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Bell nonlocality in conventional and topological quantum phase transitions
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We investigate the critical behaviors of the Bell nonlocality, which are measured by the Bell-function values,
in conventional and topological quantum-phase transitions. First, by using the quantum-renormalization-group
method, we show that the Bell function value of a three-qubit Bell inequality in the anisotropic spin-1/2 XY

model exhibits singular behaviors at the critical point. Moreover, for topological quantum-phase transitions, we
find that the first-order derivative of the Bell-function value of the well-known Clauser-Horne-Shimony-Holt
inequality in the Kitaev-Castelnovo-Chamon model behaves singularly at the topological-phase-transition point.
Our results have established a link between quantum nonlocality and phase transitions.
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I. INTRODUCTION

Bell nonlocality, a kind of stronger nonclassical correlation
which is unexplainable by any local-hidden-variable (LHV)
theory or shared randomness only [1], differentiates quantum
mechanics from classical physics in a very profound way.
It refutes the concept of local realism and instead implies,
to some extent, notable evidence of “spooky action” [2].
In fact, it is now understood that quantum correlation
has a hierarchy in which Bell nonlocality is the strongest,
followed by Einstein-Podolsky-Rosen (EPR) steering [3], then
entanglement, and finally discord [4]. Bell nonlocality plays
a key role in many quantum-information and -computation
processes, such as quantum-key distribution (QKD) [5],
nonlocal quantum computation [6], etc. However, despite
extensive studies in the field of quantum information, it rarely
appears in condensed-matter physics. Here, we investigate
Bell nonlocality in many-body systems and try to explore its
significance in quantum-phase transitions.

Generally speaking, quantum-phase transitions (QPTs),
which are induced by the change of an external parameter
or coupling constant [7], happen at a temperature of abso-
lute zero where all the thermal fluctuations are frozen and
quantum fluctuations become dominant. Conventional QPTs
can be characterized by the Landau-Ginzburg-Wilson (LGW)
spontaneous-symmetry-breaking theory in which the correla-
tion function of local-order parameters plays a crucial role [7].
Nevertheless, examples beyond the LGW paradigm do exist.
For instance, topological ordered phases of some strongly
correlated quantum many-body systems depend on the system
topology [8] and do not have local-order parameters, leading
to the absence of LGW-symmetry-breaking mechanisms. An
archetypal physical realization of such a phase is in the
quantum Hall system [9], which possesses many unconven-
tional characteristics, including fractional statistical behaviors
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and ground-state topological degeneracy [10]. A particular
interest in topological ordered states is their robustness against
local perturbations which can lead to several consequences,
such as topological insulators [11] and topological quantum
computations [12].

Not surprisingly, the exotic properties of the topological
phase demand new ways to analyze topological quantum-
phase transitions (TQPTs). For example, the phase transition
between an Abelian and a non-Abelian topological phase
in a chiral-spin liquid might be characterized by global
flux and generalized topological-entanglement entropy [13].
More remarkably, for time-reversal invariant anyonic quantum
systems, Gils et al. have recently showed that the topological
phases could be uniformly described in terms of fluctuations
of the two-dimensional surfaces and their topological changes
[14]. However, despite a vast number of pioneering works,
a universal characterization and detection of the topological
phase and its transitions are still missing.

During the past few years, several important concepts
in the quantum-information field have been borrowed to
characterize QPTs and TQPTs, including entanglement [15],
fidelity [16], fidelity susceptibility [17], discord [18], Bell
inequality [19], etc. A brief review of the progress related
to this issue is given in Ref. [20] and the references therein.
Notwithstanding the great successes in marking QPTs and
TQPTs in some physical systems, each approach above has
its own disadvantages [20]. Take the fidelity approach, for
example; to witness the QPTs, one has to find out the exact
ground state. However, for most of the physical systems,
finding out the exact ground state is very difficult. In addition,
it is also a challenge to measure the fidelity in experiments
on large systems. In this paper, we investigate the critical
behaviors of Bell nonlocalities in QPTs and TQPTs. To begin
with, we show, by using the quantum-renormalization-group
(QRG) method, that the Bell nonlocality in the anisotropic
spin-1/2 XY model exhibits singular behaviors at the critical
point. On the other hand, for TQPTs, our discussion is mainly
based on the Kitaev-Castelnovo-Chamon (KCC) model [21],
which exhibits a second-order TQPT at the critical point.

