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ABSTRACT
In the past thirty years, Communication Complexity has
emerged as a foundational tool to proving lower bounds in
many areas of computer science. Its power comes from its
generality, but this generality comes at a price—no superlin-
ear communication lower bound is possible, since a player
may communicate his entire input. However, what if the
players are limited in their ability to recall parts of their
interaction?

We introduce memory models for 2-party communication
complexity. Our general model is as follows: two computa-
tionally unrestricted players, Alice and Bob, each have s(n)
bits of memory. When a player receives a bit of communi-
cation, he “compresses” his state. This compression may be
an arbitrary function of his current memory contents, his
input, and the bit of communication just received; the only
restriction is that the compression must return at most s(n)
bits. We obtain memory hierarchy theorems (also compar-
ing this general model with its restricted variants), and show
super-linear lower bounds for some explicit (non-boolean)
functions.

Our main conceptual and technical contribution concerns
the following variant. The communication is one-way, from
Alice to Bob, where Bob controls two types of memory: (i) a
large, oblivious memory, where updates are only a function
of the received bit and the current memory content, and (ii)
a smaller, non-oblivious/general memory, where updates can
be a function of the input given to Bob. We exhibit natural
protocols where this semi-obliviousness shows up. For this
model we also introduce new techniques through which cer-
tain limitations of space-bounded computation are revealed.
One of the main motivations of this work is in understand-
ing the difference in the use of space when computing the
following functions: Equality (EQ), Inner Product (IP), and
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connectivity in a directed graph (Reach). When viewed as
communication problems, EQ can be decided using 0 non-
oblivious bits (and log2 n oblivious bits), IP requires exactly
1 non-oblivious bit, whereas for Reach we obtain the same
lower bound as for IP and conjecture that the actual bound
is Ω(log2 n). In fact, proving that 1 non-oblivious bit is re-
quired becomes technically sophisticated, and the question
even for 2 non-oblivious bits for any explicit boolean func-
tion remains open.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—interactive and reactive computation

Keywords
communication complexity; space-bounded; memory-bounded

1. INTRODUCTION
In computer science research most lower bounds have an

information theoretic nature, but for a few exceptions (e.g.
time/space hierarchy theorems, and the recent ACC0 lower
bound [26]). These lower bounds amount to showing that
there is an “information cost we must pay” if we wish to
correctly complete the task. This is commonly proved ei-
ther implicitly, or by a reduction an information theoretic
setting such as the communication complexity. The Com-
munication Complexity model, originally introduced by Yao
[27], is almost information theoretic by definition. (In fact,
establishing a strong formal connection between communi-
cation complexity and information theory is itself an active
area of research; see e.g., [11, 4, 5] for more details.) In
its simplest form two computationally unbounded players,
Alice (who holds an input x) and Bob (who holds y), aim
to evaluate a function f(x, y) by communicating as little as
possible. This is an area of intense research activity, has au-
tonomous existence, and finds several applications in diverse
areas such as circuit complexity ([16, 23]), VLSI design ([1,
28]), data structure lower bounds ([21, 22, 20]) streaming
algorithms ([2, 15, 25, 12, 13]), and property testing ([7]) to
name a just a few.

When lower bounds are derived by a reduction from com-
munication complexity, the quality of the lower bound is
bounded by the corresponding communication lower bound.



In particular, in the classical communication complexity set-
ting no super-linear communication lower bound is possible,
as one player may simply send his entire input to the other.

To put things in context, consider the following exam-
ple from streaming algorithms. Let Reach(G, s, t) be the
problem that, given a directed graph G, determines if t
is reachable from s. For a graph of n vertices and a ma-
chine with working memory O(log n), classical communica-
tion complexity techniques show that the number of passes
must be Ω( n

log n
). However, if one believes the conjecture

that Reach cannot be computed in logarithmic space, the
actual lower bound on the number of passes should be infi-
nite.

What if we modify the original communication complex-
ity model in a way that Alice and Bob can use only a small
amount, say O(log n), of memory between steps of commu-
nication? In this setting, when players receive a bit of com-
munication, they may spend an arbitrary amount of com-
putation deciding what to save in their memory; however,
they still must compress the information they know at each
step; i.e., they must take their s(n) bits of memory and the
communication just received and again save only s(n) bits
of memory. In this case super-linear communication lower
bounds are possible, and furthermore common reduction ar-
guments (including the one mentioned above) go through in-
tact. Being able to prove such lower bounds sounds too good
to be true. Simply restricting the memory of the players
corresponds to a model at least as strong as width-bounded
branching programs and depth-bounded circuits. Although
slightly super-linear communication lower bounds is within
the reach of known techniques, showing lower bounds that
shed actual light on the limitations of space-bounded com-
putation seems non-trivial. In this paper we obtain strong
lower bounds for explicit non-boolean functions in the gen-
eral model, and for explicit boolean functions in a certain
restricted model. We discuss this restriction in Section 1.2
and view it as an important part of our conceptual contri-
bution.

1.1 Background
Lam, Tiwari and Tompa [19] were the first to study trade-

offs between communication and space requirements when
computing functions in the straight-line protocols model. Al-
ternatively, a straight-line protocol can be modeled as a peb-
ble game on an arithmetic or boolean circuit. On the arith-
metic model, they proved communication-space tradeoffs for
matrix multiplication and polynomial convolution, through
a detailed analysis of the structure of arithmetic circuits
computing bilinear forms; i.e. the results rely heavily on the
specifics of arithmetic circuits. On the other hand, the trade-
off for matrix-vector multiplication in their one-way boolean
model follows a more generic information theoretic technical
approach. Beame, Tompa and Yan [6] took a step further,
introducing the more general communicating branching pro-
grams model. Adopting earlier techniques of Borodin et al.
[9, 8] on branching programs into the communication set-
ting, they showed stronger communication-space tradeoffs
for matrix-vector multiplication and other functions.

In [19] and [6], techniques from classical computational
complexity literature were modified to find application in
the more powerful communication setting. Our motivation
is in the opposite direction. We introduce a conceptually
simple, purely information theoretic model. This choice of

the model is not only a matter of elegance. First, given that
currently we understand very little about computation itself
it is not clear that there is any gain by bounding the players
computationally. Second, this level of generality makes more
transparent possible applications.

Besides [19, 6] and follow-ups of those (see e.g. [17, 18]
by Klauck et. al.), some recent papers appear to be relevant
to our approach. Impagliazzo and Williams [14] studied a
variant of communication complexity where players share
synchronized access to a common clock. They showed that
with the help of this synchronized clock, it is sometimes
possible to save communication. This clock resembles a spe-
cial type of memory we study in this paper called “oblivious
memory”. The garden-hose model, introduced recently by
Buhrman et al. [10], also resembles several characteristics
of the space-bounded communication complexity model we
study here. If fact, if we denote the garden-hose complex-
ity defined in [10] of a function f as GH(f), and the min-
imum space requirement to compute the function f in our
space-bounded communication model as s(f), then there are
constants c ∈ (0, 1) and d ∈ N+ that satisfies the following
relation for every boolean function f

c · 2s(f) ≤ GH(f) ≤ 22s(f)+2 + d

1.2 Oblivious Memory Updates – Compress-
ing Interaction Obliviously

In addition to considering communication problems where
players have limited space, we wish to understand an aspect
of how space gets used in computing different functions of
interest, e.g. the equality function EQ, inner product IP,
and Reach.

