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Abstract. The Earth Mover Distance (EMD) between point sets A and
B is the minimum cost of a bipartite matching between A and B. EMD
is an important measure for estimating similarities between objects with
quantifiable features and has important applications in several areas in-
cluding computer vision. The streaming complexity of approximating
EMD between point sets in a two-dimensional discretized grid is an im-
portant open problem proposed in [8,9].

We study the problem of approximating EMD in the streaming model,
when points lie on a discretized circle. Computing the EMD in this set-
ting has applications to computer vision [13] and can be seen as a special
case of computing EMD on a discretized grid. We achieve a (1 ± ε) ap-
proximation for EMD in Õ(ε−3) space, for every 0 < ε < 1. To our
knowledge, this is the first streaming algorithm for a natural and widely
applied EMD model that matches the space bound asked in [9].

1 Introduction

For two multisets A,B of points of equal sizes in a space S, the Earth Mover
Distance (EMD) between A and B is defined as the minimum cost of a perfect
matching between points in A and B, where the cost function is identical to the
distance function equipped with the space S.
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When restricted on specific spaces, the Earth Mover Distance becomes a nat-
ural measure for estimating the similarity between two objects with quantifiable
features, and thus has found important applications in various areas. Starting
with the work of [16,17], the Earth Mover Distance has attracted significant at-
tention and interest in the area of computer vision. This is because an image, in
different contexts, can be represented as a collection of representative features,
such as pixels in a color space [17], object contours [4], hue histograms [18],
SIFT-like descriptors [7], circular histograms [13], and others [5]. The Earth
Mover Distance is thus an appropriate measure of similarity between images.
The considered point spaces can vary according to different applications. In
many situations, the space is a d-dimensional integer grid [Δ]d for some integers
Δ and d, with �1-distance being the distance metric.1 For example, an image can
be represented as a set of pixels each of which is a point in the 3-dimensional
color space [17]. Another important application of EMD in computer vision is
to compare one-dimensional circular histograms [13], where the point space is
a (discretized) circle in the 2D Euclidean space and the distance between two
points on the circle is the length of the shortest arc connecting them on the
circle. Due to its particular structure, the EMD over such space is also called
the Circular Earth Mover Distance (CEMD) [13].

Since the computation of EMD can be easily reduced to the weighted bipartite
matching problem, it can be solved optimally in O(n3) time and O(n2) space,
where n is the size of the point-sets. Nevertheless, in many applications, the
sizes of the point-sets are very large, and we may need to select a large number
(sometimes millions) of feature sets and compute all the corresponding EMD’s.
Thus, the commonly used matching algorithm is not satisfactory. This motivates
the exploration of approximation algorithms for EMD that run faster or use less
working space. When considering space-bounded computation, an extensively-
studied algorithmic setting is the streaming model, in which the input data
are given in a streaming fashion and only limited working and storing space is
allowed. This model dates back to [10] and was popularized by Alon, Matias and
Szegedy [1]. For a survey of related results we refer the readers to [11].

An important open problem in the streaming literature, proposed in [8], is
whether EMD over 2-dimensional integer grids [Δ]2 with �1-distance admits a
constant factor approximation algorithm in the one-pass streaming model that
uses logO(1)(nΔ) space, where n is the size of the given point-sets. Currently
the best known algorithm, due to Andoni et al. [2], can maintain an O(1/ε)-
approximation of the exact value of EMD between two point-sets in [Δ]2 using

O(Δε logO(1)(nΔ)) space and update time for 0 < ε < 1. This amount of space
still has a ΔΘ(1) gap from the conjectured bound in [8,9]. Furthermore, Naor and
Schechtman [12] showed that any �1 embedding of EMD on [Δ]2 incurs distortion
Ω(

√
Δ), suggesting that embeddings alone are unlikely to produce space-efficient

O(1)-approximations of EMD. On the other hand, things get much easier when
dealing with 1-dimensional grids [Δ]1. It is folklore that the EMD between two
point-sets in [Δ]1 is equal to the �1 distance between two corresponding vectors

1 We use [Δ] to denote the set {0, 1, . . . ,Δ− 1}.
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in [Δ]n. In the streaming model, we can reduce EMD to problem of estimating
the �1-norm of a vector in the turnstile model [1] (in which input tokens stand
for update operations on the coordinates of the vector), and by [6] this implies
that EMD over [Δ]1 allows a (1 ± ε)-approximation streaming algorithm using
O(ε−2 log(nΔ)) space (see Section 2 for more details). Note that this space com-
plexity meets the bound asked in [8]. As little progress has been made towards
the 2-dimensional case during these years, a natural target is to find an “inter-
mediate” space that “lies between” [Δ]1 and [Δ]2, on which the EMD problem
has space-efficient constant factor approximation algorithms.

