-positioned,
then the values of nodes v1, v2, ..., vn are all boolean, and
x[vi] =B bi, where integer π(Kx[v]) = b1b2 ...bn−1bn.

Lemma 3. In every ε-Nash equilibrium (x,y) of game G′

if Kx[v] is well-positioned, then x[vi] =B bi, ∀ 1 ≤ i ≤ n.

Proof. For each 1 ≤ k ≤ n, let ck =
∑n

j=k bj2−(m+j).
We need to consider the following three cases:

1). 2−(m+n) − (3n + 1)ε > x[v] − c1 > (3n + 1)ε;
2). x[v] ≤ (3n + 1)ε; 3). x[v] ≥ 1/K − (3n + 1)ε.

Here we only give a proof for the first case. The other two
cases can be proved easily.

We prove by induction that, for all 1 ≤ k ≤ n + 1,

2−(m+n) − 3lε > x[vk] − ck > 3lε

and x[vk−1] =B bk−1, where l = n + 1 − k.
The basis is trivial, since x[v1] = x[v] ± ε. Now assume

the statement is true for k < n + 1. Assume bk = 1, then
by the inductive hypothesis, x[vk] > ck + 3(n + 1− k)ε ≥
2−(m+k) + 3(n + 1 − k)ε. On the other hand, the gadget
in line 5 requires x[vk1] to be 2−(m+k) ± ε. As a result, we
have x[vk] =B 1, and x[vk] = xC [vk] = 1/K ± ε. By the
gadget in line 7, we have

x[vk2] = 2−kx[vk] ± ε = 2−(m+k) ± 2ε.

Finally, the gadget in line 8 implies

x[vk+1] = (x[vk] − (2−(m+k) ± 2ε)) ± ε,

and thus, x[vk+1] − ck+1 = x[vk] − ck ± 3ε. The case for
bk = 0 can be proved similarly.

Based on function EXTRACTBITS, we now construct a
larger network of gadgets to simulate the evaluation of C.

Definition 9. q ∈ R
3
+ is a well-positioned point if none of

its components is poorly-positioned. Otherwise, we refer to
it as a poorly-positioned point.

For a well-positioned point q, we let π(q) denote the
point r ∈ An such that ri = π(qi), for all i : 1 ≤ i ≤ 3.

Let S be a valid collection with UNUSED[S] ≥ 3(4n +
1) + Size[C]. Let {vi}1≤i≤3 ⊂ VA and {v+

i , v−
i }1≤i≤3 be

six unused nodes in VA.
We now add a network of 3(4n + 1) + Size[C] gadgets

to connect {vi}1≤i≤3 with {v+
i , v−

i }1≤i≤3. Let S ′ be the
collection of gadgets S after inserting the network into S,
and game G′ = BUILDGAME(S ′).

Given an ε-Nash equilibrium (x,y) of G′, we view the
values of {vi}1≤i≤3 as a point q ∈ R

3, with qi = Kx[vi],
for all 1 ≤ i ≤ 3. We claim that, in every ε-Nash equilib-
rium (x,y) of G′, if q is well-positioned, then

x[v+
i] =B ∆+

i (r) and x[v−
i] =B ∆−

i (r), ∀ 1 ≤ i ≤ 3,

where r = π(q). The network is divided into two parts.

Part 1. Pick 3n unused nodes {vij ∈ VA}1≤i≤3,1≤j≤n of
collection S. Call EXTRACTBITS(S, vi, vi1, vi2...vin) for
each i : 1 ≤ i ≤ 3.

Lemma 3 shows that, if (x,y) is an ε-Nash equilibrium
of G′ and q is well-positioned, letting r = π(q) ∈ An, then
x[vij] =B bij for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ n, where
bi1bi2 ... bin is the binary representation of integer ri.

Part 2. We view the 3n nodes {vij}1≤i≤3,1≤j≤n as the en-
coding of the 3n input bits of circuit C and insert Size[C]
logic gadgets G∧, G∨, G¬ to simulate the evaluation of C
on these bits, one for each logic gate in C. The six output
bits are then placed in {v+

i , v−
i }. The simulation works per-

fectly, since we assumed q is well-positioned and thus, the
values of {vij} are all representations of boolean bits.

Lemma 4. In every ε-Nash equilibrium (x,y) of G′, if q is
well-positioned, letting r = π(q), then x[v+

i] =B ∆+
i (r)

and x[v−
i] =B ∆−

i (r), for all i : 1 ≤ i ≤ 3.

