
Theory Comput Syst (2011) 49:246–272
DOI 10.1007/s00224-010-9260-0

On the Complexity of Matroid Isomorphism Problem

B.V. Raghavendra Rao · M.N. Jayalal Sarma

Published online: 13 April 2010
© Springer Science+Business Media, LLC 2010

Abstract We study the complexity of testing if two given matroids are isomorphic.
The problem is easily seen to be in �

p

2 . In the case of linear matroids, which are
represented over polynomially growing fields, we note that the problem is unlikely
to be �

p

2 -complete and is CONP-hard. We show that when the rank of the matroid
is bounded by a constant, linear matroid isomorphism, and matroid isomorphism are
both polynomial time many-one equivalent to graph isomorphism.

We give a polynomial time Turing reduction from graphic matroid isomorphism
problem to the graph isomorphism problem. Using this, we are able to show that
graphic matroid isomorphism testing for planar graphs can be done in deterministic
polynomial time. We then give a polynomial time many-one reduction from bounded
rank matroid isomorphism problem to graphic matroid isomorphism, thus showing
that all the above problems are polynomial time equivalent.

Further, for linear and graphic matroids, we prove that the automorphism prob-
lems are polynomial time equivalent to the corresponding isomorphism problems. In
addition, we give a polynomial time membership test algorithm for the automorphism
group of a graphic matroid.

Keywords Computational complexity

Part of this work was done while the authors were graduate students at the Institute of Mathematical
Sciences, Chennai, India. The second author’s work was also supported in part by the National
Natural Science Foundation of China Grant 60553001, and the National Basic Research Program of
China Grant 2007CB807900, 2007CB807901.

B.V. Raghavendra Rao (�)
Department of Computer Science, Saarland University, Saarbrücken, Germany
e-mail: bvrr@cs.uni-sb.de

M.N. Jayalal Sarma
Institute for Theoretical Computer Science, Tsinghua University, Beijing, China
e-mail: jayalal@tsinghua.edu.cn

mailto:bvrr@cs.uni-sb.de
mailto:jayalal@tsinghua.edu.cn

Theory Comput Syst (2011) 49:246–272 247

1 Introduction

Isomorphism problems over various mathematical structures have been a source of
intriguing problems in complexity theory (see [2]). The most important problem of
this domain is the well-known graph isomorphism problem. Though the complexity
characterization of the general version of this problem is still unknown, there have
been various interesting special cases of the problem which are known to have poly-
nomial time algorithms [4, 17]. In this paper we talk about isomorphism problems
associated with matroids.

A matroid M is a combinatorial object defined over a finite set S (of size m) called
the ground set, equipped with a non-empty family I of subsets of S (containing the
empty subset) which is closed under taking of subsets and satisfies the exchange
axiom: for any I1, I2 ∈ I such that |I1| > |I2|, ∃x ∈ I1 \ I2, I2 ∪ {x} ∈ I . The sets in
I are called independent sets. A set B ⊆ S is dependent if and only if B /∈ I . The
rank of the matroid is the size of the maximal independent set. This provides useful
abstractions of many concepts in combinatorics and linear algebra [28]. The theory
of matroids is a well studied area of combinatorics [22]. We study the problem of
testing isomorphism between two given matroids.

Two matroids M1 and M2 are said to be isomorphic if there is a bijection between
the elements of the ground set which maps independent sets to independent sets (or
equivalently circuits to circuits, or bases to bases, see Sect. 2). Quite naturally, the
representation of the input matroids is important in deciding the complexity of the
algorithmic problem.

There are several equivalent representations of a matroid. For example, enumerat-
ing the maximal independent sets (called bases) or the minimal dependent sets (called
circuits) also defines the matroid. These representations, although can be exponential
in the size of the ground set, indeed exist for every matroid, by definition. With this
enumerative representation, Mayhew [19] studied the matroid isomorphism problem,
and showed that the problem is equivalent to the graph isomorphism problem. How-
ever, a natural question is whether the problem is difficult when the representation
of the matroid is more implicit. In a black-box setting, one can also consider the in-
put representation in the form of an oracle or a black-box, where the oracle answers
whether a given set is independent or not.

More implicit (and efficient) representation of matroids have been studied. One
natural way is to identify the given matroid with matroids defined over combinatorial
or algebraic objects which have implicit descriptions. A general framework in this
direction is the representation of a matroid over a field. A matroid M = (S, I) of
rank r is said to be representable over a field F if there is a map, φ : S → F

r such
that, ∀A ⊆ S, A ∈ I ⇐⇒ φ(A) is linearly independent over F

r as a vector space.
However, there are matroids which do not admit linear representations over any field.
(For example, the Vamós Matroid, see Proposition 6.1.10, [22].) In contrast, there are
matroids (called regular matroids) which admit linear representations over all fields.

Another natural representation for a matroid is over graphs. For any undirected
graph X, we can associate a matroid M(X) as follows: the set of edges of X is
the ground set, and the acyclic subgraphs of the given graph form the independent
sets. A matroid M is called a graphic matroid (also called polygon matroid or cyclic

248 Theory Comput Syst (2011) 49:246–272

matroid) if it is isomorphic to M(X) for some graph X. It is known that graphic
matroids are linear. Indeed, the vertex-edge incidence matrix of the graph will give
a representation over F2. There are linear matroids which are not graphic. (See [22]
for more details.)

The above definitions themselves highlight the importance of testing isomorphism
between two given matroids. We study the isomorphism problem for the case of
linear matroids (Linear Matroid Isomorphism problem (LMI) and graphic matroids
(Graphic Matroid Isomorphism problem (GMI)).

From a complexity perspective, the general case black-box of the problem is in
�

p

2 . However, it is not even clear a priori if the problem is in NP even in the re-
stricted cases above where there are implicit representations. But we note that for the
case of graphic matroids the problem admits an NP algorithm. Hence an intriguing
question is about the comparison of this problem to the well studied graph isomor-
phism problem.

At an intuitive level, the graph isomorphism problem asks for a map between
the vertices that preserves the adjacency relations, whereas the graphic matroid iso-
morphism problem asks for maps between the edges such that the set of cycles (or
spanning trees) in the graph are preserved. As an example, in the case of trees, any
permutation of the edges gives an isomorphism of the matroids, whereas testing for
the isomorphism of trees is known to be L-complete. This indicates that the reduc-
tion between the problems cannot be obtained by a local replacement of edges with
gadgets, and has to consider the global structure.

An important result in this direction, due to Whitney (see [26]), says that in the
case of 3-connected graphs, the graphs are isomorphic if and only if the correspond-
ing matroids are isomorphic (see Sect. 5). Thus the problem of testing isomorphism
of graphs and the corresponding graphic matroids are equivalent for the case of 3-
connected graphs. Despite this similarity between the problems, to the best of our
knowledge, there has not been a systematic study of GMI and its relationships to
graph isomorphism problem (GI). This immediately gives a motivation to study the
isomorphism problem for 3-connected graphs. In particular, from the recent results
on graph isomorphism problem for these classes of graphs [6, 25], it follows that
graphic matroid isomorphism problem for 3-connected planar graphs is L-complete.

In this context we study the general, linear and graphic matroid isomorphism prob-
lems. Our main contributions in the paper are as follows:

• Black-box matroid isomorphism problem is easily seen to be in �
p

2 . In the case of
linear matroids where the field is also a part of the input we observe that the prob-
lem is CONP-hard (Proposition 3.4), and is unlikely to be �

p

2 -complete (Propo-
sition 3.2). We also observe that when the rank of the matroid is bounded, linear
matroid isomorphism, and matroid isomorphism are both equivalent to GI (Theo-
rem 3.5).1

• We develop tools to handle the coloring of ground set elements in the context of
isomorphism problem. We show that the colored version of the linear matroid iso-

1We note that, although not explicitly stated, the equivalence of bounded rank matroid isomorphism and
graph isomorphism also follows from the results of Mayhew [19]. However, it is not immediately clear if
the GI-hard instances are linearly representable. Our proofs are different and extends this to linear matroids.

Theory Comput Syst (2011) 49:246–272 249

Table 1 Complexity of MI under various input representations

Representation of M1,M2 Complexity bounds for MI

List of Ind. sets GI-complete [19]

Linear GI-hard, CONP-hard [10, 21]

Linear (bounded rank) GI complete

Graphic Turing equivalent to GI

Planar L-complete

morphism and graphic matroid isomorphism problem are as hard as their general
versions (Lemmas 4.2, 4.1). As an immediate application of this, we show that
the automorphism problems for graphic matroids and linear matroids are polyno-
mial time Turing equivalent to the corresponding isomorphism problems. In this
context, we also give a polynomial time membership test algorithm for the auto-
morphism group of a graphic matroid (Theorem 7.5).

• We give a polynomial time Turing reduction from graphic matroid isomorphism
problem to the graph isomorphism problem by developing an edge coloring
scheme which algorithmically uses a decomposition given by [12] (and [5]) and
reduce the graphic matroid isomorphism problem to the graph isomorphism prob-
lem (Theorem 5.3). Our reduction also implies efficient algorithms for isomor-
phism testing of graphic matroids in special cases such as planar graphs, bounded
degree graphs, bounded genus graphs etc. (Corollary 6.1). In addition, we observe
that, using recent developments in the planar graph isomorphism testing problem,
we can give a log-space algorithm for planar graphic matroid isomorphism.

• Finally, we give a reduction from the bounded rank matroid isomorphism problem
to graphic matroid isomorphism (Theorem 5.9), thus showing that all the above
problems are poly-time Turing equivalent. Since the equivalence is only under a
Turing reduction, we also study the closure properties of the graphic matroid iso-
morphism problem under ∧ and ∨ operations.