Consider a one-way space-bounded protocol for comput-
ing equality in the two-party communication setting. Alice
sends her input x ∈ {0, 1}n bit-by-bit to Bob. Bob in turn
compares each bit xi to the corresponding bit yi of his in-
put y ∈ {0, 1}n. If Bob discovers a mismatch he outputs 0
and the protocol halts. Otherwise Bob halts after n bits of
communication and outputs 1. We emphasize that in this
protocol the players only need to maintain a counter which
increases independent of their inputs.

A similar strategy also applies to the inner product func-
tion IP, where players receive n-bit strings and must com-
pute their inner product modulo 2. Again, Alice and Bob
keep counters incremented at each step, and Alice sends x
to Bob bit-by-bit. This time, Bob keeps an additional bit to
store the intermediate result. Namely, at step k Bob main-
tains a single bit containing the value

∑k
i=1 xiyi.

While both functions can be computed with n+O(1) bits
of communication and log2 n + O(1) bits of work memory
(optimal in the sense that both functions have deterministic
communication complexity n), there is a difference in the
way Bob uses his work memory. In the protocol for equality,
the content of Bob’s memory remains independent of his
input, while in the protocol for inner product, the extra bit
Bob uses depends on y. We will call the part of Bob’s work
memory whose content does not depend on y as “oblivious”,
and the part of Bob’s work memory whose content does
depend on y as “non-oblivious” or “general”.

How about functions that have been conjectured to be
hard for reasonably large space in the Turing Machine world?
For example, we conjecture that the function Reach(G, s, t)
requires Ω(log2 n) non-oblivious bits, unless the oblivious



memory is large enough to hold Alice’s entire input. Inter-
estingly, so far we were only able to prove that at least 1
non-oblivious bit is required, and in fact just proving such a
bound becomes challenging.

Apart from the above natural semi-oblivious protocols
there are more high-level reasons this two-type memory mer-
its consideration. By allowing a large enough oblivious mem-
ory we can realize protocols where players are able to per-
form simple tasks such as counting and communicating small
parts of the information given in their input. This allows
us to consider a weaker “type” of memory and attempt to
study the general one in isolation. Note that if we instead
only had non-oblivious memory then on one hand memory
size lower bounds of e.g.

log2 n

3
are trivial (even counting is

impossible in this amount of space), whereas lower bounds
for slightly larger memory directly imply strong circuit lower
bounds. Even proving lower bounds for a smaller number
of non-oblivious bits turns out to be a daunting task. One
reason is because oblivious bits are present, and oblivious
bits aren’t as weak as one might think. For instance, in Sec-
tion 3, we show that you cannot replace oblivious memory
by a slightly smaller amount of non-oblivious memory.

1.3 Our Techniques and a Roadmap to Our
Results

In this work, we define the space-bounded communication
complexity model and give upper bounds for many interest-
ing problems. Importantly, we also provide lower bounds
and create new proof techniques tailored to space-bounded
communication. Our results are organized as follows. In Sec-
tion 3 we give several robust memory hierarchy theorems. In
particular, we show:

Theorem 1. (Memory Hierarchy Theorem, infor-
mally stated). For all s(n), there are functions com-
putable using a (s(n) + log(n))-space communication proto-
col that cannot be computed by any s(n)-space communica-
tion protocol.

We also show a direct-sum type of upper bound, where
oblivious protocols can be combined without losing the obliv-
ious nature of the protocol. For example, this shows that
2-output-bit equality (where each player has two strings,
and players must determine whether each pair is equal) can
be computed with a logarithmic amount of oblivious mem-
ory. We present additional interesting examples of space-
bounded protocols in Section 4.

In Section 5, we show a non-computability result for the
general memory model for explicit functions with large out-
puts. Our first such function, All-EQ, computes equality
on every subset of bits. The output of All-EQ is thus 2n

bits long. By using ideas from combinatorial designs, we
create another function EQ-with-Designk whose output
is polynomial in the number of input bits. We show that
computing this function is also hard in the space-bounded
communication model.

Theorem 2. (Lower bounds for non-boolean func-
tions, informally stated). Computing All-EQ requires
Ω(n) space in the space-bounded communication model. Com-
puting EQ-with-Designk requires Ω(k log n) space.

Both lower bounds are close to their respective known
upper bounds. A significant part of this work refers to new

model-specific techniques we devised to prove lower bounds.
The most involved such technique is in the proof that com-
puting Inner Product requires non-oblivious memory.

Theorem 3. Any one-way oblivious protocol for IP re-
quires Ω(n) space.

Proving this theorem using standard communication lower
bound techniques is not possible, as these techniques do not
account for the space used by players. To that end, we
develop a way to combine the standard notion of a commu-
nication matrix with an accounting of the current state of
memory at any point in time in a space-bounded protocol.
We analyze how the output decision is made based on the
changing state of memory through the course of a proto-
col and argue that with limited space, little progress can be
made. To show this, we introduce a geometric/covering no-
tion of progress. Making this precise, and quantifying the
details is technical and involved. We develop these concepts
in depth in Section 6 and provide a full proof in Section 10.

2. THE SPACE-BOUNDED COMMUNICA-
TION COMPLEXITY MODEL

For this paper, we focus on two-player deterministic pro-
tocols. Unless otherwise specified, we assume Alice and Bob
receive inputs x, y ∈ {0, 1}n and wish to compute a boolean
function f : {0, 1}n × {0, 1}n → {0, 1}.

In this section, we formally define the space-bounded com-
munication complexity model as well as some variants. A
player is space-bounded if he has a variable M ∈ {0, 1}s
corresponding to a limited amount of memory. A player’s
actions are defined by a transition function

T : {0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {0, 1} × {0, 1,⊥} ,
where T (b, x,m) = (m′, b′, h) means the player, given in-
put x, old memory contents m, and after receiving a bit
of communication b, sets his memory contents to m′, sends
b′ to the other player, and if h 6= ⊥, the player halts and
outputs h. A protocol is space-bounded when both players
are space-bounded. Thus, a protocol can be described by a
tuple (TA, TB).

Definition 4. A space-bounded communication proto-
col P with s bits of memory is a tuple (TA, TB) where TA, TB :
{0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {0, 1} × {0, 1,⊥}, and
in this paper, we use MA,MB ∈ {0, 1}s to denote the con-
tent of Alice’s and Bob’s local memory, respectively. We
say that P computes f if for all x, y, with the initial state
MA = MB = 0s, both players halt and output f(x, y). The
communication cost of P is the maximum total number of
bits communicated over all inputs.

Remark.
Note that no restriction is placed on the computational

power required to compute TA and TB . In particular, players
may use an arbitrary amount of time or space to compute
TA or TB . Nevertheless, between steps of communication,
memory remains bounded.

It is helpful to consider how players interact during the
course of a protocol. Initialily, Alice and Bob receive inputs
x and y and initialize their memory to zero. Communication



proceeds in a number of steps, where Alice receives bB from
Bob and applies

(MA, bA, hA)← TA(bB, x,MA) .