We will refer to this network as a sampling network. It
works correctly only if q is well-positioned, and when q is
not, the values of {v+

i , v−
i }1≤i≤3 could be arbitrary. But

even in the latter case, we know that 0 ≤ x[v+
i],x[v−

i] ≤
1/K + ε, because S ′ is valid and (x,y) should satisfy P .

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

3.7 Construction of SU and GU

The idea behind the construction of SU and GU is sim-
ilar to the one in [9]. There are three distinguished nodes
{vi}1≤i≤3 in VA. Their values are viewed as an encoding
of a point q ∈ R

3 where qi = Kx[vi] for all 1 ≤ i ≤ 3.
Starting from SU = ∅, we first add sampling networks to
evaluate C on 413 points around q, and calculate the aver-
age of all the vectors on these sampling points. More gad-
gets will be inserted into SU to make sure in every ε-Nash
equilibrium of GU , this average vector is close to zero. Such
a property implies the existence of a panchromatic vertex
near q, which can be located very efficiently.

The construction of game G is divided into four parts:

Part 1. Let {vk
i }1≤i≤3,−20≤k≤20 be 3·41 unused nodes in

VA. For all i and k, by inserting Gζ , G− and G+ gadgets,
we make sure in any ε-Nash equilibrium (x,y) of GU ,

x[vk
i] = min(x[vi] + kα′,xC [vk

i]) ± 4ε, if k ≥ 0,

x[vk
i] = max(x[vi] + kα′, 0) ± 4ε, if k < 0,

where α′ = α/K and α = 2−2n.

Part 2. Let I = {−20,−19, ..., 20}3. Pick 6·413 unused
nodes {vt+

i , vt−
i }1≤i≤3,t∈I in VA. For every triple t ∈ I ,

insert a sampling network into SU , to connect nodes {vt1
1 ,

vt2
2 , vt3

3 } with {vt+
i , vt−

i }1≤i≤3.

Part 3. Let {v+
i , v−

i }1≤i≤3 be 6 unused nodes in VA. By
inserting G×ζ and G+ gadgets into SU , we make sure in
every ε-Nash equilibrium (x,y) of GU , for all 1 ≤ i ≤ 3,

x[v+
i] =

(∑
t∈I

α

413
x[vt+

i]
)
± 3 · 413ε,

x[v−
i] =

(∑
t∈I

α

413
x[vt−

i]
)
± 3 · 413ε.

Part 4. For each 1 ≤ i ≤ 3, we pick unused nodes: v′, v′′

∈ VA, w1, w2, w3 ∈ VI , and insert the following 3 gadgets
into collection SU :

INSERT (SU , (G+, vi, v
+
i , v′, nil, w1));

INSERT (SU , (G−, v′, v−
i , v′′, nil, w2));

INSERT (SU , (G=, v′′, nil, vi, nil, w3)).

4 Correctness of the Reduction

First, given any input instance U = (C, 0n) of problem
3-DIMENSIONAL BROUWER, one can build (GU , 0m+4n)
in polynomial time, which is regarded as an input instance
of 2-NASH. The only thing left is to prove Property 1 in
Section 3.1, which is a corollary of the following theorem.

Theorem 2. Let (x,y) be an ε-Nash equilibrium of game
GU and q ∈ R

3 be the point encoded by nodes {vi}1≤i≤3,
where qi = Kx[vi] for all i : 1 ≤ i ≤ 3. Then there must
exist three integers 1 ≤ m1,m2,m3 ≤ 2n − 1 such that

(mi − 1)2−n + 30α < qi < (mi + 1)2−n − 30α,

where α = 2−2n, for all i : 1 ≤ i ≤ 3.
Furthermore, (m12−n,m22−n,m32−n) is a panchro-

matic vertex of φ.

Corollary 1. 2-NASH and NASH are PPAD-complete.

One can check that the number of gadgets in set SU is
O(|(C, 0n)|) � K, and SU is valid. As a result, every ε-
Nash equilibrium (x,y) of GU satisfies a set of |SU | + 1
constraints.

We use these constraints to prove Theorem 2. Proofs of
Lemma 5, 6, 7, and 8 can be found in the full version [5].
We start with some notations.