Table 1 summarizes the complexity of matroid isomorphism problem under various
input representations.

2 Notations and Preliminaries

All the complexity classes used here are standard and we refer the reader to any stan-
dard text book (for e.g. see [8]). Now we collect some basic definitions on matroids
(see also [22]). Formally, a matroid M is a pair (S, I), where S is a finite set called
the ground set of size m and I is a collection of subsets of S such that: (1) the empty
set φ, is in I . (2) If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I . (3) If I1, I2 ∈ I with |I1| < |I2|,
then ∃x ∈ I2 \ I1 such that I1 ∪ {x} is in I . The subsets in I are called independent
sets. A set A ⊆ S is dependent if and only if A /∈ I .

The RANK function of a matroid is a map rank: 2S → N, is defined for a T ⊆ S,
as the maximum size of any element of I that is contained in T . The rank of the
matroid is the maximum value of this function. A basis is a maximal independent set.

250 Theory Comput Syst (2011) 49:246–272

A circuit is a minimal dependent set. Spanning sets are subsets of S which contain
at least one basis as its subset. Notice that a set X ⊆ S is spanning if and only if
rank(X) = rank(S). Moreover, X is a basis set if and only if it is a minimal spanning
set. For any F ⊆ S, cl(F) = {x ∈ S : rank(F ∪ x) = rank(F)}. A set F ⊆ S is a flat
if cl(F) = F . Hyperplanes are flats which are of rank r − 1, where r = RANK(S).
X ⊆ S is a hyperplane if and only if it is a maximal non-spanning set.

An isomorphism between two matroids M1 and M2 is a bijection φ : S1 → S2 such
that ∀C ⊆ S1 : C ∈ C1 ⇐⇒ φ(C) ∈ C2, where C1 and C2 are the family of circuits of
the matroids M1 and M2 respectively. Now we state the computational problems more
precisely.

Problem 1 (Matroid Isomorphism (MI)) Given two matroids M1 = (S1, I1) and
M2 = (S2, I2) where I1 and I2 are given as black-box oracles, does there exist an
isomorphism between M1 an M2?

Given a matrix A over a field F, we can define a matroid M[A] with columns
of A as the ground set and linearly independent columns as the independent sets of
M[A]. A matroid M = (E, I) with rank = r is said to be representable over F, if
there is a map � : E → F

r such that I ∈ I ⇐⇒ �(I) is linearly independent in F
r .

Linear matroids are matroids representable over fields. Without loss of generality we
can assume that the representation is of the form of a matrix where the columns of
the matrix correspond to the ground set elements. We assume that the field on which
the matroid is represented is also a part of the input, also that the field has at least m

elements and at most poly(m) elements, where m = poly(n).

Problem 2 (Linear Matroid Isomorphism (LMI)) Given two matrices A and B over
a given field F does there exist an isomorphism between the two linear matroids
represented by them?

As mentioned in the introduction, given a graph X = (V ,E) (|V | = n, |E| = m), a
classical way to associate a matroid M(X) with X is to treat E as ground set elements,
the bases of M(X) are spanning forests of X. Equivalently circuits of M(X) are
simple cycles in X. A matroid M is called graphic iff ∃X such that M = M(X).

Evidently, adding vertices to a graph G with no incident edges will not alter the
matroid of the graph. Without loss of generality we can assume that G does not have
self-loops.

Problem 3 (Graphic Matroid Isomorphism (GMI)) Given two graphs X1 and X2

does there exist an isomorphism between M(X1) and M(X2)?.

Another associated terminology in the literature is about 2-isomorphism. Two
graphs X1 and X2 are said to 2-isomorphic (denoted by X1 ∼=2 X2) if their corre-
sponding graphic matroids are isomorphic. Thus the above problem asks to test if
two given graphs are 2-isomorphic. Recall that a separating pair in a graph X is a
pair of vertices whose deletion leaves the graph disconnected.

Theory Comput Syst (2011) 49:246–272 251

In a rather surprising result, Whitney [27] came up with a combinatorial charac-
terization of 2-isomorphic graphs. We briefly describe it here. Whitney defined the
following operations.

• Vertex Identification: Let v and v′ be vertices of distinct components of X. We
modify X by identifying v and v′ as a new vertex v̄.

• Vertex Cleaving: This is the reverse operation of vertex identification so that a
graph can only be cleft at a cut-vertex or at a vertex incident with a loop.

• Twisting: Suppose that the graph X is obtained from two disjoint graphs X1 and X2

by identifying vertices u1 of X1 and u2 of X2 as the vertex u of X, and identifying
vertices v1 of X1 and v2 of X2 as the vertex v of X. In a twisting of X about {u,v},
we identify, instead u1 with v2 and u2 with v1 to get a new graph X′. Note that
{u,v} is a separating pair in X′.

Theorem 2.1 (Whitney’s 2-Isomorphism Theorem) ([27], see also [22]) Let X1 and
X2 be two graphs having no isolated vertices. Then M(X1) and M(X2) are isomor-
phic if and only if X1 can be transformed to a graph isomorphic to X2 by a sequence
of operations of vertex identification, cleaving and/or twisting.

The graphic matroids of planar graphs are called planar matroids. We now define
the corresponding isomorphism problem for graphic matroids,

Problem 4 (Planar Matroid Isomorphism (PMI)) Given two planar graphs X1 and
X2 does there exist an isomorphism between their graphic matroids?

As a basic complexity bound, it is easy to see that MI ∈ �
p

2 . Indeed, the algorithm
will existentially guess a bijection σ : S1 → S2 and universally verify if for every
subset C ⊆ S1, C ∈ C1 ⇐⇒ σ(C) ∈ C2 using the independent set oracle.

3 Linear Matroid Isomorphism

In this section we present some observations and results on LINEAR MATROID ISO-
MORPHISM. Some of these follow easily from the techniques in the literature. We
make them explicit in a form that is relevant to the problem that we are considering.

We first observe that using the arguments similar to that of [14] one can show
LMI ∈ BP · �P

2 . (Notice that an obvious upper bound for this problem is �2.) We
include some details of this here while we observe some points about the proof.

Proposition 3.1 LMI ∈ BP · �P
2 .

Proof Let M1 and M2 be the given linear matroids having m columns each. We
proceed as in [14], for the case of GI. To give a BP.�P

2 algorithm for LMI, define
the following set:

N(M1,M2) = {(N,φ) : (N ∼= M1) ∨ (N ∼= M2) ∧ φ ∈ Aut(N)}

252 Theory Comput Syst (2011) 49:246–272

where Aut(N) contains all the permutations (bijections) which are isomorphisms of
matroid N to itself. The key property that is used in [14] has the following easy
counterpart in our context.

For any matroid M on a ground set of size m, if Aut(M) denotes the automorphism
group of M , and #M denotes the number of different matroids isomorphic to M , then
|Aut(M)| ∗ (#M) = |Sm|.

M1 ∼= M2 =⇒ |N(M1,M2)| = m!,

M1 �∼= M2 =⇒ |N(M1,M2)| = 2 · m!.
As in [14], we can amplify this gap and then using a good hash family and utilize

the gap to distinguish between the two cases. In the final protocol (before amplifying)
the verifier chooses a hash function and sends it to the prover, the prover returns a
tuple (N,φ) along with a proof that this belongs to N(M1,M2). (Notice that this
will not work over very large fields, especially over infinite fields.) Verifier checks
this claim along with the hash value of the tuple. This can be done in �

p

2 . Hence the
entire algorithm gives an upper bound of BP.∃ · �

p

2 = BP · �
p

2 , and thus the result
follows. �

Now, we know that [23], if �
p

2 ⊆ BP · �p

2 then PH = BP.�
p

2 = �
p

3 . Thus we get
the following:

Theorem 3.2 LMI ∈ �
p

2 . In addition, LMI is �P
2 -hard =⇒ PH = �P

3 .

We notice that a special case of this is problem already known to be CONP-hard.
A matroid of rank k is said to be uniform if all subsets of size at most k are in-
dependent. Testing if a given linear matroid of rank k is uniform is known to be
CONP-complete [21]. We denote by Uk,m, the uniform matroid whose ground set is
of m elements. Now notice that the above problem is equivalent to checking if the
given linear matroid of rank k is isomorphic to Uk,m. To complete the argument, we
use a folklore result that Uk,m is representable over any field F which has at least
m non-zero elements. We give some details here since we have not seen an explicit
description of this in the literature.

Claim 3.3 Let |F| > m, Uk,m has a representation over F.

Proof Let {α1, . . . , αm} be distinct elements of F, and {s1, . . . , sm} be elements of
the ground set of Uk,m. Assign the vector (1, αi, α

2
i , . . . , α

k−1
i) ∈ F

k to the element
si . Any k subset of these vectors forms a Vandermonde matrix, and hence linearly
independent. Any larger set is dependent since the vectors are in F

k . �

This gives us the following proposition.

Proposition 3.4 LMI is CONP-hard.

Theory Comput Syst (2011) 49:246–272 253

The above proposition also holds when the representation is over infinite fields.
In this case, the proposition also more directly follows from a result of Hlinený [10],
where it is shown that the problem of testing if a spike (a special kind of matroids)
represented by a matrix over Q is the free spike is CONP complete. He also derives a
linear representation for spikes.