Alice then sends bA to Bob, who computes

(MB, bB, hB)← TB(bA, y,MB) .

completing a step of communication. (Initially, Alice sets
bB to zero.) Players proceed until each halts and outputs
f(x, y).

We are particularly interested in bounds on the minimum
amount of space required to compute a function, and in
which classes of functions are computable in limited space.

Definition 5. SPACECC(s) is the set of boolean func-
tions computed by a space-bounded communication protocol
using s bits of space.

2.1 One-Way Semi-Oblivious Protocols
As mentioned in the introduction, we believe it is inter-

esting to consider memory that is oblivious when communi-
cation is one-way.

Definition 6. In a one-way protocol, Alice feeds a stream
of bits to Bob, but Bob cannot communicate back. Each of
them has s bits of memory. The protocol halts as soon as
Bob gives an answer and halts, even if Alice chooses to con-
tinue. SPACECC→(s) is the set of boolean functions com-
putable with one-way protocols using s bits of space.

In an oblivious protocol, Alice is space-bounded as before,
but Bob’s memory is further restricted.

Definition 7. In a one-way semi-oblivious protocol, Bob
has two variables Mf

B ∈ {0, 1}sf and Mo
B ∈ {0, 1}so and

transition functions

T f
B : {0, 1}×{0, 1}n×{0, 1}sf×{0, 1}so → {0, 1}sf×{0, 1,⊥}

and

T o
B : {0, 1} × {0, 1}so → {0, 1}so

The total amount of space used by Bob is sf + so. The
protocol is oblivious if sf = 0.

SPACECCo

→(s) is the set of all functions computable by
oblivious protocols where each player uses s bits of space.

Bob uses T f and T o in the natural way. Note that updates
to a player’s oblivious memory are independent of both his
input and his non-oblivious memory. Also note that in an
oblivious protocol, the function T f

B serves the purpose of
deciding Bob’s final answer (and that purpose only).

2.2 Space-Bounded Communication as Com-
municating State Machines.

It is natural to view a space-bounded communication pro-
tocol as the interaction between communicating state ma-
chines. In this view, Alice and Bob construct state machines
Mx and My during a preprocessing stage. Each machine
has a state for each possible memory configuration, plus two
additional halt states yes and no. From each non-halt state,
there are 0 and 1 edges corresponding to the bit received
from the other player. Each edge is further labeled by the
output bit sent to the other player. Note that players con-
struct different state machines on different inputs, since their
behavior during a protocol differs on different inputs.

3. BASIC PROPERTIES
We give a list of basic properties of our space-bounded

communication model and its variants. Observe that, as
in other common space-bounded computation models, if a
protocol runs for long enough then it repeats a configuration
and does not halt.

Proposition 8. Let P be a communication protocol where
each players has an input of length n and memory space
s(n). Furthermore, the protocol always halts. Then, on ev-

ery input (x, y) ∈ {0, 1}n×{0, 1}n P runs in at most 22s(n)+1

steps, or in other words, the communication cost is at most
22s(n)+1.

3.1 Memory Hierarchy Theorem
A natural, initial question for these memory models is

whether more space can be used to compute more functions.

Theorem 9. For any s(n) < n
5
, almost every boolean

function (on two n-bit inputs) that can be computed with
one-way oblivious protocol of work memory size s(n)+log n,
is not computable by any protocol (not necessarily oblivious)
of work memory size s(n).

To prove this theorem, we will first prove Lemma 10 and
Lemma 11 below.

Lemma 10. The number of different boolean functions (on
inputs from {0, 1}n×{0, 1}n) that can be computed with pro-

tocols with memory size s(n) is at most 2(4+s(n))·2n+s(n)+2

.

Lemma 11. The number of different boolean functions (on
inputs from {0, 1}n×{0, 1}n) that can be computed with one-
way oblivious protocols of work memory size s(n) (s(n) ≤ n)

is at least 22
n+s(n)

.

Proof of Theorem 9. This follows immediately by com-
paring the lower bound on the number of boolean functions
computable by one-way oblivious protocols of memory size
s(n)+logn (Lemma 11) and the upper bound on the number
of boolean functions computable by two-way general proto-
cols of memory size s(n) (Lemma 10).

Note that this implies two hierarchy theorems, one for
the general (not necessarily one-way or oblivious) space-
bounded communication model, and one for the one-way
oblivious model.

Corollary 12. For any s(n) < n
5
,

SPACECC(s(n)) ( SPACECC(s(n) + log n).

Corollary 13. For any s(n) < n
5
,

SPACECC
o

→(s(n)) ( SPACECC
o

→(s(n) + log n).

3.2 Parallel repetitions of one-way Oblivious
Protocols

Let us revisit the one-way oblivious protocol for equality
(Section 1.2). First, observe that the protocol may halt at
different steps for different input pairs (x, y). This can be
shown to be essential (see Section 11). Now, consider the
question of computing the non-boolean “2-bit EQ”. In this
problem Alice is given two n-bit strings x1, x2, and Bob is
given y1, y2, and we want to find out if x1 is equal to y1,



and simultaneously, if x2 is equal to y2. Interestingly, we
do not need an extra non-oblivious bit to compute this 2-
bit EQ. In fact, there is a more general property according
to which we can compose “parallel” oblivious protocols on
independent inputs.

Proposition 14. For a pair of boolean functions f1 and
f2, if each is a function on two n-bit inputs, f1, f2 : {0, 1}n×
{0, 1}n → {0, 1}, and can be computed by a one-way oblivi-
ous protocol with space-bound s1(n), s2(n) and communica-
tion cost c1(n), c2(n), then the composite function f(x, y) =
(f1(x, y), f2(x, y)) can be computed with a one-way oblivious
protocol with space-bound s1(n) + 3s2(n) + 1 and communi-
cation cost c1(n) · (c2(n) + 2).

4. EXAMPLE PROTOCOLS
In this section, we briefly present some space-bounded

protocols for two natural problems on directed graphs. We
defer proofs of the theorems in this section to Section 8.

Depth First Search on a Tree.
The input to this problem is a directed binary tree T =

(V,E) with distinguished vertices s, t ∈ V , and we wish
to determine which vertex is reached first in a depth-first
lexicographic traversal of T . We refer to this problem as
DFS-Tree and define DFS-Tree(T, s, t) = 1 if and only if
s precedes t. In the space-bounded communication version,
Alice and Bob are given different sides of a fixed vertex cut
A ⊎ B = V . Alice receives all edges leaving vertices in A,
and Bob receives all edges leaving vertices in B.

Theorem 15. DFS-Tree ∈ SPACECC(log n+log log n+
O(1)).

Note that while the space in the protocol achieving The-
orem 15 is extremely limited, it requires worst-case commu-
nication Ω(n2 log(n)), close to the theoretical maximum of
Θ(n2 log2 n) given by Proposition 8 and Theorem 15. We are
interested in knowing if this is required, or if in general it is
possible to compress communication close to this maximal
bound. More generally we ask if there is a general scheme to
bring the worst case communication cost of a space-bounded
communication protocol down to 2s+o(s) (from 22s).