Suppose (x,y) is an ε-Nash equilibrium of game GU .
For each t ∈ I , we use qt to denote the point encoded by
{vt1

1 , vt2
2 , vt3

3 }, where qt
i = Kx[vti

i], for all i : 1 ≤ i ≤ 3.
Let IG and IB denote, respectively, the sets of indices of
well-positioned and poorly-positioned points: IG = { t ∈
I | qt is well-positioned} and IB = {t ∈ I |qt is poorly-
positioned}. By the following lemma, there cannot be too
many poorly-positioned points.

Lemma 5. In every ε-Nash equilibrium (x,y) of GU , we
have |IB | ≤ 3 · 412 and thus, |IG | ≥ 38 · 412.

For each t ∈ IG, we let point rt = π(qt) ∈ An and use
1 ≤ lt ≤ 4 to denote the integer such that φ(crt) = elt .
Recall that e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and
e4 = (−1,−1,−1). For every t ∈ I , let zt ∈ R

3 denote
the vector such that zt

i = x[vt+
i] − x[vt−

i], ∀ 1 ≤ i ≤ 3.
By Lemma 4, we have

Lemma 6. Let (x,y) be an ε-Nash equilibrium of game
GU . Then for every t ∈ IG, zt = elt/K ± ε.

Let z denote the 3-dimensional vector such that zi =
x[v+

i] − x[v−
i], for every 1 ≤ i ≤ 3. In Part 4 of the con-

struction, we hope to establish ‖z‖∞ = O(ε), but whether
or not this condition holds depends on the values of v1, v2

and v3. Formally, we have the following weaker property.

Lemma 7. Let (x,y) be an ε-Nash equilibrium of game
GU , then for every i : 1 ≤ i ≤ 3, 1). if x[vi] > 4ε, then
zi > −4ε; 2). if x[vi] < 1/K − 2α/K, then zi < 4ε.

For each 1 ≤ i ≤ 4, we use ki to denote the number of
indices t in IG such that lt = i. Lemma 8 below was first
used in [9].

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

Lemma 8. Suppose that for nonnegative integers k1 ...k4,
all three coordinates of

∑4
i=1 kiei are smaller in absolute

value than k/5 where k =
∑4

i=1 ki. Then all four ki are
positive.

Finally, we prove Theorem 2.

Proof of Theorem 2. First, we give an analysis on zt and z:

z =
α

413

∑
t∈I

zt ± O(ε)

=
α

413

∑
t∈IG

zt +
α

413

∑
t∈IB

zt ± O(ε)

=
α

413

∑
t∈IG

(
elt ± ε

)
+

α

413

∑
t∈IB

zt ± O(ε)

=
α

413K

∑
1≤i≤4

kiei +
α

413

∑
t∈IB

zt ± O(ε)

= zG + zB ± O(ε).

As SU is valid, (x,y) must satisfy constraint P , and thus,
x[v] ≤ 1/K + ε for every v ∈ VA. Since |IB | ≤ 3 · 412,

‖zB ‖∞ ≤ α

413
· 3 · 412 · (1/K + ε) =

3α

41K
+ O(ε).

Next, we prove that point q cannot be too close to the
boundary of cube [0, 1]3. This immediately implies the ex-
istence of integers m1,m2 and m3.

Suppose that there is an integer i : 1 ≤ i ≤ 3 such that
qi ≤ 30α, then for all t ∈ IG, qt

i � 2−n and thus, rt
i = 0.

The boundary condition on C implies k4 = 0. Let l be the
integer such that kl = max1≤j≤3 kj ≥ |IG |/3, then

zl = zG
l + zB

l ± O(ε)

≥ α

413K

38 · 412

3
− 3α

41K
− O(ε)
 4ε.

We need to discuss the following two cases:

1. If x[vl] < 1/K − 2α/K, then we get a contradiction
to Lemma 7.

2. If x[vl] ≥ 1/K − 2α/K, then for all t ∈ IG, rt
l =

2n − 1 > 0. From the boundary condition on C, we
have lt �= l and thus, kl = 0, which contradicts with
our assumption on l.

We can similarly show that qi < 1 − 30α, ∀ i : 1 ≤ i ≤ 3.
Finally, we prove that vertex (m12−n,m22−n,m32−n)

is panchromatic. It’s only necessary to show that all four
ki are positive. Since point q is not close to the boundary
of [0, 1]3, we have ‖z‖∞ ≤ 4ε from Lemma 7, and thus,
‖zG ‖∞ ≤ ‖zB ‖∞ + O(ε). So all the three coordinates of∑

1≤i≤4 kiei is smaller that
∑

1≤i≤4 ki/5 = |IG |/5. By
Lemma 5, all four ki are positive.