Now we look at bounded rank variant of the problem. We denote by LMIb (MIb),
the restriction of LMI (MI) for which the input matrices have rank bounded by b. In
the following we use the following construction due to Babai [3] to prove LMIb ≡p

m

GI.
Given a graph X = (V ,E) and a number 3 ≤ k ≤ d , where d is the minimum

vertex degree of X, define a matroid M = Stk(X) of rank k with the ground set E as
follows: every subset of E containing k − 1 or less number of edges is independent
in M and a subset A of E with k edges is independent if and only if there is no single
vertex that is part of all the edges in A. Babai [3] proved that Aut(X) ∼= Aut(Stk(X))

and also gave a linear representation for Stk(X) (Lemma 2.1 in [3]) for all k in the
above range.

Theorem 3.5 For any constant b ≥ 3, LMIb ≡p
m GI.

Proof GI ≤p
m LMIb : Let X1 = (V1,E1) and X2 = (V2,E2) be the given GI instance.

We can assume that the minimum degree of the graph is at least 3 since otherwise we
can attach cliques of size n + 1 at every vertex. We note that from Babai’s proof we
can derive the following stronger conclusion.

Lemma 3.6 X1 ∼= X2 ⇐⇒ ∀k ∈ [3, d]Stk(X1) ∼= Stk(X2).

Proof Suppose X1 ∼= X2 via a bijection π : V1 → V2. (The following proof works
for any k ∈ [3, d].) Let σ : E1 → E2 be the map induced by π . That is σ({u,v}) =
{π(u),π(v)}. Consider an independent set I ⊆ E1 in Stk(X1). If |I | ≤ k − 1 then
|σ(I)| ≤ k − 1 and hence σ(I) is independent in Stk(X2). If |I | = k, and let σ(I) be
dependent. This means that the edges in σ(I) share a common vertex w in X2. Since
π is an isomorphism which induces σ , π−1(w) must be shared by all edges in I .
Thus I is independent if and only if σ(I) is independent.

Suppose Stk(X1) ∼= Stk(X2) via a bijection σ : E1 → E2. By definition, any subset
H ⊆ E1 is a hyperplane of Stk(X1) if and only if σ(H) is a hyperplane of Stk(X2).
Now we use the following claim which follows from [3].

Claim 3.7 [3] For any graph X, any dependent hyperplane in Stk(X) is a maximal
set of edges which share a common vertex (forms a star) in X, and these are the only
dependent hyperplanes.

Now we define the graph isomorphism π : V1 → V2 as follows. For any vertex v,
look at the star E1(v) rooted at v, we know that σ(E1(v)) = E2(v

′) for some v′. Now
set π(v) = v′. From the above claim, π is an isomorphism. �

It remains to show that representation for Stk(X) (X = (V ,E)) can be computed
in polynomial time. We choose k = 3. (By the above proof, the universal quantifier

254 Theory Comput Syst (2011) 49:246–272

in the Lemma 3.6 is equivalent to an existential quantification.) Now we show that
the representation of Stk(X) given in [3] is computable in polynomial time. The rep-
resentation of Stk(X) is over a field F such that |F| ≥ |V |2k−1. For e = {u,v} ∈ E

assign a vector be = [1, (xu + xv), (xuxv), ye,1, . . . , ye,k−3] ∈ F
k , where xu, xv and

ye,i are distinct unknowns. To represent Stk(X) we need to ensure that the k-subsets
of the columns corresponding to a basis form a linearly independent set, and all the
remaining k-subsets form a dependent set. Babai [3] showed that by the above care-
ful choice of be, it will be sufficient to ensure only the independence condition. He
also proved the existence of a choice of values for the variables which achieves this
if |F| ≥ |V |2k−1.

We make this constructive. As k is a constant, the number of bases in Stk(X) is
bounded by POLY(m). We can greedily choose the value for each variable at every
step, such that on assigning this value, the resulting set of constant (k × k) size ma-
trices are non-singular. Since there exists a solution, this algorithm will always find
one. Thus we can compute a representation for Stk(X) in polynomial time.

LMIb ≤p
m GI: Let Ak×m and Bk×m be two matrices of rank b at the input. Now de-

fine the following bipartite graph XA = (UA,VA,EA) (similarly for XB), where UA

has a vertex for each column of A, and VA has a vertex for each maximal independent
set of A (notice that there are at most

(
m
b

) = O(mb) of them) and ∀i ∈ UA, I ∈ VA,
{i, I } ∈ EA ⇐⇒ i ∈ I . Now we claim that M(A) ∼= M(B) ⇐⇒ XA

∼= XB where the
isomorphism maps VA to VB , and which is reducible to GI. It is easy to see that the
matroid isomorphism can be recovered from the map between the sets. �

Observe that the reduction LMIb ≤p
m GI can be done even if the input representa-

tion is an independent set oracle. This gives the following corollary.

Corollary 3.8 LMIb ≡p
m MIb ≡p

m GI.

4 Isomorphism Problem of Colored Matroids

Vertex or edge coloring is a classical tool used extensively in proving various results
in graph isomorphism problem. We develop similar techniques for matroid isomor-
phism problems too.

An edge-k-coloring of a graph X = (V ,E) is a function f : E → {1, . . . , k}. Given
two colored graphs X1 = (V1,E1, f1) and X2 = (V2,E2, f2), the COLORED-GMI
asks for an isomorphism between the corresponding graphic matroids which pre-
serves the colors of the edges. Not surprisingly, we can prove the following.

Lemma 4.1 COLORED-GMI is AC0 many-one reducible to GMI.

Proof Let X1 = (V1,E1, f1) and X2 = (V2,E2, f2), be the two k-colored graphs at
the input, with n = |V1| = |V2|. For every edge e = (u, v) ∈ E1 (respectively E2),
add a path Pe = {(u, ve,1), (ve,1, ve,2), . . . , (ve,n+f1(e), v)} of length n + f1(e) (re-
spectively n + f2(e)), where ve,1, . . . , ve,n+f1(e) are new vertices. Let X′

1 and X′
2 be

the two new graphs thus obtained. By definition, any 2-isomorphism between X′
1 and

Theory Comput Syst (2011) 49:246–272 255

X′
2 can only map cycles of equal length to themselves. There are no simple cycles of

length more than n in the original graphs. Thus, given any 2-isomorphism between
X′

1 and X′
2, we can recover a 2-isomorphism between X1 and X2 which preserves

the coloring and vice versa. �

Now we generalize the above construction to the case of linear matroid isomor-
phism. COLORED-LMI denotes the variant of LMI where the inputs are the linear
matroids M1 and M2 along with color functions ci : {1, . . . ,m} → N, i ∈ {1,2}. The
problem is to test if there is an isomorphism between M1 and M2 which preserves
the colors of the column indices. We have,

Lemma 4.2 COLORED-LMI is AC0 many-one reducible to LMI.

Proof Let M1 and M2 be two colored linear matroids represented over a field F. First
we illustrate the reduction where only one column index of M1 (resp. M2) is colored.
Without loss of generality, we assume that there are no two vectors in M1 (resp.M2)
which are scalar multiples of each other. Otherwise, if V is a subset of vectors such
that every pair of vectors in V are scalar multiples of each other, we replace the set of
columns in V by a single representative vector with suitable color. This assumption
also implies that there is no all-zeroes vectors in M1 and M2.

We transform M1 and M2 to get two matroids M ′
1 and M ′

2. In the transformation,
we add more columns to the matrix (vectors to the ground set) and create dependency
relations in such a way that any isomorphism between the matroids must map these
new vectors in M1 to the corresponding ones M2.

We describe this transformation in a generic way for a matroid M . Let {e1, . . . , em}
be the column vectors of M , where ei ∈ F

n. Let e = e1 be the colored vector in M .
Choose m′ > m, we construct 	 = m + m′ vectors f1, . . . , f	 ∈ F

n+m′
as the

columns of the following (m + m′) × 	 matrix. The ith column of the matrix rep-
resents fi .

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

e11 e21 . . . em1 e11 0 . . . 0 0 . . . 0
e12 e22 . . . em2 0 e12 . . . 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

e1m e2m . . . emm 0 0 . . . e1m 0 . . . 0

0 0 . . . 0 1 −1 0 0 0
...

... . . .
... 0 1 −1 0 0

...
... . . .

...
...

...
. . .

.
...

0 0 . . . 0 0 0 . . . 0 1 −1
0 0 . . . 0 −1 0 . . . 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

where −1 denotes the additive inverse of 1 in F. Denote the above matrix as M ′ =(
A B
C D

)
, where the sub-matrices A,B,C, and D of M ′ are defined as indicated by the

lines in the definition of M ′. Let S = {fm+1, . . . , fm+m′ }. We observe the following:

1. Columns of B generate e1. Since C is a 0-matrix f1 ∈ Span(S).

256 Theory Comput Syst (2011) 49:246–272

2. Columns of D are minimal dependent. Any proper subset of columns of D will
split the 1, −1 pair in at least a row and hence will be independent.

3. S is linearly independent. Suppose not. Let
∑m+m′

i=m αifi = 0. Restricting this to
the columns of B gives that αj = 0 for first j such that e1j �= 0. Thus this gives a
linearly dependent proper subset of columns of B , and contradicts observation 2.

4. If for any f /∈ S, f = ∑
fi∈S αifi , then αm+1 = · · · = αm+m′ .

Now we claim that the newly added columns respect the circuit structure involving
e1. Let C and C′ denote the set of circuits of M and M ′ respectively.

Claim 4.3
{
e1, ei2, . . . , eik

} ∈ C ⇐⇒
{
f1, fi2 . . . , fik

} ∈ C′ and
{
fi2, . . . , fik , fm+1, . . . , fm+m′

} ∈ C′.