032305-11050-2947/2012/86(3)/032305(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.032305


DENG, WU, CHEN, GU, YU, AND OH PHYSICAL REVIEW A 86, 032305 (2012)

We show that the first-order derivative of the Bell-function
value (BFV) of the well-known Clauser-Horne-Shimony-Holt
(CHSH) inequality in the KCC model behaves singularly at the
topological-phase-transition point. More interestingly, through
this approach, one can analytically obtain the critical value of
the transition point.

The paper is organized as follows. In Sec. II, we discuss
the critical behaviors of Bell nonlocality in conventional
quantum-phase transitions. We take the one-dimensional (1D)
anisotropic spin-1/2 XY model as an example, and the Bell
nonlocality is characterized by a three-qubit inequality. In
Sec. III, we consider the case of topological quantum-phase
transitions. The discussion here is mainly based on the CHSH
inequality and the KCC model. Finally, we summarize the
paper and provide some discussions of future work in Sec. IV.

II. BELL NONLOCALITY IN CONVENTIONAL
QUANTUM-PHASE TRANSITIONS

The model we focus on in this section is the one-
dimensional anisotropic spin-1/2 XY model. The Hamiltonian
reads

H = J

N∑
i

[
(1 + h)σx

i σ x
i+1 + (1 − h)σy

i σ
y

i+1

]
, (1)

where J describes the exchange coupling, h is the anisotropy
parameter, and σx,y are Pauli matrices. The system undergoes
a QPT at the critical point h = 0, differing the spin-fluid
phase h = 0 from the Ising-like phase 0 < h � 1. By resorting
to the quantum-renormalization-group (QRG) method, the
renormalized model is described by [22]

H Re = J ′
N/3∑
L

[
(1 + h′)σx

Lσ x
L+1 + (1 − h′)σy

Lσ
y

L+1

]
, (2)

where J ′ = J 3h2+1
2(1+h2) , h′ = h3+3h

3h2+1 , and σ
x,y

L are block Pauli
matrices (see Ref. [22] for details). The renormalized ground
state is of the three-qubit type:

|G(g)〉 = 1

2
√

1 + h′2
( −

√
1 + h′2|U U D〉 +

√
2|U DU 〉

−
√

1 + h′2|DU U 〉 +
√

2h′|DDD〉), (3)

where |D〉 and |U 〉 are two orthogonal renormalized states and
g = (1 + h′)/(1 − h′) is a function of h′ which we introduce
for convenience. In the known literature [23–26], various types
of three-qubit Bell inequalities are presented. Here, we use the
one given in Ref. [25] to investigate the relation between Bell
nonlocality and the QPT in the XY model. The three-qubit
Bell inequality is of the form [25]

I3 = 1
4 (Q122 − Q123 + Q132 − Q133 + Q212 + Q213

+Q221 + Q222 − Q231 + Q233 − Q312 − Q313

+Q321 + Q323 − Q331 + Q332) � 1, (4)

where Qijk = ∫
�

μ(λ)X1(nX1
i ,λ)X2(nX2

j ,λ)X3(nX3
k ,λ)dλ is the

correlation function with Xl(nXl
m ,λ) denoting the mth observ-

able on the lth particle (i,j,k,l,m = 1,2,3), � is the total
space of the hidden variable λ, and μ(λ) is a statistical
distribution of λ, satisfying

∫
�

μ(λ)dλ = 1. The inequality

FIG. 1. (Color online) Numerical results of the BFV B(|G(g)〉)
versus g for the three-qubit-type ground state |G(g)〉.