In this paper we study the streaming complexity of Circular Earth Mover
Distance (CEMD) mentioned before. In the traditional algorithmic setting, the
complexity of this problem has already been well understood. It is shown in
[20,3] that the problem can be solved in O(n log n) time where n is the size of
the point-sets, and can even be solved in O(n) time if the points are sorted on the
circle in advance. However, neither this approach nor the ones in [20,3] is space
efficient; they all require Ω(n) space when converted to a (one-pass) streaming
algorithm.
Our Contributions. We present a (1 ± ε)-approximation one-pass streaming
algorithm for CEMD that uses Õ(ε−3 log(nΔ)) space and succeeds with prob-
ability 0.99, for every 0 < ε < 1. To our knowledge, this is the first streaming
algorithm for a natural and widely applicable EMD model that matches the
space bound asked in [8]. It is also not difficult to see that the circle space, in
some sense, lies between the 1-dimensional and 2-dimensional spaces.

The central part of our results is a theorem establishing the quality of match-
ings obtained from a random cut approach. Specifically, for every 0 < ε < 1, by
cutting the circle at a point chosen uniformly at random, the matching induced
by the obtained line segment is a (1 + ε)-approximation with probability Ω(ε)
(see Theorem 3). By repeating this process O(ε−1) times independently and re-
turning the minimum estimate, we get a (1 + ε)-approximation with probability
0.99. This, combined with the streaming algorithm for �1-distance in the turnstile
model given by [6], yields a streaming algorithm for CEMD (Theorem 4).

2 Preliminaries

A metric space S is a pair (S, dS) where S is a set of elements (or points) and
dS : S×S → [0,∞) is a symmetric distance function defined on pairs of points in
S. Given a space S = (S, dS) and two finite, equal-sized (multi-)sets A,B ⊆ S,
the Earth Mover Distance (EMD) between A and B (over S) is defined as:

EMDS(A,B) := min
φ:A→B

∑

p∈A

dS(p, φ(p)),

where the minimum is taken over all bijections φ between A and B.
In the streaming version of the Earth Mover Distance problem, the input

stream consists of 2n tokens (C, p), where C ∈ {A,B} and p ∈ S. A token
(C, p) means p ∈ C. The goal is to compute the Earth Mover Distance between
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A and B specified by the tokens. We assume that the 2n tokens can come in an
arbitrary order, which makes the problem harder and makes our result stronger.

One-Dimensional EMD. Consider the 1-dimensional grid space [Δ]1 = ([Δ], d),
where Δ is a positive integer, and d(a, b) := |a − b| for all a, b ∈ [Δ]. Let A
and B be two equal-sized subsets of [Δ]. Suppose A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}, where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn. By [19]
(or simple observations) we have

EMD[Δ]1(A,B) =
n∑

i=1

|ai − bi|,

and this is achieved when ai is matched with bi for every 1 ≤ i ≤ n. Such
matching will be called the canonical matching between A and B. Using the
result of [6] for �1-norm estimation, we obtain2:

Theorem 1 ([6]). For any 0 < ε, δ < 1, there is a one-pass streaming algorithm
that (1±ε)-approximates 1-dimensional EMD with probability at least 1−δ using
O(ε−2 log(nΔ) log(1/δ)) space.

Circular EMD. Let Δ be a positive integer. For any integer a, define (a)Δ :=
a mod Δ. Let C := ([Δ], dΔ) where dΔ is defined as:

For all p1, p2 ∈ [Δ], d[Δ](p1, p2) := min{(p1 − p2)Δ, (p2 − p1)Δ}.

We can imagine that the Δ points in [Δ] are drawn clockwisely on a circle of
circumference Δ, in the order 0, 1, 2, . . . , Δ − 1, such that every two adjacent
points have distance 1 on the circle. Then dΔ(p1, p2) is just the length of the
shortest arc connecting p1 and p2 on the circle. (See Figure 1 for an example
with Δ = 8.) Hereinafter we will always use this circle realization of the space C .