Reachability.
The input for this problem is again a directed graph G =

(V,E), with distinguished vertices s, t. Define

Reach(G, s, t) :=

{

1 if ∃ an s ❀ t path in G
0 otherwise

In the space-bounded communication version of this prob-
lem, players are again given different sides of a fixed vertex
cut A⊎B = V . Alice gets as input all edges in A; Bob gets as
input all edges in B, and both players see all crossing edges.
Let CA denote the set of vertices in A adjacent to some ver-
tex in B. Define CB analogously. CA ∪ CB thus defines the
boundary of the cut. Finally, let C := {s, t}∪CA ∪CB , and
let c = |C|. The performance of all of our protocols highly
depend on c.

Theorem 16. Reach(G, s, t) can be computed (i) using

O(log2 c) space and 2O(log2 c) communication, (ii) using O(c)

space and O(c2) communication, (iii) with a one-way pro-
tocol that uses O(c2) space and O(c2) communication, and
(iv) with a one-way protocol that uses O(c) space and O(c3)
communication.

5. LOWER BOUND FOR EXPLICIT NON-
BOOLEAN FUNCTIONS

We give lower bounds for two explicit non-boolean func-
tions f : {0, 1}n × {0, 1}n → {0, 1}m. Note that some care
must be made when discussing space-bounded communica-
tion for such functions. When the number of output bits is
large, space lower bounds become trivial if we require play-
ers to output the entire function at once. Instead, we modify
the model so players can output a subset of the output bits
at any step. As long as the entire function is eventually
output, and the answers are consistent, we say the protocol
computes f .

Definition 17. A space-bounded communication proto-
col P computing f : {0, 1}n ×{0, 1}n → {0, 1}m using s bits
of space is a tuple (TA, OA, TB , OB), with

• transition functions TA, TB : {0, 1}×{0, 1}n×{0, 1}s →
{0, 1}s × {halt,⊥},
• output functions OA, OB : {0, 1} × {0, 1}n × {0, 1}s →
{0, 1, ∗}m.

We use MA,MB ∈ {0, 1}s to denote Alice and Bob’s mem-
ory, respectively. P computes f if (i) both players halt on
all inputs, (ii) for all j ∈ [m], some player correctly outputs
fj(x, y), and (iii) no player incorrectly outputs fj(x, y).

In this definition, if, e.g., the jth bit of OA(b, x,m) is
v 6= ∗, then Alice outputs fj(x, y) = v. Note that we allow
players to (correctly) output bits of f multiple times. This
allows players to compute f without having to remember
which bits have already been computed.

Our first non-boolean function All-EQ : {0, 1}n×{0, 1}n
→ {0, 1}2n computes equality on all subsets of bits. Let
{I1, . . . , I2n} enumerate all possible subsets of {1, . . . , n}.
Then, the ith output bit of All-EQ is defined as:

All-EQi(x, y) :=

{

1 if ∀j ∈ Ii, xj = yj
0 otherwise

The function EQ-with-Designk is similarly defined, ex-
cept that instead of using all 2n the subsets of {1, 2, . . . , n},
we use a combinatorial design containing only pk many such
subsets, where p is a prime number satisfying p2 = n,1 and
k is any positive integer. This family of subsets satisfies the
following two properties: each subset has size p, and the
intersection of any two subsets has size at most k.2

1We assume for simplicity that n is always the square of
some prime number. Strictly speaking, it suffices to choose
a prime number between ⌈√n⌉ and 2⌈√n⌉. Bertrand’s pos-
tulate guarantees this is possible.
2A specific construction utilizes the one-to-one correspon-
dence between Fp × Fp (Fp being the prime field of size
p) and {1, 2, . . . , n}. Consider all polynomials of degree
at most k − 1 on Fp, they are all of the form q(x) =
ak−1x

k−1 + ak−2x
k−2 + . . . + a1x + a0. There are pk such

polynomials, each of them can determine a subset of Fp×Fp

of size p, namely {(0, q(0)), (1, q(1)), . . . , (p − 1, q(p − 1))}.
These corresponds to a family {Ii}i=1,2,...,pk of subsets of
{1, 2, . . . , n} which we can use to define EQ-with-Designk.



Theorem 18. For any s(n) < log2 (1.5)·n−2, All-EQ /∈
SPACECC(s(n)). All-EQ ∈ SPACECC(n+O(1)).

Theorem 19. For any fixed positive integer k, pos-
itive number ǫ, and any s(n) < ( 1

2
− ǫ)k log (n),

we have EQ-with-Designk /∈ SPACECC(s(n)) and
EQ-with-Designk ∈ SPACECC

(

1
2
(k + 1) log (n) +O(1)

)

.

In this section, we sketch the proof of Theorem 18, which
is technically simpler. The proof of Theorem 19 uses similar
techniques and appears in Section 9.

As explained in Section 2.2, given a space-bounded com-
munication protocol P , for every possible input x to Alice,
she has a corresponding state machine Mx, and for every
possible input y to Bob, he has a corresponding state ma-
chineMy. ConnectingMx andMy, let π(Mx,My) denote
the resulting computational history, and π(Mx,My)|out the
outputs of Alice and Bob. Using ‖πA(Mx,My)|out‖1 and
‖πB(Mx,My)|out‖1 to denote the number of 1 output bits
produced by Alice and Bob respectively.

Lemma 20. If there is a protocol P that correctly com-
putes All-EQ, then among the state machines {Mx}x∈{0,1}n

and {My}y∈{0,1}n , one of the following statements must
hold

• ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n

‖πA(Mx,My)|out‖1 ≥ 3n

2

• ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n

‖πB(Mx,My)|out‖1 ≥ 3n

2

Proof of Theorem 18. We show the contrapositive. Sup-
pose that there is a protocol P with memory size bound s(n)
that correctly computes All-EQ. Assume without loss of
generality that the clause of x in Lemma 20 is true, and the
input value that makes this condition true is x0 = 0n.

First let’s introduce some notation, for two n-bit strings
x and y, we denote the hamming distance between x and
y as H(x, y), and D(x, y) = n − H(x, y), is the number of
positions at which the corresponding bits are the same. ‖x‖1
is the number of 1 bits in x.

Consider the states inMx0 , for every state γ ∈ {0, 1}s(n)

and every possible communication bit b ∈ {0, 1}, denote the
edge leading out of γ labelled b as e(γ, b), denote the num-
ber of 1 output bits produced at e(γ, b) as o1(γ, b), and de-
note the set of y ∈ {0, 1}n such that π(Mx0 ,My) passes
through edge e(γ, b) as Y (γ, b). For every y ∈ Y (γ, b),

‖All-EQ(x0, y)‖1 ≥ o1(γ, b), thus 2D(x0,y) ≥ o1(γ, b), i.e.
D(x0, y) ≥ log2 o

1(γ, b). That means |Y (γ, b)| ≤ 2n/o1(γ, b).
On the other hand,

∑

y∈{0,1}n

‖πA(Mx0 ,My)|out‖1

=
∑

γ∈{0,1}s(n)

∑

b∈{0,1}

∑

y∈Y (γ,b)

o1(γ, b)

=
∑

γ∈{0,1}s(n)

∑

b∈{0,1}

|Y (γ, b)| · o1(γ, b)

≤ 2s(n) · 2 · 2n

Therefore 3n/2 ≤ 2s(n) · 2 · 2n, which implies s(n) ≥
log2 (1.5) · n− 2.