Proof Suppose c = {e1, ei2, . . . , eik } is a circuit in M . Then clearly {f1, fi2, . . . , fik }
is a circuit, since they are nothing but vectors in c extended with 0s. Since
{fi2, . . . , fik } and {fm+1, . . . , fm+m′ } both generate f1, the set F = {fi2, . . . , fik ,

fm+1, . . . , fm+m′ } is a linearly dependent set. Now we argue that F is a minimal
dependent set, and hence is a circuit. Let G = {fi2, . . . , fik }.

Suppose that F is not a minimal independent set and let F ′ ⊂ F be linearly
dependent. Since S is linearly independent (property 3 above), we have that F ′ �⊆
{fm+1, . . . , fm+m′ }. Therefore, fij ∈ F ′ for some 0 ≤ j ≤ k. Since F ′ is dependent,
express fij in terms of the other elements in F ′:

fij =
∑

g∈G−{fij
}
γgg +

∑

s∈S

δss.

Since G is linearly independent, at least one of the δs should be non-zero. Restrict
this to the matrices C and D. This gives a non-trivial dependent proper subset of D

and hence a contradiction. �

From Claim 4.3 and the fact that there is no other column in M which is a multiple
of e, the set f (e) = {f1, fm+1, . . . , fm+m′ } is a unique circuit of length m′ + 1 > m

in M ′, where e is the column which is colored.
Now we argue about the isomorphism between M ′

1 and M ′
2 obtained from the

above operation. Since there is a unique circuit of length m′ + 1 > m in both M ′
1

and M ′
2 corresponding to two vectors e ∈ M1 and e′ ∈ M2, any matroid isomorphism

between M ′
1 and M ′

2 should map these circuits to each other. From such an isomor-
phism, we can recover a matroid isomorphism between M1 and M2 that maps be-
tween e and e′, thus preserving the colors. Indeed, if there is a matroid isomorphism
between M1 and M2, it can easily be extended to M ′

1 and M ′
2.

For the general case, let k be the number of different color classes and ci denote
the size of the ith color class. Then for each vector e in the color class i, we add
li = m + m′ + i many new vectors, which also increases the dimension of the space

Theory Comput Syst (2011) 49:246–272 257

by li . Thus the total number of vectors in the new matroid is
∑

ci(li) ≤ m3. Similarly,
the dimension of the space is bounded by m3. Rest of the proof is analogous. �

We can further generalize the above idea to matroids given in the form of inde-
pendent set oracles. We define COLORED-MI as the variant of MI where the inputs
are matroids M1 = (S1, I1) and M2 = (S2, I2) given as independent set oracles along
with color functions ci : {1, . . . ,m} → {1, . . . ,m}, i ∈ {1,2}. (Here m = |S1| = |S2|.)
We assume that the color functions are part of the input and not in the oracle. The
problem is to test if there is an isomorphism between M1 and M2 which preserves
the colors of the ground set elements. We have,

Lemma 4.4 COLORED-MI is polynomial time many-one reducible to MI.

Proof Let M1 = (S1, I1) and (S2, I2) be the given matroids, c1 and c2 be their color
classes. Let m = |S1| = |S2|. We demonstrate coloring for a singleton color class.
Suppose c1(e) = i. Let m′ = m + i. As in Lemma 4.1, we need to introduce a large
enough new circuit C that contains e. We construct matroid M ′

1 (resp. M ′
2) as follows.

1. Let F1 = {f1, . . . , fm′ } be new ground set elements. Let S′
1 = S1 ∪ F1.

2. All circuits of M1 remain to be so in M ′
1.

3. Let {f1, . . . , fm′ , e} be a circuit in M ′
1.

4. If C is a circuit in M1 containing e, then (C \ {e}) ∪ F1 is a circuit in M ′
1

To see that M ′
1 is a matroid, we need a circuit based characterization of matroids.

A set C of subsets of S defines circuits of a matroid on S if and only if it satisfies the
circuit elimination axioms, which are:

• ∅ /∈ C ;
• If A ∈ C then for all B ⊂ A, B /∈ C ; and
• For all C1 �= C2 ∈ C and e ∈ C1 ∩ C2, the set (C1 ∪ C2) \ {e} contains a circuit.

It is known that the set of circuits uniquely defines a matroid. (See [22] for more
details.) Now by doing a case analysis it is not hard to see that the sets of circuits
of M ′

1 defined above satisfy the above properties. Hence M ′
1 is a matroid. We con-

struct M ′
2 analogously. Now using the arguments from Lemma 4.1 it follows that

M ′
1 and M ′

2 satisfy the required property: M ′
1
∼= M ′

2 ⇐⇒ there is a color-preserving
isomorphism between M1 and M2. However we need to show how to implement in-
dependent set oracles for M ′

1 and M ′
2 in polynomial time using access to those of M1

and M2 respectively. This essentially involves a case analysis depending on whether
F1 is contained in the input set A to be tested for independence. This can be done
by the following algorithm (this is shown for M ′

1, the case of M ′
2 can be handled

analogously):
Input: A ⊆ S′

1
Output: YES if and only if A is independent in M ′

1

1. If A ⊆ S1, then return YES if and only if A ∈ I1.
2. If F1 ∪ {e} ⊆ A, then return NO.
3. If F1 ⊆ A but e /∈ A, then return YES if and only if (A \ F1) ∪ {e} ∈ I1.
4. If F1 ∩ A �= ∅ and F1 is not contained in A, then return YES if and only if (A \

F1) ∈ I1. �

258 Theory Comput Syst (2011) 49:246–272

5 Graphic Matroid Isomorphism

In this section we study GMI. Unlike in the case of the graph isomorphism problem,
an NP upper bound is not so obvious for GMI. We start with the discussion of an NP
upper bound for GMI.

As stated in Theorem 2.1, Whitney gave an exact characterization of when two
graphs are 2-isomorphic, in terms of three operations; twisting, cleaving and identi-
fication. Note that it is sufficient to find 2-isomorphisms between 2-connected com-
ponents of X1 and X2. In fact, any matching between the sets of 2-connected com-
ponents identifying the 2-isomorphic components will serve the purpose. This is be-
cause, any 2-isomorphism preserves simple cycles, and any simple cycle of a graph
is always within a 2-connected component. Hence we can assume that both the in-
put graphs are 2-connected and in the case of 2-connected graphs, twist is the only
possible operation.

The set of separating pairs does not change under a twist operation. Despite the
fact that the twist operations need not commute, Truemper [24] gave the following
bound.

Lemma 5.1 [24] Let X be a 2-connected graph of n vertices, and let Y be a graph
2-isomorphic to X, then: X can be transformed to graph X′ isomorphic to Y through
a sequence at most n − 2 twists.

Using this lemma we get an NP upper bound for GMI. Given two graphs, X1 and
X2, the NP machine just guesses the sequence of n−2 separating pairs corresponding
to the 2-isomorphism. For each pair, guess the cut w.r.t. which the twist operation is
to be done, and apply each of them in sequence to the graph X1 to obtain a graph X′

1.
Now ask if X′

1
∼= X2. For the converse, by Whitney’s theorem, if X1 and X2 are not

2-isomorphic then for any sequence of twist operations, X′
1 is not isomorphic to X2.

This gives an upper bound of ∃.GI ⊆ NP. Thus we have,

Proposition 5.2 GMI is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give a
deterministic reduction from GMI to GI. Although, this does not improve the NP
upper bound, it implies that it is unlikely that GMI is hard for NP (using methods
similar to that of Proposition 3.2, one can also directly prove that if GMI is NP-hard,
then PH collapses to the second level).

Now we state the main result of the paper:

Theorem 5.3 GMI ≤p
T GI.

Also, in another seminal paper [26], Whitney showed that in the case of 3-
connected graphs the notion of isomorphism and 2-isomorphism coincide. First let
us recall a few definitions: A separating pair is a pair of vertices whose deletion
leaves the graph disconnected. A 3-connected graph is a connected graph which does
not have any separating pairs. In the following, we state the theorem of Whitney [26].

Theory Comput Syst (2011) 49:246–272 259

Theorem 5.4 (Whitney, [26]) Let X1 and X2 be 3-connected graphs. Then X1 ∼=2
X2 ⇐⇒ X1 ∼= X2.

Before giving a formal proof of Theorem 5.3, we describe the idea roughly here:

Basic Idea Let X1 and X2 be the given graphs. From the above discussion, we can
assume that they are 2-connected.

In [12], Hopcroft and Tarjan proved that every 2-connected graph can be decom-
posed uniquely into a tree of 3-connected components, bonds or polygons.2 More-
over, [12] showed that this decomposition can be computed in polynomial time. The
idea is to then find the isomorphism classes of these 3-connected components using
queries to GI (see Theorem 5.4), and then color the tree nodes with the corresponding
isomorphism class, and then compute a colored tree isomorphism between the two
trees produced from the two graphs.

A first mind block is that these isomorphisms between the 3-connected compo-
nents need not map separating pairs to separating pairs. We overcome this by color-
ing the separating pairs (in fact the edge between them), with a canonical label of the
two sub-trees which the corresponding edge connects. To support this, we observe
the following. There may be many isomorphisms between two 3-connected compo-
nents which preserve the colors of the separating pairs. However, the order in which
the vertices are mapped within a separating pair is irrelevant, since any order will be
canonical up to a twist operation with respect to the separating pair.

So with the new coloring, the isomorphism between 3-connected components
maps a separating pair to a separating pair, if and only if the two pairs of sub-trees
are isomorphic. However, even if this is the case, the colored sub-trees need not be
isomorphic. This creates a simultaneity problem of coloring of the 3-connected com-
ponents and the tree nodes and thus a second mind block.