0
1

2

3
4

5

6

7
a1

a2

b2

b1

Fig. 1. An example of Δ = 8

Let A = {a1, a2, . . . , an} ⊆ [Δ] and B = {b1, b2, . . . , bn} ⊆ [Δ] be two subsets
of [Δ] of size n (which can be multisets). The points in A and B are also called
A-points and B-points, respectively. Let OPT denote the Earth Mover Distance

2 When points from A∪B appear on the stream in arbitrary (instead of sorted) order,
there is a subtle issue in mapping the EMD input to an appropriate input for the �1-
norm estimator. The solution is easy and appears to be folklore; we leave a complete
discussion to the full version of the paper.
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between A and B over C , i.e., OPT := EMDC (A,B). Throughout this paper, an
instance of the circular EMD problem consists of the space C (specified entirely
by Δ) and the two sets A,B. The goal is to compute OPT . (See Figure 1 for an
example where n = 2, A = {1, 3} and B = {5, 4}, in which case OPT = 5.)

We need some more notations. For the simplicity of expressions and without
loss of generality, we assume that A∪B is not a multiset, i.e., A and B are simple
sets and A∩B = ∅. This assumption can be made without loss of generality; we
explain in the full version of this paper how to easily obtain the same results for
the general case.
Cutting Points. For any point p ∈ [Δ], let Cp denote the space ([Δ], dp), where
dp is defined as follows:

dp(p1, p2) =

{
(p2 − p1)Δ if p, p1, p2 appear clockwisely;
(p1 − p2)Δ otherwise.

2 3 4 5 6 7 0 1
a1a2 b2 b1

Fig. 2. An example of C2

Notice that Cp also has an intuitive realization as follows: We cut the circle C
at the point p, and then “straighten” it to obtain a line segment, ensuring that
p is the leftmost point. Then for p1, p2 ∈ [Δ], dp(p1, p2) is exactly the (normal)
distance between p1 and p2 on this line segment. (See Figure 2 for C2 where the
original space C is specified by Figure 1.) Hereafter we shall identify Cp with
the corresponding line segment. In this sense, p is also called the cutting point of
Cp. Clearly Cp is isomorphic to [Δ]1. To ease notation, we write EMD(Cp) :=
EMDCp(A,B), the EMD between A and B over Cp. Crucial to our results is
the following theorem in [14] (whose full proof can be found in [15]):

Theorem 2 (Equation (2.4) in [14]). OPT = minp∈A∪B{EMD(Cp)}.

Note that Theorem 2 holds for the case where A ∪ B can be a multiset. Using
cutting points allows us to leverage known space-efficient approximations for
EMD[Δ]1(A,B) (Theorem 1), as shown in the next section.

3 A Streaming Algorithm for Circular EMD

In this section, we develop an efficient streaming algorithm for CEMD that
maintains a (1 ± ε)-approximation with high probability. As mentioned in the
introduction, we do this by randomly selecting a set of cut points, and estimat-
ing the Earth Mover Distance on the each resulting line segment using known
approximation algorithms.
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Indeed, an intuitive explanation is the following: viewing the optimal matching
between A and B as a series of directed edges from a ∈ A to φ(a) ∈ B, it is easy
to see that if no arc is cut when we cut the circle at p, then EMD(Cp) = OPT .
The proof of Theorem 2 in [14] shows that it is always possible to find p ∈ A∪B
whose best matching has no arc across p; thus, computing EMD(Cp) for each p
suffices to compute OPT .

Unfortunately, we do not have enough space to even approximate EMD for
all n points in A∪B. Instead we take a few random cut points. Our key technical
contribution is a result showing that the EMD of a random cut Cp gives (1 +
ε)-approximation to CEMD(A,B) with nontrivial probability. This result is
captured in the following theorem, whose technical proof we defer until Section 4.

Theorem 3. Choose a cutting point p ∈ [Δ] uniformly at random. Then, for
every ε such that 0 < ε < 1/6, Pr[EMD(Cp) ≤ (1 + 10ε)OPT ] ≥ ε.

Theorem 4. For any 0 < ε, δ < 1, there is a one-pass streaming algorithm for
(1 ± ε)-approximating CEMD that uses O(ε−3 log2(1/(εδ)) log(nΔ)) space and
succeeds with probability at least 1− δ.