6. EQUALITY, INNER PRODUCT, REACH-
ABILITY, AND BEYOND...

When not viewed as communication problems, the com-
putational complexity for equality (EQ) is EQ ∈ AC0, for
inner product IP ∈ NC1 but not in AC0, and for Reach we
know that it can be done non-deterministically in O(log n)
space (see e.g. [3] for definitions and conjectures). A fa-
mous conjecture states that Reach /∈ NC1, in fact Reach /∈
LogSPACE. We wish to understand (at least partly) the
difference in the use of space when computing these three
functions, and we ask this question in our semi-oblivious
model. We have already seen the following protocols.

Theorem 21. EQ ∈ SPACECCo

→(log2 n), IP is com-
putable with 1 non-oblivious bit and ⌈log2 n⌉ oblivious bits,
and Reach ∈ SPACECC(O(log2 n)).

Our most technically involved contribution is the following
theorem, which states that the IP protocol is space-optimal;
i.e. we need this one non-oblivious bit.

Theorem 22. IP 6∈ SPACECCo

→(n/7).

We observe that IP can be reduced to Reach through lo-
cal preprocessing, implying that Reach also requires 1 non-
oblivious bit. We conjecture that Reach requires Ω(log2 n)
non-oblivious bits. Even the more modest goal of showing
that Reach requires 2 non-oblivious bits is open.

The proof of Theorem 22 is given in Section 10. Below
we attempt to flesh-out a more general, model-specific tech-
nique, which also serves as a high-level description of this
argument.

Overview of the IP lower bound.
Let us first recall the concept of communication matrix

from classical communication complexity. We organize the
correct answers of the function being computed on all possi-
ble input pairs (x, y) in a matrix where rows are associated
with x and columns with y, and the (x, y) position contains
the value of f(x, y). A monochromatic rectangle is a sub-
matrix where f has the same value for each entry.

The only property of IP that our proof technique uses is
the fact that all the monochromatic rectangles in the com-
munication matrix of IP have a relatively small size bound
(for two n-bit inputs, this bound is 2n+1). In fact, the same
proof works for every function enjoying this property.

The Progress Measure. We use the number of columns that
are “partially solved” after a certain number of steps as a
progress measure. A column is called “partially solved” after
t steps if after t steps the protocol has output the correct
value and halted on at least one position in this column.
Since the number of steps in a halting protocol is bounded,
if we obtain an upper bound on the amount of progress in a
single step then we can conclude that at the end of the pro-
tocol run, the number of “partially solved” columns can not
reach 2n (the number of columns in the matrix). Handling
this progress measure appropriately is a subtle technical is-
sue.



Bands and the protocol matrix. Note that in a one-way obliv-
ious protocol we can think of Alice as uploading Bob’s mem-
ory.3 If we fix the value Alice uploads to Bob’s memory in
a particular step (plus the one bit of communication of that
step), we are actually fixing a subset of possible value of x,
and therefore a subset of rows in the communication matrix.
We call such a subset of rows as a “band”. That means to
capture the current state of Bob’s memory, we only need to
look at those “bands”. In each step, Bob makes his output
decision based solely on his current memory state, commu-
nication bit (which collectively correspond to a“band”in the
communication matrix) and his input y (which corresponds
to a column in the matrix).

The Stepwise Upper Bound on Progress. If a “band” is too
“narrow” (containing too few rows), we can somehow ignore
it as being insignificant. On the other hand, if a “band” is
too “wide” (containing too many rows), its contribution to
the progress measure we discussed above is limited, due to
the monochromatic rectangle size bound. That limit implies
the desired upper bound on progress to complete the proof.
Note that without excluding the narrow bands (and showing
that there can’t be too many) the argument breaks down.

What’s left to be done?
Conceptually, we introduce memory models for commu-

nication complexity, and technically we give model-specific,
non-trivial arguments giving leverage to these new models.
Many questions raised in this work are left open. Closing
the log n gap between the levels of the memory hierarchies
is one such question.

An important open question is towards devising a tech-
nique for showing explicit space lower bounds for 2 or more
non-oblivious bits. How far can we push such a lower bound
for Reach?

One issue we haven’t touched at the current stage of de-
velopment is what happens in the presence of randomness.
Studying such variants opens the possibility for answering
some restricted forms of open questions in Communication
Complexity itself; e.g. proving strong direct-sum theorems
but in a space-bounded setting.

Finally, there are all sorts of questions relating these new
models to open problems in Computational Complexity. How
does the semi-oblivious model relate to circuit complexity
classes such as AC and P/poly? We know that oblivious re-
finements of the Karchmer-Wigderson games do not provide
something meaningful (a discussion about this will appear in
the full version), but other possibilities are open. In general
we would like to know if there are any other, genuine appli-
cations of the semi-oblivious model in other areas? One can
easily devise contrived settings where oblivious memory is
relevant, but how about the natural settings people actually
care about?

7. PROOFS OF THE BASIC PROPERTIES

Proof of Proposition 8. With the two players in pro-
tocol P combined (both MA and MB), they have 2s(n) bits
of memory, plus the bit received by Alice at the beginning
of a step, the system would have at most 22s(n)+1 different
configurations in total. Therefore, if P makes more than
22s(n)+1 a configuration is repeated and P never halts.
3See Lemma 23 in Section 10.

Proof of Lemma 10. According to Definition 4, a space-
bounded protocol P is defined by functions TA and TB . For
input size n and space-bound s(n), the number of such func-

tion tuples is at most 2(4+s(n))·2n+s(n)+2

, each corresponds
to one protocol. Each protocol can correctly compute at
most one boolean function if any. Hence the conclusion.

Proof of Lemma 11. Any boolean function that only
depends on the first s(n) bits of Alice’s input x is com-
putable by such protocols. The protocol works as follows:

Alice and Bob both increment the content of their respec-
tive memory simultaneously step by step. Alice sends 0 to
Bob until the content of Alice’s memory coincides the first
s(n) bits of x, at which time Alice sends 1. Upon receiving
a 1, Bob computes the final answer.

The number of such boolean functions (that depend only

on the first s(n) bits of Alice’s input) is 22
n+s(n)

. This gives a
lower bound on the number of boolean functions computable
by such class of protocols.

Proof of Proposition 14. Suppose the protocols for solv-
ing f1 and f2 are P1 = (TA,1, T

o
B,1, T

f
B,1) (with Alice and

Bob’s memory denoted as MA,1 and MB,1 respectively), and

P2 = (TA,2, T
o
B,2, T

f
B,2) (with Alice and Bob’s memory de-

noted as MA,2 and MB,2 respectively), respectively. Now
we construct a protocol P for solving f . In this protocol,
Alice has a s1(n)-bit memory that corresponds to MA,1, a
s2(n)-bit memory that corresponds to MA,2, and an addi-
tional counter CA of 2s2(n)+1 bits long. Similarly for Bob,
we have s1(n)-bit MB,1, s2(n)-bit M

o
B,2, 2s2(n) + 1-bit CB.