(4) is tight, and all LHV models should obey it [25]. However,
quantum mechanically, the above inequality is violated by
some entangled states, either pure or mixed. In fact, the
expression of the correlation function for any three-qubit state
ρ reads Q

Q
ijk = Tr[(nX1

i · �σ ) ⊗ (nX2
j · �σ ) ⊗ (nX3

k · �σ )ρ]. Here,
nXl

m (m,l = 1,2,3) are the unit vectors in three-dimensional
Hilbert space, and �σ is the Pauli matrix vector. For a specific
three-qubit state ρ, we define the Bell-function values (BFVs)
of this inequality as

B(ρ) ≡ max IQ
3 , (5)

where IQ
3 is the quantum expression of I3 and the maximiza-

tion is performed over all possible unit vectors nXl
m . If B(ρ) is

greater than 1, then the inequality (4) is violated. The state ρ

exhibits Bell nonlocality and cannot be described by any LHV
theories. Generally speaking, for every specific three-qubit
quantum state ρ, we need to carry out the procedure of the
maximization to obtain its BFV B(ρ). An alternative approach
is to rewrite IQ

3 as a scalar product of two real vectors and then
maximize this scalar product [25]. We numerically calculated
the BFV for the renormalized ground state |G(g)〉 of the 1D
XY model. Figure 1 shows the variation of B(|G(g)〉) versus g

with different QRG steps. From the figure, the BFV B(|G(g)〉)
is always greater than 1 and hence reflects the Bell nonlocality
of the system. It is clear that the BFV exhibits singular behavior
at the critical point h′

c = 0 or gc = 1. The more steps of QRG,
the sharper B(|G(g)〉) is at the critical point. In other words, the
QPT is captured by B(|G(g)〉) due to the nonanalytic behavior
of the Bell nonlocality. This explicitly manifests the usefulness
of the BFV in marking conventional QPTs.

III. BELL NONLOCALITY IN TOPOLOGICAL
QUANTUM-PHASE TRANSITIONS

A. The Bell-CHSH inequality

As we have shown the usefulness of Bell nonlocality in
conventional QPTs, now let us move to the TQPT case. To
this end, we first make a brief introduction of the famous
Bell-CHSH inequality. Basically, the Bell-CHSH inequality is
a two-qubit inequality which provides the smallest testbed for
experimental verifications of quantum mechanics against the
predictions of local realistic models. It can be written as [1]

I = Q11 + Q12 + Q21 − Q22 � 2, (6)
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where Qij is defined analogously as in Eq. (4). Quantum
mechanically, the above inequality is violated by all pure
entangled states of two qubits [27], and the expression of
the correlation function for any two-qubit state ρ reads
Q

Q
ij = Tr[(nX1

i · �σ ) ⊗ (nX2
j · �σ )ρ]. Similarly, we can define the

BFV of the Bell-CHSH inequality as

B(ρ) ≡ max IQ, (7)

where IQ = Q
Q
11 + Q

Q
12 + Q

Q
21 − Q

Q
22 and the maximization

is performed over all possible vectors nXk
m . Generally speaking,

for every specific two-qubit quantum state ρ, we need to
carry out the procedure of the maximization to obtain its BFV
B(ρ). Fortunately, in Ref. [28], the authors introduced another
method to calculate B(ρ), which can circumvent the tedious
maximization. It was proved there that

B(ρ) = 2
√

υ1 + υ2, (8)

where υ1 and υ2 are the two greater eigenvalues of the 3 × 3
symmetric matrix L T

ρ Lρ , Lρ is a 3 × 3 matrix with elements
defined by (Lρ)ςτ = Tr[ρσς ⊗ σ τ ] (ς,τ = x,y,z), and L T

ρ

is the transpose of Lρ . In the experimental situation, in order
to obtain the BFV, the observers of the first (second) qubit
should carry out two measurements nX1

1 · �σ and nX1
2 · �σ (nX2

1 ·
�σ and nX2

2 · �σ ), just the same as in many Bell-CHSH-inequality
testing experiments [29].