Proof. Fix 0 < ε, δ < 1. Our algorithm first chooses k := �100ε−1 ln(2/δ) points
from [Δ] with repetition, say p1, p2, . . . , pk, and stores them in memory. This
initial step takes O(k logΔ) space. Then we apply the algorithm in Theorem 1,
using parameters ε′ = ε/3 and δ′ = δ/2k, to estimate EMD(Cpi) for all 1 ≤
i ≤ k in parallel. The space used during this process is at most k times that
of approximating 1-dimensional EMD using Theorem 1. Let the k estimated
distances be E1, . . . , Ek. We take the minimum of them as our estimation of
OPT . For each 1 ≤ i ≤ k, we know that EMD(Cpi) ≥ OPT always holds, and,
by Theorem 3,

Pr[EMD(Cpi) ≤ (1 + ε/3)OPT ] ≥ ε/30. (1)

From Theorem 1 and our choice of ε′ and δ′, we have

Pr[(1− ε/3)EMD(Cpi) ≤ Ei ≤ (1 + ε/3)EMD(Cpi)] ≥ 1− δ/2k. (2)

Therefore, for each 1 ≤ i ≤ k,

Pr[Ei < (1− ε/3)OPT ] ≤ Pr[Ei < (1− ε/3)EMD(Cpi)] ≤ δ/2k.

This holds for any 1 ≤ i ≤ k, so by the union bound, we have

Pr[min{Ei | 1 ≤ i ≤ k} < (1 − ε/3)OPT ] ≤ k · δ/2k = δ/2. (3)

From (1) and (2), the fact that (1 + ε/3)2 < 1+ ε for all 0 < ε < 1, and another
union bound, we have

ε/60 ≤ ε/30− δ/2k ≤ Pr[Ei ≤ (1 + ε/3)2OPT ] ≤ Pr[Ei ≤ (1 + ε)OPT ] .

It follows that

Pr[min{Ei | 1 ≤ i ≤ k} > (1 + ε)OPT ] ≤ (1− ε/60)k ≤ δ/2. (4)
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By (3) and (4) we obtain

Pr[(1− ε/3)OPT ≤ min{Ei | 1 ≤ i ≤ k} ≤ (1 + ε)OPT ] ≥ 1− δ.

The total used space is at most

O(k logΔ) + k ·O((ε′)−2 log(1/δ′) log(nΔ)) = O(ε−3 log2(1/(εδ)) log(nΔ)).

4 (1 + ε)-Approximation of OPT

In this section we prove our main lemma stating that a simple solution can
(1+ε)-approximateOPT with probability Ω(ε). A key component of our analysis
breaks the circle into a series of intervals and analyzes how much a matching
moves points from A to B across each interval. Before getting to the proof, some
definitions are required.

Intervals. Let p1, p2 ∈ [Δ]. The interval [p1, p2] is the set of points obtained
by starting at p1 and travelling in a clockwise fashion until reaching p2. A left-
open interval (p1, p2] is defined similarly, except p1 is not included. We define
the length of an interval to be its size and write len(I) := |I|. Unless otherwise
specified (e.g., “an interval [a, b]”), we assume an interval I to be a left-open. For
any interval I = (p1, p2], let l(I) := p1 and r(I) := p2 denote the left endpoint
and right endpoint of I, respectively.

Definition 1. An interval I is simple if

– l(I) ∈ A ∪B;
– I ∩ (A ∪B) = {r(I)}.

Thus, the endpoints of a simple interval are both points in A ∪ B, and there are
no other A- or B-points lying inside the interval. Let I denote the set of all simple
intervals. Since |A ∪ B| = 2n, it is clear that |I| = 2n. For example, in Figure 1,
we have I = {(a1, a2], (a2, b2], (b2, b1], (b1, a1]}. Note that I partitions [Δ].

Matchings and Coefficients. Let p ∈ [Δ]. The canonical matching between A and
B over Cp, which is (one of) the matching(s) having cost EMD(Cp), naturally
induces n intervals whose endpoints are pairs of matched A- and B-points. Let
Mp denote the set of these n intervals associated with Cp. By definition we have
EMD(Cp) =

∑
I∈Mp

len(I).