And the protocol P works as follows (shown in Algorithm 1
and 2):

Algorithm 1: Algorithm for solving f(x, y) =
(f1(x, y), f2(x, y)), Alice’s part

MA,1 ←− 0n;
while yes do

Alice simulate one step of P1 by carrying out TA,1,
sending the computed bit to Bob;
MA,2 ←− 0n;
CA ←− 0;
while CA ≤ c2(n) + 1 do

Alice simulate one step of P2 by carrying out
TA,2, sending the computed bit to Bob;
increment CA;

end

end

It’s easy to verify that if both P1 and P2 are one-way
oblivious protocols with the specified parameters, P pre-
sented above is also a one-way oblivious protocol with the
required parameters. Note that according to Proposition 8,
if CA and CB are both 2s2(n) + 1 bits long, they can count
to c2(n) + 1.

8. EXAMPLE PROTOCOLS

Proof of Theorem 15. First, we consider an algorithm
for solving this problem within 2 log (n)+O(1) bits of mem-
ory (see Algorithm 3). We emphasize that this algorithm
is not the standard DFS algorithm. Later, we convert this
algorithm into a space-bounded communication protocol.



Algorithm 2: Algorithm for solving f(x, y) =
(f1(x, y), f2(x, y)), Bob’s part

MB,1 ←− 0n;
while yes do

Bob simulate one step of P1 by receiving one bit
from Alice and carrying out T o

B,1;
MB,2 ←− 0n;
CB ←− 0;
while CB ≤ c2(n) + 1 do

Bob simulate one step of P2 by receiving one bit
from Alice and carrying out T o

B,2;

if both T f
B,1 and T f

B,2 give definitive output

answers (not ⊥) then

Bob gives the answer and halts;
end

increment CB ;

end

end

Algorithm 3: Space Efficient Algorithm for Solving the
Decision Version of DFS

if s = t then output 0;
s′ ←− s;
sd ←− 0;
while s′ 6= r do

if s′ = t then output 1;
t′ ←− t;
repeat

t′ ←− ParentOf(t’);
if t′ = s′ then output sd;

until t′ = r;
if s′ = LeftChildOf(ParentOf(s’)) then

sd ←− 0;
else

sd ←− 1;
end

s′ ←− ParentOf(s’);

end

output sd

In this algorithm, we only need to remember at any point
in time the value of s′, t′ and sd. In the space-bounded
communication model, we construct a protocol where each
player has log(n) + log(log(n)) + O(1) space, divided into
three parts.

• Each player uses ⌈log(n)⌉ bits of memory to store s′

or t′. When ever Alice maintains s′, Bob keeps t′, and
vice versa. Whenever say, Alice needs to perform some
operation on s′ but currently holds t′, she will inform
Bob that she wants to exchange s′ for t′, and they will
exchange with the help of the second chunk of memory.

• Alice and Bob use the second chunk of ⌈log (⌈log (n)⌉)⌉
bits of memory for an index into the first ⌈log (n)⌉ bits
of memory. When they need to exchange or compare s′

and t′, they do so bitwise, using the index to remember
which bit they are exchanging or comparing.

• An additional O(1) bits per player is for housekeeping;
e.g., to remember which step of the algorithm they are
executing, who hold s′ and who holds t′, etc.

In the worst case scenario, the tree is highly imbalanced.
Both s′ and t′ traverse Ω(n) vertices before they meet near
the root of the tree, and furthermore, their traversal bounces
back and forth between A and B, and so Alice and Bob
end up exchange s′ and t′ in every step. In this case, the
communication complexity of the protocol is Θ(n2 log (n)).
Given the space bound s(n) = log (n) + log (log (n))+O(1),
this communication complexity is close to the theoretical
upper bound given by Proposition 8, which is 22s(n)+2 =
Θ(n2 log2 n). We are very interested to know if this close to

22s(n)+2 worst case communication cost is “compressible”,
meaning the worst case communication cost can be brought
down.

Proof of Theorem 16. We give several different pro-
tocols for Reach(G, s, t). Recall that in this problem, the
inputs consists of a directed graph G = (V,E) and distin-
guished vertices s, t. Reach(G, s, t) outputs 1 if there exists
an s ❀ t path in G.

In the communication version of this problem, Alice and
Bob are again given different sides of a fixed vertex cut A⊎
B = V . Alice gets as input all edges in A; Bob gets as input
all edges in B, and both players see all crossing edges. Let
CA denote the set of vertices in A adjacent to some vertex
in B. Define CB analogously. CA ∪ CB thus defines the
boundary of the cut. Finally, let C := {s, t} ∪ CA ∪ CB,
and let c = |C|. Given an instance G, s, t, let c denote the
total number of vertices on the boundary of the cut. The
performance of all of our protocols highly depend on c.

Our first protocol Savitch emulates Savitch’s Theorem [24].
Note that if s and t are indeed connected in G, then triv-
ially, there exists a path from s to t that uses at most c
crossing edges. The key intuition in Savitch’s Theorem is
the following

If u, v are connected using at most k crossing
edges, then there exists w such that (i) u and w
are connected using at most k/2 crossing edges
and (ii) w and v are connected using at most k/2
crossing edges.



This intuition leads to a recursive algorithm at the heart of
Savitch’s Theorem—determine if u, v are reachable using at
most k edges by recursively deciding if e.g. u, w are reach-
able using at most k/2 edges. In the protocol that emulates
this theorem, Alice and Bob recursively implement this al-
gorithm. This algorithm has log(c) depth. At each level of
the algorithm, Alice and Bob use O(log c) space to iterate
through w. At the bottom level of recursion, O(c) commu-
nication occurs as players communicate whether e.g. w is
reachable from u by crossing the cut zero times. The per-
formance of Savitch is captured by the following theorem.
Thus, Savitch costs O(log2 c) space and uses cO(log c) total
communication.

In our second protocol BitVector, Alice and Bob itera-
tively maintain a vector V ∈ {0, 1}c, which represents which
vertices on the boundary of the cut are reachable by s. For
example, suppose s ∈ A. Alice then initializes Vu to be 1 for
all u on her side of the cut boundary that are reachable from
s. She sets Vu := 0 for all u on Bob’s side of the cut bound-
ary and for all u on her side that are not directly reachable
from s. Bob then sets Vw := 1 for all w on his side of the cut
boundary that are reachable from some u such that Vu = 1,
again using only the vertices he sees. This proceeds iter-
atively until wither players learn that Reach(G, s, t) = 1,
or until V doesn’t change between messages. At this point,
players output Reach(G, s, t) = 0 and halt the protocol.
Overall, BitVector uses O(c) space and O(c2) total com-
munication.

This protocol is called Matrix and is similar to the pro-
tocol BitVector. This time, Alice constructs the “induced
adjacency matrix” of C. Specifically, she sets (u, v) = 1 if
v is reachable from u using only edges seen by Alice. Bob
updates this matrix in a similar way—he sets (u, v) = 1 if
there is a u, v path using only (i) the edges seen by Bob and
(ii) paths seen by Alice. Note that this gives Bob enough
information to compute Reach(G, s, t) directly. In particu-
lar, Matrix uses a single round of communication. Matrix
is a one-way protocol that uses O(c2) space and O(c2) total
communication.

Our last reachability protocol is called MatrixMult. It
is a one-way protcol that is similar in spirit to Matrix, but
uses less space, albeit the cost of a blowup in total commu-
nication.