B. The Kitaev-Castelnovo-Chamon model

The physical model we consider in this part was introduced
by Castelnovo and Chamon [21]; it is a deformation of the
Kitaev-toric-code model [30]. The Hamiltonian of the KCC
model with periodic-boundary conditions reads

H = −Jm

∑
F∈T2

BF − Je

∑
V∈T2

AV + Je

∑
V∈T2

e−β
∑

j∈V σ z
j ,

where Jm,Je > 0, β is a coupling constant, and AV =∏
j∈V σx

j and BF = ∏
j∈F σ z

j are the vertex and face operators
in the original Kitaev-toric-code model, respectively [30]. A
brief sketch of this model is shown in Fig. 2. The ground state
in the topological sector containing the fully magnetized state
|0〉 = |↑↑ · · · ↑〉 can be analytically obtained [21]:

|G(β)〉 = Z(β)−
1
2

∑
g∈G

eβ
∑

j σ z
j (g)/2g|0〉, (9)

where Z(β) = ∑
g∈G eβ

∑
j σ z

j (g), G is the Abelian group gen-
erated by the vertex operators {AV}, and σ z

j (g) is the value of
spin at site j in state g|0〉. Obviously, when β = 0, |G(β)〉
reduces to the topologically ordered ground state of the
toric-code model [30] while when β → ∞, |G(β)〉 becomes
the fully magnetized state |0〉. At the point βc = 1

2 ln(
√

2 + 1),
there exists a second-order TQPT at which the topological
entanglement entropy Stopo = 1 for β < βc changes to Stopo =
0 for β > βc [21].

As shown by Castelnovo and Chamon, there exists a
one-to-one mapping between the configurations {g} = G and
the configurations {θ} of the classical 2D Ising model [21].
In the mapping, the Hamiltonian of the Ising model has the
form HIsing = −C

∑
〈r,r ′〉 θrθr ′ , where C is a coupling constant

and θr ,θr ′ = +1 or −1 depending on whether or not the

F
2T

i

j
r

r'

r''

FIG. 2. (Color online) An illustration of the Kitaev-Castelnovo-
Chamon spin-lattice model and its map to the 2D Ising model. In
the KCC model, each black dot on the edge of the lattice represents
a qubit, and V and F denote the vertex and the face, respectively.
The blue line across the lattices stands for a string operator along
the nontrivial loop on the torus T2. The system is invariant under
transformation along the blue line [32]. In its corresponding 2D Ising
model, the qubits exist on the vertices (green dots). Mapping: σ z

i =
θrθr ′ , where i is the bond between the neighboring vertices 〈r,r ′〉.
Thus, for the i and j nearest neighbors, the mapping gives 〈σ z

i σ z
j 〉 =

〈θrθr ′θr ′′θr〉 = 〈θr ′θr ′′ 〉, namely, the nearest qubits in the KCC model
become next-nearest in the corresponding 2D Ising model.

corresponding vertex operator AV is acting on the site r . Thus,
σ z

i = θrθr ′ with i being the edge between the nearest-neighbor
vertexes. An illustration of this mapping is shown in Fig. 2.

C. Signaling TQPTs by the BFV

Since the BFV introduced in expression (7) only accounts
for two-qubit states, we need to calculate the reduced density
matrix of two-qubit ρij based on the ground state |G(β)〉 and
the symmetry of the Hamiltonian H . It was shown in Ref. [31]
that ρij has the following form (details are given in Refs.
[21,32], and references therein):