5 Concluding Remarks

Even though many people thought the problem of find-
ing Nash equilibria is hard in general, and it has been proven
so for games among three or more players recently, it’s not
clear whether the two-player case can be shown in the same
class of PPAD-complete problems. Our work settles this is-
sue, and a long standing open problem that has, since half a
century ago, attracted Mathematicians, Economists, Opera-
tions Researchers, and most recently Computer Scientists.
The result shows the richness of the PPAD-complete class
introduced by Papadimitriou fifteen years ago [19].

The new proof techniques which made the inclusion of
problem r-NASH into this class possible, started in Gold-
berg and Papadimitriou [11], have shown a variety of struc-
tures, as exhibited in the hardness proofs of 4-NASH, 3-
NASH, and finally the two-player Nash equilibrium prob-
lem. They may find their use in other related problems and
complexity classes. A recent work of ours with Teng [6]
shows that the approach, with significantly deep extra work,
can be applied to the issues of polynomial size approxima-
tion of Nash equilibria, as well as its smoothed complexity,
regarded as a central open problem in smoothed analysis.

6 Acknowledgements

In order to help readers who might be interested in both
this paper and [6], the authors of both papers decided to use
some common notations and terminologies in the presenta-
tion.

Xiaotie Deng would like to acknowledge the support by a
travel grant of Department of Computer Science, City Uni-
versity of Hong Kong.

References

[1] L. Brouwer. Über abbildung von mannigfaltigkeiten. Math-
ematische Annalen, 71:97–115, 1910.

[2] X. Chen and X. Deng. 2d-sperner is ppad-complete. In
ICALP 2006.

[3] X. Chen and X. Deng. On algorithms for discrete and ap-
proximate brouwer fixed points. In STOC 2005.

[4] X. Chen and X. Deng. 3-nash is ppad-complete. In ECCC,
TR05-134, 2005.

[5] X. Chen and X. Deng. Settling the complexity of 2-player
nash-equilibrium. In ECCC TR05-140, 2005.

[6] X. Chen, X. Deng, and S.-H. Teng. Computing nash equi-
libria: Approximation and smoothed complexity. In FOCS
2006.

[7] R. Cottle and G. Dantzig. Complementary pivot theory of
mathematical programming. Linear Algebra Appl., 1:103–
125, 1968.

[8] G. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1963.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

[9] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The com-
plexity of computing a nash equilibrium. In STOC 2006.

[10] C. Daskalakis and C. Papadimitriou. Three-player games
are hard. ECCC, TR05-139.

[11] P. Goldberg and C. Papadimitriou. Reducibility among equi-
librium problems. In STOC 2006.

[12] M. Hirsch, C. Papadimitriou, and S. Vavasis. Exponential
lower bounds for finding brouwer fixed points. Journal of
Complexity, 5:379–416, 1989.

[13] L.-S. Huang and S.-H. Teng. On the approximation and
smoothed complexity of leontief market equilibria. ECCC,
TR06-031.

[14] M. Kearns, M. Littman, and S. Singh. Graphical models for
game theory. In Proceedings of UAI, 2001.

[15] L. Khachian. A polynomial algorithm in linear program-
ming. Dokl. Akad. Nauk, SSSR 244: English translation in
Soviet Math. Dokl. 20, 1979.

[16] C. Lemke and J. J.T. Howson. Equilibrium points in bima-
trix games. J. Soc. Indust. Appl. Math., 12, 1964.

[17] O. Morgenstern and J. von Neumann. The Theory of Games
and Economic Behavior. Princeton University Press, 1947.

[18] C. Papadimitriou. Algorithms, games and the internet. In
FOCS 2001, pages 749–753.

[19] C. Papadimitriou. On inefficient proofs of existence and
complexity classes. In Proceedings of the 4th Czechoslo-
vakian Symposium on Combinatorics, 1991.

[20] C. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Com-
puter and System Sciences, 1994.

[21] R. Savani and B. von Stengel. Hard-to-solve bimatrix
games. Econometrica, 74:397–429, 2006.

[22] J. von Neumann. zur theorie der gesellshaftsspiele. Mathe-
matische Annalen, 100:295–320, 1928.

[23] A.-C. Yao. Probabilistic computations: Towards a unified
measure of complexity. In FOCS 1977.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 26, 2008 at 19:49 from IEEE Xplore. Restrictions apply.