Let MA,MB be the reachability matricies given Alice and
Bob’s inputs; e.g., Auv = 1 if there is a u ❀ v path using
only edges Alice sees. Let M := MA∨MB be the bitwise OR
of these matrices. Alice and Bob solve Reach by computing
the matrix product M∗ := Mc+1 and outputting M∗

st. This
value is 1 if there is an s, t path that crosses the cut only
c times. The intuition behind the MatrixMult protocol
is that M∗

st can be computed in a space-efficient manner.
Specifically, Alice first sends the row of MA containing s.
Then, she sends all of A to Bob, column by column. This
allows Bob to compute the row s of M2. If Bob had enough
space to store all of A, we would be done. Instead, Alice
sends A to Bob O(c) times, each time sending the elements
column by column. In this way, Bob iteratively computes
only row s ofM∗. Thus, MatrixMult is a one-way protocol
that uses O(c) space and O(c3) total communication.

9. PROOFS FOR LOWER BOUND RESULT
OF All-EQ AND EQ-with-Design

Proof of Lemma 20. Using the notation we introduced
in the proof of Theorem 18, for two n-bit strings x and y, we
denote the hamming distance between x and y as H(x, y),
and D(x, y) = n − H(x, y), is the number of positions at
which the corresponding bits are the same. ‖x‖1 is the num-
ber of 1 bits in x.

It’s easy to see that

‖All-EQ(x, y)‖1 = 2D(x,y)

By definition, if a protocol P correctly computes All-EQ,
then for every possible pair of inputs (x, y),

‖πA(Mx,My)|out‖1+‖πB(Mx,My)|out‖1 ≥ ‖All-EQ(x, y)‖1.
Since P correctly computes All-EQ, then we have
∑

x∈{0,1}n

∑

y∈{0,1}n

(‖πA(Mx,My)|out‖1 + ‖πB(Mx,My)|out‖1)

≥
∑

x∈{0,1}n

∑

y∈{0,1}n

|All-EQ(x, y)|

On the other hand
∑

x∈{0,1}n

∑

y∈{0,1}n

‖All-EQ(x, y)‖1

=
∑

x∈{0,1}n

∑

y∈{0,1}n

2D(x,y)

=
∑

x∈{0,1}n

n
∑

j=0





∑

y∈{y0|D(x,y)=j}

2D(x,y)





=
∑

x∈{0,1}n

n
∑

j=0

(

n

j

)

2j =
∑

x∈{0,1}n

3n = 2n · 3n

Thus
∑

x∈{0,1}n

∑

y∈{0,1}n

‖πA(Mx,My)|out‖1 +

∑

y∈{0,1}n

∑

x∈{0,1}n

‖πB(Mx,My)|out‖1 ≥ 2n · 3n

Therefore

• either
∑

x∈{0,1}n

∑

y∈{0,1}n

‖πA(Mx,My)|out‖1 ≥ 2n−1 · 3n

• or,
∑

y∈{0,1}n

∑

x∈{0,1}n

‖πB(Mx,My)|out‖1 ≥ 2n−1 · 3n

Then, by averaging, we have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n

‖πA(Mx,My)|out‖1 ≥ 3n

2

• or, ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n

‖πB(Mx,My)|out‖1 ≥ 3n

2



Proof of Theorem 19. For the upper bound part, we
give the following straightforward protocol: Alice and Bob
each has two counters, one ⌈k log p⌉ bits long, to enumerate
through the pk subsets in the function definition; another
one, ⌈log p⌉ bits long, to enumerate through the bits in a
particular subset. In each step, they look at the counters,
and compare the corresponding bits in their inputs x and y.

For the lower bound part, we show the contrapositive.
Suppose that there is a protocol P with memory size bound
s(n) that correctly computes EQ-with-Design. Using the
notation introduced in the previous proof, we have

∑

x∈{0,1}n

∑

y∈{0,1}n

(‖πA(Mx,My)|out‖1 + ‖πB(Mx,My)|out‖1)

=
∑

x∈{0,1}n

∑

y∈{0,1}n

|EQ-with-Design(x, y)|

Suppose the family of subsets of {1, 2, . . . , n} we use to
define EQ-with-Design is {Ii}i=1,2,...,pk . We have

∑

y∈{0,1}n

∑

x∈{0,1}n

|EQ-with-Design(x, y)|

=
∑

y∈{0,1}n

∑

x∈{0,1}n

|{i |EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑

i∈{1,2,...,pk}

|{x |EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑

i∈{1,2,...,pk}

2p
2−p

= 2n · pk · 2p2−p

By averaging like we did in the proof of Lemma 20, we
have

• either ∃x ∈ {0, 1}n, such that

∑

y∈{0,1}n

‖πA(Mx,My)|out‖1 ≥ 2p
2−p−1 · pk

• or, ∃y ∈ {0, 1}n, such that

∑

x∈{0,1}n

‖πB(Mx,My)|out‖1 ≥ 2p
2−p−1 · pk

Again, like we did in the proof of Theorem 18, we assume,
without loss of generality, that the clause of x above is true,
and the input value that makes this condition true is x0 =
0n.

∑

y∈{0,1}n

‖πA(Mx0 ,My)|out‖1 ≥ 2p
2−p−1 · pk (1)

And for every state γ ∈ {0, 1}s(n) in the corresponding
state machine Mx0 , and for every possible communication
bit b ∈ {0, 1}, we likewise denote the edge leading out of
γ labelled b as e(γ, b), denote the number of 1 output bits
produced at e(γ, b) as o1(γ, b), and denote the set of y ∈
{0, 1}n such that π(Mx0 ,My) passes through edge e(γ, b)
as Y (γ, b).

∑

y∈{0,1}n

‖πA(Mx0 ,My)|out‖1

=
∑

γ∈{0,1}s(n)

∑

b∈{0,1}

∑

y∈Y (γ,b)

o1(γ, b)

=
∑

γ∈{0,1}s(n)

∑

b∈{0,1}

|Y (γ, b)| · o1(γ, b) (2)

In addition, we define

α(t) = min
i1,i2,...,it∈{1,2,...,pk}

i1,i2,...,it are all different

|
t
⋃

j=1

Iij |,

then ∀γ ∈ {0, 1}s(n),∀b ∈ {0, 1},

o1(γ, b) · |Y (γ, b)| ≤ max
t∈{1,2,...,pk}

t · 2p2−α(t) (3)

And clearly we have

• α(t) is non-decreasing for t ∈ {1, 2, . . . , pk}. In partic-
ular, for t ∈ {1, 2, . . . , p/2k}, α(t) is strictly increasing

• ∀t ∈ {1, 2, . . . , pk} α(t) ≥ tp−
(

t
2

)

k

Therefore for t ∈ {1, 2, . . . , p/2k}, t · 2p2−α(t) is strictly
decreasing.

max
t∈{1,2,...,pk}

t · 2p2−α(t)

= max ( max
t∈{1,2,...,p/2k}

t · 2p2−α(t), max
t∈{p/2k,p/2k+1,...,pk}

t · 2p2−α(t))

≤ max(t · 2p2−α(t)|t=1,

(

max
t∈{p/2k,p/2k+1,...,pk}

t

)

·
(

max
t∈{p/2k,p/2k+1,...,pk}

2p
2−α(t)

)

)

= max(2p
2−p, pk ·

(

2p
2−α(t)

)

|t=p/2k)

≤ max(2p
2−p, pk · 2p2(1−7/16k))

= 2p
2−p

Combine this with (1), (2), and (3), we have

2s(n)+1 · 2p2−p ≥ 2s(n)+1 · max
t∈{1,2,...,pk}

t · 2p2−α(t)

≥
∑

γ∈{0,1}s(n)

∑

b∈{0,1}

|Y (γ, b)| · o1(γ, b)

=
∑

y∈{0,1}n

‖πA(Mx0 ,My)|out‖1

≥ 2p
2−p−1 · pk

Therefore 2s(n)+1 ≥ pk/2, s(n) ≥ ( 1
2
− ǫ)k log (n) for any

positive number ǫ and p =
√
n.