We overcome this by coloring again using the code for colored sub-trees, and
then finding the new isomorphism classes between the 3-connected components. This
process is iterated till the colors stabilize on the tree as well as on the individual sep-
arating pairs (since there are only linear number of 3-connected components). Once
this is ensured, we can recover the 2-isomorphism of the original graph by weaving
the isomorphism of the 3-connected components guided by the tree adjacency rela-
tionship. In addition, if two 3-connected components are indeed isomorphic in the
correctly aligned way, the above coloring scheme, at any point, does not distinguish
between them.

Now we convert this idea into an algorithm and a formal proof.

Breaking into Tree of 3-Connected Components We use the algorithm of Hopcroft
and Tarjan [12] to compute the set of 3-connected components of a 2-connected graph
in polynomial time. We will now describe some details of the algorithm which we will
exploit.

2Cunningham et al. [5] shows that any graphic matroid M(X) is isomorphic to M(X1) ⊕ M(X2) · · · ⊕
M(Xk)/{e1, e2, . . . , ek}, where M(X1), . . . ,M(Xk) are 3-connected components, bonds or polygons of
M(X) and e1, . . . , ek are the virtual edges. However, it is unclear if this can be turned into a reduction
from GMI to GI using edge/vertex coloring.

260 Theory Comput Syst (2011) 49:246–272

Let X = (V ,E) be a 2-connected graph. Let Y be a connected component of
X \ {a, b}, where {a, b} is a separating pair in X. Y is an excisable component with
respect to {a, b} if X \ Y has at least 2 edges and is 2-connected. The operation
of excising Y from X results in two graphs: C1 = X \ Y plus a virtual edge joining
(a, b), and C2 = the induced subgraph on Y ∪{a, b} plus a virtual edge joining (a, b).
This operation may introduce multiple edges.

The decomposition of X into its 3-connected components is achieved by the re-
peated application of the excising operation (we call the corresponding separating
pairs as excised pairs) until all the resulting graphs are free of excisable components.
This decomposition is represented by a graph GX with the 3-connected components
of X as its vertices and two components are adjacent in GX if and only if they share
a virtual edge.

In the above construction, the graph GX need not be a tree as the components
which share a separating pair will form a clique. To make it a tree TX , [12] introduces
new nodes in the graph GX corresponding to every virtual edge e, which is adjacent
to all 3-connected components containing e. However, these new vertices do not cor-
respond to any 3-connected components of X. We construct a new graph X′, such
that TX = GX′ and hence there is a 1-1 correspondence between the vertices of GX′
and 3-connected components of X′. Formally, the graph X′ is obtained by simply
adding an edge between every pair of vertices which are excised while obtaining GX .
The properties of TX listed here essentially follow from the arguments in [12]. (1) For
every node t ∈ TX , there is exactly one 3-connected component in X′. We denote this
by ct . (2) For every edge e = (u, v) ∈ TX , there are exactly two virtual edges, one
in each of the 3-connected components cu and cv . We call these virtual edges the
twin edges of each other. (3) For any given graph X, TX is unique up to isomorphism
(since GX is unique [12]). In addition, TX can be obtained from GX in polynomial
time.

In the following claim, we prove preserves the 2-isomorphism property.

Claim 5.5 X1 ∼=2 X2 ⇐⇒ X′
1
∼=2 X′

2.

Proof Suppose X1 ∼=2 X2, via a bijection φ : E1 → E2. This induces a map ψ be-
tween the sets of 3-connected components of X1 and X2. By Theorem 5.4, for every
3-connected component c of X1, c ∼= ψ(c) (via say τc; when c is clear from the
context we refer to it as τ).

We claim that ψ is an isomorphism between G1 and G2. To see this, consider an
edge e = (u, v) ∈ T1. This corresponds to two 3-connected components cu and cv of
X1 which share a separating pair s1. The 3-connected components ψ(cu) and ψ(cv)

must share a separating pair say s2; otherwise, the cycles spanning across cu and
cv will not be preserved by φ which contradicts the fact that φ is a 2-isomorphism.
Hence (ψ(cu),ψ(cv)) corresponds to an edge in G2. Therefore, ψ is an isomorphism
between G1 and G2. In fact, this also gives an isomorphism between T1 and T2,
which in turn gives a map between the excised pairs of X1 and X2. To define the
2-isomorphism between X′

1 and X′
2, we extend the map ψ to the excised edges.

To argue the reverse direction, let X′
1

∼=2 X′
2 via ψ . In a very similar way, this

gives an isomorphism between T1 and T2. The edge map of this isomorphism gives

Theory Comput Syst (2011) 49:246–272 261

the map between the excised pairs. Restricting ψ to the edges of X1 gives the required
2-isomorphism between X1 and X2. This is because, the cycles of X1(X2) are anyway
contained in X′

1 (X′
2), and the excised pairs do not interfere in the mapping. �

Thus it is sufficient to give an algorithm to test if X′
1
∼=2 X′

2, which we describe as
follows.

INPUT: 2-connected graphs X′
1 and X′

2 and their trees of 3-connected components T1
and T2 respectively.
OUTPUT: YES if X′

1
∼=2 X′

2, and NO otherwise.
ALGORITHM:
Notation: CODE(T) denotes the canonical label3 for a tree T by applying the algo-
rithm of [15].
1. Initialize T ′

1 = T1, T ′
2 = T2.

2. REPEAT

(a) Set T1 = T ′
1, T2 = T ′

2.
(b) For each edge e = (u, v) ∈ Ti , i ∈ {1,2}:

Let Ti(e, u) and Ti(e, v) be sub-trees of Ti obtained by deleting the edge e,
containing u and v respectively.

Color virtual edges corresponding to the separating pairs in the components
cu and cv with the set {CODE(Ti(e, u)), CODE(Ti(e, v))}. From now on, ct

denotes the colored 3-connected component corresponding to node t ∈ T1 ∪
T2.

(c) Let S1 and S2 be the set of colored 3-connected components of X′
1 and X′

2
and let S = S1 ∪ S2. Using queries to GI (see Observation 5.8) find out the
isomorphism classes in S. Let C1, . . . ,Cq denote the isomorphism classes.

(d) Color each node t ∈ Ti , i ∈ {1,2}, with color 	 if ct ∈ C	. (This gives two
colored trees T ′

1 and T ′
2.)

UNTIL (CODE(Ti) �= CODE(T ′
i), ∀i ∈ {1,2})

3. Check if T ′
1

∼= T ′
2 preserving the colors. Answer YES if T ′

1
∼= T ′

2, and NO other-
wise.

First we prove that the algorithm terminates after linear number of iterations of
the repeat-until loop. Let qi denote the number of isomorphism classes of the set
of the colored 3-connected components after the ith iteration. We claim that, if the
termination condition is not satisfied, then |qi | > |qi−1|. To see this, suppose the
termination is not satisfied. This means that the colored tree T ′

1 is different from T1.
This can happen only when the color of a 3-connected component cv , v ∈ T1 ∪ T2
changes. In addition, this can only increase the isomorphism classes. Thus |qi | >

|qi−1|. Since q can be at most 2n, this shows that the algorithm exits the loop after at
most 2n steps.

3When T is colored, CODE(T) is the code of the tree obtained after attaching the necessary gadgets to the
colored nodes. Notice that even after coloring, the graph is still a tree. In addition, for any T , CODE(T)

can be computed in L [15].

262 Theory Comput Syst (2011) 49:246–272

Now we prove the correctness of the algorithm. We follow the notation described
in the algorithm.

Lemma 5.6 X′
1
∼=2 X′

2 ⇐⇒ T ′
1
∼= T ′

2.

Proof (⇒) Suppose X′
1

∼=2 X′
2, via a bijection φ : E1 → E2. This induces a map

ψ between the sets of 3-connected components of X′
1 and X′

2. By Theorem 5.4, for
every 3-connected component c of X′

1, c ∼= ψ(c) (via say τc; when c is clear from the
context we refer to it as τ).

We claim that ψ is an isomorphism between T1 and T2. To see this, consider an
edge e = (u, v) ∈ T1. This corresponds to two 3-connected components cu and cv of
X′

1 which share a separating pair s1. The 3-connected components ψ(cu) and ψ(cv)

must share a separating pair say s2; otherwise, the cycles spanning across cu and
cv will not be preserved by φ which contradicts the fact that φ is a 2-isomorphism.
Hence (ψ(cu),ψ(cv)) correspond to an edge in T2. Therefore, ψ is an isomorphism
between T1 and T2. So in what follows, we interchangeably use ψ to be a map be-
tween the set of 3-connected components as well as between the vertices of the tree.
Note that ψ also induces (and hence denotes) a map between the edges of T1 and T2.

Now we prove that ψ preserves the colors attached to T1 and T2 after all iterations
of the repeat-until loop in step 2. To simplify the argument, we do it for the first
iteration and the same can be carried forward for any number of iterations. Let T ′

1
and T ′

2 be the colored trees obtained after the first iteration. We argue that ψ itself is
an isomorphism between T ′

1 and T ′
2.

To this end, we prove that for any vertex u in T1, cu
∼= ψ(cu) even after coloring

as in step 2b. That is, the map preserves the coloring of the virtual edges in step 2b.
Consider any virtual edge f1 in cu, we know that f2 = τ(f1) is a virtual edge in

ψ(cu). Let e1 = (u1, v1) and e2 = (u2, v2) be the tree edges in T1 and T2 correspond-
ing to f1 and f2 respectively. We know that, e1 = ψ(e2). Since T1 ∼= T2 via ψ , we
have

{CODE(T1(e1, u1)), CODE(T1(e1, v1))} = {CODE(T2(e2, u2)), CODE(T2(e2, v2))} .

Thus, in step 2b, the virtual edges f1 and f2 get the same color. Therefore, cu and
ψ(cu) belong to the same color class after step 2b. Hence ψ is an isomorphism be-
tween T ′

1 and T ′
2.