ρij = 1
4

[
I + 〈

σ z
i

〉(
σ z

i + σ z
j

) + 〈
σ z

i σ z
j

〉
σ z

i σ z
j

]
, (10)

where I is the 4 × 4 identity matrix. Based on Eq. (10), the BFV
can be calculated by using the simplified formula for B(ρij ) in
Eq. (8). For convenience and simplicity, we only examine two
cases in which i and j are nearest and next-to-nearest neigh-
bors, respectively. In the thermodynamic limit, the mapping
to the 2D Ising model gives 〈σ z

i 〉 = 〈θrθr ′ 〉 = − coth(2β){π +
[4 tanh2(2β) − 2]X (χ )}/(2π ), where X (χ ) = ∫ π/2

0 dϕ(1 −
χ2 sin2 ϕ)−1/2 and χ = 2 sinh(2β)/ cosh2(2β). For the calcu-
lation of 〈σ z

i σ z
j 〉, the equivalence between the 2D Ising model

and the quantum 1D XY model yields the following two
alternatives.

First, for i and j of the nearest case, 〈σ z
i σ z

j 〉 = 〈θrθr ′ 〉 = 1
π∫ π

0 dφ{[sinh−2(2β) − cos φ] cos φ − sin2 φ}/{sin2 φ + [sinh−2

(2β) − cos φ]2}1/2. Summarizing all the relations above
enables us to obtain the BFV B(ρij ). For i and j of the
nearest case, the numerical results for the first-order derivative
of the BFV dB(ρij )

dβ
with regard to the variance of β are

displayed in Fig. 3(a) from which we see a distinct rapid
increase of dB(ρij )

dβ
around the critical point βc ≈ 0.44. Note

that we only focus on a small neighboring region of β around
the TQPT point βc, namely, 0.4 � β � 0.5. The smaller
the δβ, the greater the rapid increase is. When δβ → 0,
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FIG. 3. (Color online) Numerical results of the first-order deriva-
tive of the BFV B(ρij ) versus β for different δβ. (a) i and j are the
nearest case; (b) i and j are the next-to-nearest case.

dB(ρij )
dβ

→ +∞, indicating its singularity at the TQPT
point βc.

More interestingly, after long, tedious, but straightforward
calculations, we arrive at an analytical formula for dB(ρij )

dβ
,

potentially enabling us to obtain the analytical value of βc:

dB

dβ
=

∫ π

0
dφcsch2(2β) sin2 φϒ(φ,β)/π, (11)

where ϒ(φ,β)=8 coth (2β)csch2(2β)/[1−2 cos φcsch2(2β) +
csch4(2β)]3/2. What is interesting is that we can analytically
obtain the critical point from Eq. (11). To this end, one
can rewrite ϒ(φ,β) as ϒ(φ,β) = 2

√
2 coth(2β)/({ 1

2
[csch2(2β) + 1/csch2(2β)] − cos φ}3/2csch(2β)). Obviously,
Eq. (11) has only one singular point because
csch2(2β) + 1/csch2(2β) � 2, and so the singularity happens
at csch2(2β) + 1/csch2(2β) = 2, namely, βc = 1

2 ln(
√

2 + 1).
This also explicitly exhibits one of the advantages of the BFV
approach to TQPTs.

Second, for i and j of the next-to-nearest case,
direct calculations show that 〈σ z

i σ z
j 〉 = cosh2(β∗)(T 2

−1 −
T−2T0) − sinh2(β∗)(T 2

1 − T2T0), where Tκ = 1
π

∫ π

0 dφ[(ξ −
cos φ) cos κφ + γ sin φ sin κφ]/[(γ sin φ)2 + (ξ− cos φ)2]1/2.
Here, tanh(β∗) = e−2β , γ = [cosh(2β∗)]−1, and ξ = (1 −
γ 2)1/2/ tanh(2β). We also plot the numerical results of
dB(ρij )

dβ
versus β in Fig. 3(b). From this figure, one can

observe that dB(ρij )
dβ

has a singularity at the TQPT point

βc. It is also obvious that dB(ρij )
dβ

behaves quite similarly
between the nearest and next-to-nearest cases. This result
accords with the results in Ref. [31] wherein the reduced
fidelity and reduced-fidelity susceptibilities are only slightly
different between the two cases, respectively. Since the
BFV indicates the qubit correlations in the system, it seems
that the correlation of nearest qubits is similar to that of
next-to-nearest qubits in topological ordered states. This is,
to some extent, counterintuitive because in many physical
systems the interaction between nearest particles is usually
greater than that of next-to-nearest particles.