10. PROOF OF THE INNER PRODUCT
NON-COMPUTABILITY RESULT

Lemma 23. Given a one-way semi-oblivious protocol P
with Bob’s oblivious work memory of size s(n), there is a

family of functions {Ki}i∈N+ : {0, 1}n → {0, 1}s(n) ×{0, 1},



such that for any positive integer i ∈ N+, and x ∈ {0, 1}n,
Ki(x) correctly computes the value of (Mo

B , bA) at step i, in
which Mo

B is the content of Bob’s oblivious work memory if
Alice and Bob executes P on input x and some y ∈ {0, 1}n,
bA is the bit Alice sends to Bob in such an execution.

Proof. This follows immediately by Definition 7, where
the value of Mo

B and bA rely only on functions TA and T o
B .

Both functions operate only on input x, independent of y.
We conclude with an obvious induction.

Proof of Theorem 22. We show that if a correct pro-
tocol for IP has no non-oblivious bits then the number of
oblivious bits s(n) ≥ n

7
. Assume otherwise that s(n) < n

7
.

Let P be a one-way oblivious protocol for IP of memory size
s(n). By definition only Bob using T f

B is able to compute
the correct answer to the given input.

By Lemma 23 there’s a family of functions {Ki} on x ∈
{0, 1}n that would affect Bob’s decision (in the sense that
Bob’s final output only depends on y and the output of Ki,
if we denote the output ofKi(x) as t, then T f

B can be written

as T f
B(y, t)).

We construct a set X ⊆ {0, 1}n through the following
process (Algorithm 4)

Algorithm 4: Construct X ⊆ {0, 1}n

X ←− {0, 1}n;
while ∃t ∈ {0, 1}s(n)+1, i ∈ {1, 2, . . . , 22s(n)+2} such

that |K−1
i (t) ∩ X | < 23s(n)+6 do

X ←− X \K−1
i (t);

end

The following simple observations imply that this proce-
dure terminates with a non-empty set X if s(n) < n/7.

• Any pair of (t, i) would be chosen at most once, (t, i) ∈
{0, 1}s(n)+1 ×{1, 2, . . . , 22s(n)+2}, thus there would be

at most 2s(n)+1(1 + 22s(n)+2) iterations of the loop.

• During each iteration of the loop, the cardinality of X
would decrease by at most 23s(n)+6, since X \K−1

i (t) =

X \ (K−1
i (t) ∩ X ) and |K−1

i (t) ∩ X | < 23s(n)+6.

That means in the end the cardinality of set X is at least
2n − 23s(n)+62s(n)+1(1 + 22s(n)+2), which is positive given
s(n) < n

7
and n is large enough.

Since P computes IP on {0, 1}n × {0, 1}n then it also
computes IP on inputs from X × {0, 1}n. By inspection on

the process which constructs X , for every t ∈ {0, 1}s(n)+1

and i ∈ {1, 2, . . . , 22s(n)+2}, we have either |K−1
i (t) ∩ X | ≥

23s(n)+6 or |K−1
i (t) ∩ X | = 0, define

Γ := {(i, t) | |K−1
i (t) ∩ X | ≥ 23s(n)+6}

Now consider the execution of the the protocol P on domain
X×{0, 1}n. For i ∈ {1, 2, . . . , 22s(n)+2}, define Yi := {y|∃x ∈
X such that P have halted on (x, y) before step i}.

For (i, t) ∈ Γ, j ∈ {0, 1}, define

L
(j)
i,t := {y | y /∈ Yi and T f

B(y, t) = j}
By definition we have

|Yi+1| ≤ |Yi|+
∑

t∈{t′|(i,t′)∈Γ}, j∈{0,1}

|L(j)
i,t | (4)

Since P gives correct answer for every pair (x, y) ∈ X ×
{0, 1}n, this means that for every (i, t) ∈ Γ and every y ∈
L

(0)
i,t , we know y /∈ Yi, then

x ⊥ y, for every x ∈ K−1
i (t) ∩ X

In linear algebra terms, every vector in L
(0)
i,t is orthogonal

to a set of at least 23s(n)+6−1 different non-zero vectors (in a
n-dimensional space), and is thus orthogonal to the subspace
spanned by these vectors. This subspace is of dimension at

least 3s(n) + 6. Therefore |L(0)
i,t | ≤ 2n

23s(n)+6 .

Similarly for any y ∈ L
(1)
i,t , we have

∀x ∈ K−1
i (t) ∩ X IP(x, y) = 1

We know thatK−1
i (t)∩X 6= ∅, choose some x0 ∈ K−1

i (t)∩X ,
we have

∀x ∈ (K−1
i (t) ∩ X ) \ {x0} x− x0 ⊥ y

Again, we claim that every vector in L
(1)
i,t is orthogonal to

a set of at least 23s(n)+6 − 1 different non-zero vectors (in a

n-dimensional space), therefore |L(1)
i,t | ≤ 2n

23s(n)+6 .

Substitute the upper bound we just obtained for |L(0)
i,t |

and |L(1)
i,t | into equation (4) and considering the fact that

|Y0| = 0, we have

|Yi| ≤ i · 2n

23s(n)+6
· 2 · 2s(n)+1

|Y22s(n)+1| ≤ (22s(n)+2 + 1) · 2n

23s(n)+6
· 2 · 2s(n)+1 < 2n

That is, after 22s(n)+2+1 steps, Y22s(n)+2+1 6= {0, 1}n, there
exist input pairs (x, y) ∈ X × {0, 1}n on which the protocol
P has not halted, and therefore (according to Proposition 8)
it never halts.

11. ONE-WAY OBLIVIOUS PROTOCOLS
FOR EQ

Proposition 24. There is no one-way oblivious protocol
that can correctly solve EQ within space size s(n) < n − 1
and halt at the same step for all input pairs (x, y) ∈ {0, 1}n×
{0, 1}n.

Proof. We prove this by contradiction. Suppose there
is such a protocol P , which halts at some step i0 for every
input pair (x, y) and correctly computes EQ. As we have
shown in Lemma 23 in Section 10, Alice has this “upload
function”Ki0 for step i0. Since Ki0 takes a n-bit input, but
gives a (s(n) + 1)-bit output, s(n) + 1 < n, there must be
two different x1 6= x2, such that Ki0(x1) = Ki0(x2).

On the other hand, P correctly computes EQ, that means

T f
B(x1,Ki0(x1)) = EQ(x1, x1) = 1

T f
B(x1,Ki0(x2)) = EQ(x1, x2) = 0

This contradicts with the fact that T f
B is a deterministic

function and Ki0(x1) = Ki0(x2).
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