(⇐) First, we recall some definitions needed in the proof. A center of a tree T is
defined as a vertex v such that maxu∈T d(u, v) is minimized at v, where d(u, v) is
the number of edges in the unique path from u to v. It is known [9] that every tree T

has a center consisting of a single vertex or a pair of adjacent vertices. The minimum
achieved at the center is called the height of the tree, denoted by ht(T).

Claim 5.7 Let ψ be a color preserving isomorphism between T ′
1 and T ′

2, and let χt be
an isomorphism between the 3-connected components ct and cψ(t). Then, X′

1
∼=2 X′

2
via a map σ such that ∀t ∈ T ′

1, ∀e ∈ ct ∩ E1 : σ(e) = χt (e) where E1 is the set of
edges in X′

1.

Theory Comput Syst (2011) 49:246–272 263

Proof The proof is by induction on height of the trees h = ht(T ′
1) = ht(T ′

2), where
the height (and center) is computed with respect to the underlying tree ignoring colors
on the vertices.

Base case is when h = 0; that is, T ′
1 and T ′

2 have just one node (3-connected
component) without any virtual edges. Simply define σ = χ . By Theorem 5.4, this
gives the required 2-isomorphism.

Suppose that if h = ht(T ′
1) = ht(T ′

2) < k, the above claim is true. For the induction
step, suppose further that T ′

1
∼= T ′

2 via ψ , and ht(T ′
1) = ht(T ′

2) = k. Notice that ψ

should map the center(s) of T1 to that of T2. We consider two cases:
In the first case, T ′

1 and T ′
2 have unique centers α and β . It is clear that ψ(α) = β .

Let c1 and c2 be the corresponding colored (as in step 2b) 3-connected com-
ponents. Therefore, there is a color preserving isomorphism χ = χα between cα

and cβ . Let f1, . . . , fk be the virtual edges in cα corresponding to the tree edges
e1 = (α, v1), . . . , ek = (α, vk) where v1, . . . , vk are neighbors of α in T ′

1. Denote
ψ(ei) by e′

i , and ψ(vi) by v′
i .

Observe that only virtual edges are colored in the 3-connected components in
step 2b while determining their isomorphism classes. Therefore, for each i, χ(fi)

will be a virtual edge in cβ , and in addition, with the same color as fi . That is,

{CODE(T1(ei, α)), CODE(T1(ei, vi))} = {
CODE(T2(e

′
i , β)), CODE(T2(e

′
i , v

′
i))

}
.

Since α and β are the centers of T ′
1 and T ′

2, it must be the case that in the above
set equality, CODE(T1(ei, vi)) = CODE(T2(e

′
i , v

′
i)). From the termination condi-

tion of the algorithm, this implies that CODE(T ′
1(ei, vi)) = CODE(T ′

2(e
′
i , v

′
i)). Hence,

T ′
1(ei, vi) ∼= T ′

2(e
′
i , v

′
i). In addition, ht(vi) = ht(v′

i) < k. Let X′
fi

and X′
χ(fi)

denote
the subgraphs of X′

1 and X′
2 corresponding to T ′

1(ei, vi) and T ′
2(e

′
i , v

′
i) respectively.

By induction hypothesis, the graphs X′
fi

and X′
χ(fi)

are 2-isomorphic via σi which
agrees with the corresponding χt for t ∈ T ′

1(ei, vi). Define πi as a map between the
edges, such that it agrees with σi on all edges of X′

f (i) and with χt (for t ∈ T ′
1(ei, vi))

on the colored virtual edges.
We claim that πi must map the twin-edge of fi to twin-edge of τ(fi). Suppose

not. By the property of the coloring, this implies that there is a sub-tree of T ′
1(ei, vi)

isomorphic to T ′
1 \ T ′

1(ei, vi). This contradicts the assumption that cα is the center of
T ′

1.
For each edge e ∈ E1, define σ(e) to be χ(e) when e ∈ cα and to be πi(e) when

e ∈ Efi
(edges of Xfi

). From the above argument, χ = χα and σi indeed agrees on
where it maps fi to. This ensures that every cycle passing through the separating
pairs of cα gets preserved. Thus σ is a 2-isomorphism between X′

1 and X′
2.

For case 2, let T ′
1 and T ′

2 have two centers (α1, α2) and (β1, β2) respectively. It is
clear that ψ({α1, α2}) = {β1, β2}. Without loss of generality, we assume that ψ(α1) =
β1, ψ(α2) = β2. Therefore, there are color preserving isomorphisms χ1 from cα1 to
cβ1 and χ2 from cα2 and cβ2 . Define χ(e) as follows:

χ(e) =
{

χ1(e), e ∈ cα1,

χ2(e), e ∈ cα2,

264 Theory Comput Syst (2011) 49:246–272

cα =
⋃

i

cαi
, cβ =

⋃

i

cβi

With this notation, we can appeal to the proof in the case 1, and construct the
2-isomorphism σ between X′

1 and X′
2. �

This completes the proof of correctness of the algorithm (Lemma 5.6). �

To complete the proof of Theorem 5.3, we need the following observation.

Observation 5.8 COLORED-GMI for 3-connected graphs reduces to GI.

To complete the equivalence of GI, MIb , LMIb and GMI, we give a polynomial
time many-one reduction from MIb to GMI.

Theorem 5.9 MIb ≤p
m GMI.

Proof Let M1 and M2 be two matroids of rank b over the ground set S1 and S2. Let
C1 and C2 respectively denote the set of circuits of M1 and M2. Note that |C1|, |C2| ≤
mb+1.

We define graphs X1 = (V1,E1) (respectively for X2 = (V2,E2)) as follows. For
each circuit c = {s1, . . . , s	} ⊆ S1 in M1, let Gc be the undirected graph (Vc,Ec)

where Vc = {ui, xi, yi | 1 ≤ i ≤ 	} and

Ec =
	⋃

i=1

{(ui, u(i+1 mod)+1), (xi, yi), (ui, xi), (u(i+1 mod)+1, yi)}.

See Fig. 1 for an example. We say that xi and yi are the vertices corresponding
to si in Gc . Color the edges (ui, u(i+1 mod)+1) as BLUE for 1 ≤ i ≤ 	. The edges
(ui+1 mod	, yi) and (ui, xi) are colored YELLOW and (xi, yi) are colored GREEN for
1 ≤ i ≤ 	. Now, X1 contains the disjoint union of Gc for all c ∈ C1 and additionally
the following edges: For every s ∈ S1, consider all the circuits c ∈ C1 that contain s.
Let xs,c and ys,c denote the vertices that correspond to s in Gc. Then add all the

Fig. 1 An example of Gc when
c is a six-vertex simple cycle

Theory Comput Syst (2011) 49:246–272 265

edges necessary so that the set {xs,c, ys,c | s is contained in c} is a clique in X1; call
this clique Rs . The new edges added to complete the clique are colored RED.

We list the properties of X1 for further reference:

1. For every circuit c ∈ C1, there is a unique BLUE cycle in X1 that is disjoint from
all other BLUE cycles.

2. All the cliques with at least four vertices in X1 are formed by edges colored RED

and GREEN. Moreover, there is a one-one map from the set of all cliques of size at
least four in X1 to the ground set S1.

3. For every circuit c ∈ C1, the union of all the cliques of X1 corresponding to the
elements of c defines a unique blue cycle whose associated GREEN edges are in
the cliques.

Now we claim the following:

Lemma 5.10 M1 ∼= M2 if and only if X1 ∼=2 X2.

Proof Suppose M1 ∼= M2, via a map φ : S1 → S2.
This gives a map ψ between the BLUE edges of the graphs X1 and X2 which

preserves BLUE cycles. Now it is not hard to see that we can extend this map to
include the remaining edges.

Conversely, suppose X1 ∼=2 X2 via ψ : E1 → E2. Define φ : S1 → S2 as follows:
For s ∈ S1 let Rs denote the clique in X1 corresponding to s. Rs is either a single
GREEN edge or a clique on at least 4 vertices (in the latter case it is 3-connected).
Thus, by the property 2 of X1 we can see that ψ maps Rs to R′

s′ for some s′ in S2.
Define φ(s) = s′.

Now we argue that ψ is an isomorphism between M1 and M2. Let c ⊆ S1 be a
circuit in M1. Now using the property 2 of X1, we have:

c ∈ C1 ⇐⇒
⋃

i

ψ(Rsi) defines a unique BLUE cycle in X1

⇐⇒
⋃

i

ψ(R′
s′
i
) defines a unique BLUE cycle in X2

⇐⇒ φ(c) ∈ C2. �

This completes the proof of Theorem 5.9. �

The following corollary summarizes the relationship between GMI, GI, LMIb ,
and MIb proved so far,

Corollary 5.11 GMI ≤p
T GI ≡p

m LMIb ≡p
m MIb ≤p

m GMI.

6 Improved Upper Bounds for Special Cases of GMI

In this section we give improved upper bounds for special cases of GMI such as
planar graphic matroids, matroids of graphs of bounded genus and bounded eigen
value.

266 Theory Comput Syst (2011) 49:246–272

6.1 Planar Matroids

Recall that a graph is said to be planar if it can be drawn on a plane without any
crossings. A matroid is called a planar matroid if it is the graphic matroid of a planar
graph. Let PMI denote the computational problem of isomorphism testing for planar
matroid. Observing that the construction used in the proof of Theorem 5.3 does not
use any non-planar gadgets and the fact that isomorphism testing of planar graphs
can be done in P [13], we get the following.

Corollary 6.1 PMI is in P.