It is worthwhile to note that the reduced density matrix ρij

is diagonal, indicating that the correlations between any two
local spins in the ground state of the KCC model are always
classical. Consequently, the BFV of ρij cannot be greater than
2, the classical bound. Another interesting consideration here is
similar to that discussed in Ref. [32]: we can calculate the BFV
between a local qubit denoted by i and the rest of the whole
lattice by rewriting the ground state as |G(β)〉 = Y+|P〉|0〉i +
Y−|Q〉|1〉i , where Y 2

± = (1 ± 〈θ0,0θ0,1〉)/2 and |P〉 and |Q〉
are two orthogonal normalized vectors. Consequently, we can
regard |G(β)〉 as a simple, pure two-qubit entangled state. In
this case, the BFV has a one-to-one monotonous relation with
entanglement [33] and, thus, also with quantum discord since
for a pure two-qubit state, the quantum discord is the same
as the entanglement of entropy [34]. As a result, the BFV
should behave similarly as the quantum discord does at the
critical point βc (for details, see Ref. [32]). However, it is
worth clarifying that there is a distinctive difference between
the BFV approach and the quantum-discord approach. For
the quantum discord, its value becomes trivially zero for the
reduced two-qubit state of Eq. (10) and, thus, cannot signal
the TQPT at the critical point. Nevertheless, as shown above,
the first-order derivative of the BFV is an excellent marker
of the transitions. In addition, the physical meanings of the
BFV and quantum discord are different. Generally speaking,
quantum discord is a measurement of the quantumness of a
system while the BFV measures the nonlocality of the system
when it is greater than the classical bound. In this case,

B(|G(β)〉) = 2
√

1 + 4Y 2+ Y 2− > 2. Thus, the BFV B(|G(β)〉)
can measure the nonlocality of the ground state, establishing
a link between quantum nonlocality and TQPTs.

IV. SUMMARY AND DISCUSSION

To summarize, based on the 1D anisotropic spin-1/2 XY

model and the KCC model, we have introduced the BFV
approach to both conventional QPTs and topological QPTs.
Our results show that the BFV serves as an accurate marker for
both types of phase transitions. Since the BFV also serves as a
measure of nonlocality, which is a pure quantum phenomenon
and cannot be described by any local realism theory, our work
has established a link between quantum nonlocality and phase
transitions.

Although we have only focused on two specific models,
we believe this approach is applicable to other models as
well. For instance, for the model recently introduced by
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Son et al., which is described by a cluster Hamiltonian
H (F ) = −∑N

i=1(σx
i−1σ

z
i σ x

i+1 + Fσ
y

i σ
y

i+1) and has an exotic
phase transition at the critical point F = 1 [35], our numerical
results show that the first-order derivative of the BFV can
explicitly capture the transition. The cluster Hamiltonian
mentioned above can be simulated in a triangular configuration
of an optical lattice of two atomic species [35], thus also
leading to the possibility of testing the BFV approach ex-
perimentally. To further investigate the BFV in QPTs, we also
have considered the one-dimensional Ising model. Without
surprise, the numerical results confirm the singular behaviors
of the BFV at the critical point once again.

It would be interesting and significant to apply this
approach to QPTs and TQPTs in various physical systems,
such as the quantum-spin Hall system, both theoretically
and experimentally. It would also be interesting to use the
BFV based on other Bell inequalities to investigate QPTs
and TQPTs. More specifically, studying the BFV of the pure

ground states based on multipartite Bell inequalities, such
as the famous Mermin-Ardehali-Belinskii-Klyshko (MABK)
inequality [26], might shed light on the behavior of the
quantum nonlocality of the whole system in QPTs and TQPTs.
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