Using the recent developments on the planar graph isomorphism problem, we im-
prove the above bound to show that PMI ∈ L. We adapt the log-space canonization
procedure of [7] to the setting of planar matroids to obtain a log-space algorithm for
PMI. The idea used in [7] is to build the canonization using the 3-connected com-
ponent decomposition of the given 2-connected planar graph. We briefly describe the
modifications to this procedure.

Theorem 6.2 PMI ∈ L. Moreover, a canonical encoding for planar matroids can be
obtained in log-space.

Proof As observed in Sect. 5, it is sufficient to consider the case of 2-connected
graphs. Let X1 = (V1,E1) and X2 = (G2,V2) be the given 2-connected planar
graphs. Let T1 and T2 be the unique decompositions of X1 and X2 into 3-connected
components respectively. (This can be done in log- space [7].) Suppose T1 (resp. T2)
is rooted at r1 (resp. r2). We proceed as in [7], the only difference being that we
ignore the orientations of the virtual edges.

The modified definition of ordering of the 3-connected component tree is as fol-
lows:

T1 <T T2 if one of the following holds,

(1) |T1| < |T2|
(2) |T1| = |T2| and # of sub-trees of r1 is less than that of r2 or
(3) |T1| = |T2| and # of sub-trees of r1 is equal to that of r2 and (T1,1, . . . , T1,l) <

(T2,1, . . . , T2,l) where T1,1 ≤T · · · ≤T T1,l (resp. T2,1 ≤T · · · ≤T T2,l) are sub-
trees of T1 (resp. T2) rooted at the children of r1 (resp. r2). Here < refers to the
lexicographic order.

Here is an outline of the algorithm:

(1) Compute T1 (resp. T2) rooted at r1 (resp. r2).
(2) Check if T1 =T T2 using the algorithm of [7].

By Whitney’s theorem (see Theorem 2.1), twist operations on G do not change
the underlying matroid, and so we get the required correctness of the algorithm. The
space complexity bound follows from the arguments in [7].

The canonization of planar matroids can also done in a similar fashion following
[7]. �

Theory Comput Syst (2011) 49:246–272 267

6.2 Matroids of Bounded Genus and Bounded Degree Graphs

The genus of a graph is the minimum number k of handles that are required so
that the graph can be drawn on a plane with k handles without any crossings of the
edges. If we are given the guarantee that the input instances of GMI are graphs of
bounded genus (resp. bounded degree), then in the decomposition of the graphs into
3-connected components the components obtained are themselves graphs of bounded
genus (resp. bounded degree). Hence the queries made to GI are that of bounded
genus (resp. bounded degree) instances which are known to be in P (see [17, 20]).
Thus, as a corollary of Theorem 5.3, we have:

Corollary 6.3 Isomorphism testing of matroids of graphs of bounded genus/degree
can be done in P.

7 Matroid Automorphism Problem

With any isomorphism problem, there is an associated automorphism problem i.e, to
find a generating set for the automorphism group of the underlying object. Relating
the isomorphism problem to the corresponding automorphism problem gives access
to algebraic tools associated with the automorphism groups. In the case of graphs,
studying automorphism problem has been fruitful (e.g. see [1, 4, 17]). In this section
we turn our attention to the matroid automorphism problem.

An automorphism of a matroid M = (S, C) (where S is the ground set and C is
the set of circuits) is a permutation φ of elements of S such that ∀C ⊆ S, C ∈ C ⇐⇒
φ(C) ∈ C . Aut(M) denotes the group of automorphisms of the matroid M . When the
matroid is graphic we denote by Aut(X) and Aut(MX) the automorphism group of
the graph and the graphic matroid respectively.

To begin with, we note that given a graph X, and a permutation π ∈ Sm, it is not
clear a priori how to check if π ∈ Aut(MX) efficiently. This is because we need to
ensure that π preserves all the simple cycles, and there could be exponentially many
of them. Note that such a membership test (given a π ∈ Sn) for Aut(X) can easily be
done by testing whether π preserves all the edges. We provide an efficient algorithm
for testing if π ∈ Aut(MX).

We use the notion of a cycle basis of X. A cycle basis of a graph X is a minimal
set of cycles B of X such that every cycle in X can be written as a linear combination
(viewing every cycle as a vector in F

m
2) of the cycles in B. Let B denote the set of all

cycle bases of the graph X.

Lemma 7.1 Let π ∈ Sn. Then ∃B ∈ B : π(B) ∈ B =⇒ ∀B ∈ B : π(B) ∈ B.

Proof Let B = {b1, . . . , b	} ∈ B such that π(B) = {π(b1), . . . , π(b)} is a cycle ba-
sis. Now consider any other cycle basis B′ = {b′

1, . . . , b
′
k} ∈ B. Thus, bi = ∑

j αj b
′
j .

This implies,

π(bi) =
∑

j

αjπ(b′
j).

268 Theory Comput Syst (2011) 49:246–272

Thus, π(B ′) = {π(b′
1), . . . , π(b′

)} forms a cycle basis. �

Lemma 7.2 Let π ∈ Sm, and let B ∈ B, then π ∈ Aut(MX) ⇐⇒ π(B) ∈ B.

Proof Let B = {b1, . . . , b	} be the given cycle basis.
For the forward direction, suppose π ∈ Aut(MX). That is, C ⊆ E is a cycle in X if

and only if π(C) is also a cycle in X. Let C be any cycle in X, and let D = π−1(C).
Since B ∈ B, we can write, D = ∑

i αibi , and hence C = ∑
i αiπ(bi). Hence π(B)

forms a cycle basis for X.
For the reverse direction, suppose π(B) is a cycle basis of X. Let C be any cycle

in X. We can write C = ∑
i αibi . Hence, π(C) = ∑

i αiπ(bi). As π is a bijection, we
have π(bi ∩ bj) = π(bi) ∩ π(bj). Thus π(C) is also a cycle in X. Since π extends
to a permutation on the set of cycles, we get that C is a cycle if and only if π(C) is a
cycle. �

Using Lemmas 7.1 and 7.2 it follows that, given a permutation π , to test if π ∈
Aut(MX) it suffices to check if for a cycle basis B of X, π(B) is also a cycle basis.
Given a graph X a cycle basis B can be computed in polynomial time (see e.g. [11]).
Now it suffices to show:

Lemma 7.3 Given a permutation π ∈ Sm, and a cycle basis B ∈ B, testing whether
π(B) is a cycle basis, can be done in polynomial time.

Proof To check if π(B) is a cycle basis, it is sufficient to verify that every cycle
in B = {b1, . . . , b	} can be written as a F2-linear combination of the cycles in B′ =
{b′

1, . . . , b
′
	} = π(B). This can be done as follows.

For bi ∈ B, let π(bi) = b′
i . View bi and b′

i as vectors in F
m
2 . Let bij (resp. b′

ij)
denote the j th component of bi (resp. b′

i). Construct the set of linear equations,
b′
ij = ∑

bk∈B xikbkj where xik are unknowns. There are exactly 	 bi ’s and each of
them gives rise to exactly m equations like this. This gives a system I of 	m lin-
ear equations in 	2 unknowns such that, π(B) is a cycle basis if and only if I has a
non-trivial solution. This test can indeed be done in polynomial time. �

This gives us the following:

Theorem 7.4 Given any π ∈ Sm, the membership test for π in Aut(MX) is in P.

Notice that similar arguments can also give another proof of Proposition 5.2. As
in the case of graphs, we can define automorphism problems for matroids.

MATROID AUTOMORPHISM(MA): Given a matroid M as independent set oracle,
compute a generating set for Aut(M).

We define GMA and LMA as the corresponding automorphism problems for
graphic and linear matroids, when the input is a graph and matrix respectively. Using
the coloring techniques from Sect. 4, we prove the following equivalence.

Theorem 7.5 LMI ≡p
T LMA, and GMI ≡p

T GMA.

Theory Comput Syst (2011) 49:246–272 269

Proof This proof follows a standard idea due to Luks [18]. We argue the forward
direction as follows. Given two matrices M1 and M2, form the new matrix M as,

M =
[
M1 0
0 M2

]
.

Now using queries to LMA construct the generating set of Aut(M). Check if at least
one of the generators maps the columns in M corresponding to columns of M1 to
those corresponding to the columns of M2.

To see the other direction, we use the coloring idea, and the rest of the details are
standard. The idea is to find the orbits of each element of the ground set as follows:
For every element of e ∈ S, for each f ∈ S, color e and f by the same color to obtain
colored matroids M1 and M2. Now by asking queries to LMI we can check if f

is in the orbit of e. Thus we can construct the orbit structure of Aut(M) and hence
compute a generating set.

Using similar methods we can prove GMI ≡p
T GMA. �

8 Closure Properties

In this section we consider taking and-function and or-functions of polynomial many
instances of GMI. Following [14], we formally define and-functions and or-functions
as follows:

Definition 8.1 (See [14, 16]) Let A be any language in {0,1}∗. An or-function for A

is a function f : {0,1}∗ → {0,1}∗ such that for every sequence x1, . . . , x	 ∈ {0,1}∗
we have,

f (x1, . . . , x) ∈ A ⇐⇒ ∃i ∈ [], xi ∈ A.

Similarly, an and-function for A is a function g : {0,1}∗ → {0,1}∗ such that for all
x1, . . . , x	 ∈ {0,1}∗ the following holds:

g(x1, . . . , x) ∈ A ⇐⇒ ∀i ∈ [], xi ∈ A.

We show that GMI restricted to 2-connected graphs has these closure properties.

Theorem 8.2 GMI restricted to 2-connected graphs has polynomial time com-
putable and-functions and or-functions.

Proof Our proof follows closely the proof of closure properties of and/or-functions
for GI given in [14].

AND-Function Let (G1,H1), . . . , (G	,H) be 	 different instances of GMI where
all the graphs are 2-connected. We first demonstrate the construction for 	 = 2.

Let G1 = (V1,E1),G2 = (V2,E2),H1 = (V ′
1,E

′
1),H2 = (V ′

2,E
′
2), |V1| = |V ′

1| =
n1, |V2| = |V ′

2| = n2 and |E1| = |E′
1| = m1, |E2| = |E′

2| = m2. We construct two
graphs G = 〈G1,G2〉 and H = 〈H1,H2〉 such that G ∼=2 H ⇐⇒ (G1 ∼=2 H1 and

270 Theory Comput Syst (2011) 49:246–272

G2 ∼=2 H2). The vertex set V of G consists of V1 and V2 with four additional vertices
u1, u2, v1, v2. Add (u1, u2) and (v1, v2) as edges. Now for every edge e = (a, b) ∈
E1, add new edges so that the subgraph induced by {u1, u2, a, b} is a 4-vertex clique.
Similarly for every e = (a, b) ∈ E1 ∪ E2, add new edges to G so that the subgraph
induced by {v1, v2, a, b} forms a 4-vertex clique.

Define G = (V ,E) as follows:

V = V1 ∪ V2 ∪ {u1, u2, v1, v2},

E = E1 ∪ E2 ∪ {(u1, u2), (v1, v2)}
∪ {(ui, a), (ui, b) | (a, b) ∈ E1, i ∈ {1,2}}
∪ {(vi, a), (vi, b) | (a, b) ∈ E1 ∪ E2, i ∈ {1,2}}.

We define H in a similar fashion using H1 and H2 instead of G1 and G2 respectively.
We denote the four new vertices thus introduced in H by ū1, ū2, v̄1, v̄2.

Now the following claim completes the proof for the and-function:

Claim 8.3 (G1 ∼=2 H1 and G2 ∼= H2) ⇐⇒ G ∼=2 H .

Proof The forward direction is easy to see. To prove the converse, suppose G ∼=2

H via a bijection φ : E → E′. Let em+1 = (u1, u2), em+2 = (v1, v2) and ēm+1 =
(ū1, ū2), em+2 = (v̄1, v̄2). Now, as em+1 (resp. ēm+1) is the unique edge in G that
intersects with n1 many 4-vertex cliques, we have φ(em+1) = ēm+1. Similarly we can
argue that φ(em+2) = ēm+2. Also, all the newly introduced edges of G get mapped to
those of H . Thus we can recover the required 2-isomorphisms between G1, H1 and
G2, H2 respectively. �

Note that we introduced only 8 new vertices, 4 for each of G and H . In the case
of 	 > 2 we do the above process iteratively. At each iteration we add 8 new vertices,
hence the final graphs will have number of vertices bounded by n + 8	 (where n is
the total number of vertices in the graphs we began with). As the graphs obtained
are always simple, the number of edges is bounded by O((n + 8)2). Also, it is
straightforward to see that the computation of the resulting graphs can be done in
polynomial time.

OR-FUNCTION Let (G1,H1) and (G2,H2) be two instances of GMI. Now define
the function f as:

f ((G1,H1), (G2,H2)) = (〈G1,G2〉 ∪ 〈H1,H2〉, 〈G1,H2〉 ∪ 〈H1,G2〉).

From the arguments in the above paragraphs, it is easy to see that f represents the or-
function of (G1,H1) and (G2,H2). However, extending this directly for polynomial
many instances will cause an exponential blow up in size. We use the divide and
conquer approach as done in Theorem 1.42 of [14].

Theory Comput Syst (2011) 49:246–272 271

Let xi = (Gi,Hi), 1 ≤ i ≤ 	 be the given sequence of instances of GMI. We define
the function f̄ as follows:

f̄ (x1, . . . , x) =
{

x1 if 	 = 1,

f (f̄ (x1, . . . , x�	/2�).f̄ (x�	/2�+1, . . . , x)) otherwise

From the definition, the depth of recursion is O(log). At each step the application
of f blows up the size by a constant factor. Thus the size of the graph f̄ (x1, . . . , x)

is bounded by POLY(). Now using the arguments similar to the one in the proof of
Theorem 1.42 of [14] we get the desired result. �

Remark 1 Note that the Theorem 8.2 cannot be directly applied to graphs that are not
2-connected. This is mainly because our reduction from the connected GMI instance
to 2-connected instance is a Turing reduction and not a many-one reduction. (See
discussions preceding Lemma 5.1.)

9 Conclusion and Open Problems

We studied the matroid isomorphism problem under various input representations
and restriction on the rank of the matroid. We proved that graph isomorphism, graphic
matroid isomorphism and bounded rank version of matroid isomorphism are all poly-
nomial time equivalent.

In addition, we find it interesting that in the bounded rank case, MIb and LMIb are
equivalent, though there exist matroids of bounded rank which are not representable
over any field. Some of the open questions that we see are as follows:

• Our results provide new possibilities to attack the graph isomorphism problem.
For example, it will be interesting to prove a CONP upper bound for LMIb . Note
that this will imply that GI ∈ NP ∩ CONP. Similarly, are there special cases of
GMI (other than what is translated from the bounds for GI) which can be solved
in polynomial time?

• The representations of the matroid in the definition of LMI is over fields of size at
least m and at most POLY(m), where m is the size of the ground set of the matroid.
This is critically needed for the observation of CONP-hardness. One could ask if
the problem is easier over fixed finite fields independent on the input. However, we
note that, by our results, it follows that this problem over F2 is already hard for
GI. It will still be interesting to give a better (than the trivial �2) upper bound for
linear matroids represented over fixed finite fields (even for F2).

• Can we use the coloring technique of linear matroid isomorphism to reduce the
general instances of linear matroid isomorphism to isomorphism testing of “sim-
pler components” of the matroid?

• Can we make the reduction from GMI to GI many-one? Can we improve the
complexity of this reduction in the general case?

Acknowledgements We thank V. Arvind and Meena Mahajan for providing us with useful inputs and
many insightful discussions, James Oxley for sharing his thoughts while responding to our queries about
matroid isomorphism. We also thank the anonymous referees for providing us many useful pointers to the
literature.

272 Theory Comput Syst (2011) 49:246–272

References

1. Arvind, V., Kurur, P.P.: Graph isomorphism is in SPP. In: FOCS, pp. 743–750 (2002)
2. Arvind, V., Torán, J.: Isomorphism testing: perspective and open problems. Bull. Eur. Assoc. Theor.

Comput. Sci. 86, 66–84 (2005)
3. Babai, L.: Vector representable matroids of given rank with given automorphism group. Discrete

Math. 24, 119–125 (1978)
4. Babai, L., Grigoryev, D.Yu., Mount, D.M.: Isomorphism of graphs with bounded eigenvalue multi-

plicity. In: STOC, pp. 310–324 (1982)
5. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 17, 734–765

(1980)
6. Datta, S., Limaye, N., Nimbhorkar, P.: 3-connected planar graph isomorphism is in log-space. In:

Proceedings of FSTTCS, pp. 155–162 (2008)
7. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-

space. In: IEEE Conference on Computational Complexity, pp. 203–214 (2009)
8. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press,

Cambridge (2008)
9. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

10. Hlinený, P.: Some hard problems on matroid spikes. Theory Comput. Syst. 41(3), 551–562 (2007)
11. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Com-

put. 16(2), 358–366 (1987)
12. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3),

135–158 (1973)
13. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary

report). In: STOC ’74: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
pp. 172–184. ACM, New York (1974)

14. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity.
Birkhäuser, Basel (1993)

15. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: STOC, pp. 400–404
(1992)

16. Lozano, A., Torán, J.: On the nonuniform complexity of the graph isomorphism problem. In: Structure
in Complexity Theory Conference, pp. 118–129 (1992)

17. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. In FOCS,
pp. 42–49 (1980)

18. Luks, E.M.: Permutation Groups and Polynomial-Time Computation. DIMACS, vol. 11, pp. 139–175.
(1993)

19. Mayhew, D.: Matroid complexity and nonsuccinct descriptions. SIAM J. Discrete Math. 22(2), 455–
466 (2008)

20. Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: STOC, pp. 225–235 (1980)
21. Oxley, J., Welsh, D.: Chromatic, flow and reliability polynomials: the complexity of their coefficients.

Comb. Probab. Comput. 11, 403–426 (2002)
22. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)
23. Schöning, U.: Probabilistic Complexity Classes and Lowness. J. Comput. Syst. Sci. 39, 84–100

(1999)
24. Truemper, K.: On Whitney’s 2-isomorphism theorem for graphs. J. Graph Theory, 43–49 (1980)
25. Thierauf, T., Wagner, F.: The isomorphism problem for planar 3-connected graphs is in unambiguous

logspace. In: STACS, pp. 633–644 (2008)
26. Whitney, H.: Congruent graphs and connectivity of graphs. Am. J. Math. 54(1), 150–168 (1932)
27. Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933)
28. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57(3), 509–533 (1935)

	On the Complexity of Matroid Isomorphism Problem
	Abstract
	Introduction
	Notations and Preliminaries
	Linear Matroid Isomorphism
	Isomorphism Problem of Colored Matroids
	Graphic Matroid Isomorphism
	Basic Idea
	Breaking into Tree of 3-Connected Components

	Improved Upper Bounds for Special Cases of GMI
	Planar Matroids
	Matroids of Bounded Genus and Bounded Degree Graphs

	Matroid Automorphism Problem
	Closure Properties
	AND-Function
	OR-function

	Conclusion and Open Problems
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