For any simple interval I ∈ I, the coefficient of I in EMD(Cp), denoted
by cp(I), is defined to be the number of intervals in Mp that contain I, i.e.,
cp(I) := |{J | I ⊆ J ∈ Mp}|. It is clear that

EMD(Cp) =
∑

I∈I
cp(I) · len(I). (5)

We start with the following lemma that relates the coefficient of a simple interval
with the numbers of A- and B-points in a corresponding set.
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Lemma 1. For every p ∈ [Δ] and every simple interval I ∈ I,

cp(I) = ||[p, l(I)] ∩ A| − |[p, l(I)] ∩B|| .

That is, the coefficient of I in EMD(Cp) equals the (absolute) difference between
the number of A-points and that of B-points in [p, l(I)].

Proof. Fix p ∈ [Δ] and I ∈ I. Assume without loss of generality that in
the canonical matching between A and B over Cp, aj is matched with bj and the
corresponding interval is [aj , bj ], for every 1 ≤ j ≤ n. (If, for some 1 ≤ j ≤ n, the
interval is [bj , aj ] instead of [aj , bj], we can simply switch the roles of aj and bj
in the following argument when dealing with this j.) Since I is a simple interval,
it holds that for every 1 ≤ j ≤ n,

I ⊆ [aj , bj] if and only if aj ∈ [p, l(I)] and bj �∈ [p, l(I)]. (6)

We consider two cases. First suppose cp(I) = 0, i.e., no interval [aj , bj] contains
I. According to (6), for each 1 ≤ j ≤ n, either aj and bj are both in [p, l(I)], or
they are both in [Δ] \ [p, l(I)]. Therefore the numbers of A-points and B-points
in [p, l(I)] are equal, implying that cp(I) = 0 = ||[p, l(I)] ∩ A| − |[p, l(I)] ∩B|| ,
which proves the first case.

Next suppose that cp(I) ≥ 1. Let S = {j | I ⊆ [aj , bj ]}. Then by definition
we have cp(I) = |S|. Let j1 be the smallest index in S. Due to (6) we have
aj1 ∈ [p, l(I)] and bj1 �∈ [p, l(I)]. By the definition of the canonical matching,
we have bj �∈ [p, l(I)] for all j ∈ S, and hence aj ∈ [p, l(I)] for all j ∈ S. From
(6) we know that for all j �∈ S, aj and bj are either both in [p, l(I)] or both
in [Δ] \ [p, l(I)]. Thus, the difference between the numbers of A-points and B-
points in [p, l(I)] is exactly |S|, which is equal to cp(I). This finishes the proof
of Lemma 1.

Based on Lemma 1, we further give some definitions and prove some useful
lemmas. Let p∗ ∈ A ∪B be such that OPT = EMD(Cp∗). (The existence of p∗

is ensured by Theorem 2). For any integer i ∈ Z, define

Ti := {I ∈ I | |[p∗, l(I)] ∩ A| − |[p∗, l(I)] ∩B| = i}

By Lemma 1 we have that for any interval I ∈ I, cp∗(I) = i if and only if
I ∈ Ti ∪T−i. Let t = max{| i | | Ti �= ∅}. Clearly 1 ≤ t ≤ n; it is also easy to see
that {Ti} partition I. The next lemma is less obvious.

Lemma 2. If Ti = ∅ for some i ≥ 0, then Tj = ∅ for all j ≥ i. If Ti = ∅ for
some i ≤ 0, then Tj = ∅ for all j ≤ i.

Proof. Assume that i ≥ 0 (the case where i ≤ 0 is handled in the same manner),
and assume for some j ≥ i holds that Ti = ∅ and Tj �= ∅. Let I∗ be the simple
interval containing p∗, i.e., p∗ ∈ (l(I∗), r(I∗)]. Then cp∗(I∗) = 0. By Lemma 1,
for every two adjacent simple interval I1, I2, |cr(I1)−cr(I2)| ≤ 1 (since [p∗, l(I1)]
and [p∗, l(I2)] differ by at most one element from A∪B). Now choose an arbitrary
I ∈ Tj . Starting from I, we visit clockwisely every simple interval until we reach
I∗. Since cp∗(I) = j and cp∗(I∗) = 0, there exists a simple interval I ′ for which
cp∗(I ′) = i. Hence Ti �= ∅ which contradicts with our assumption. ��
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Let P :=
⋃t

i=1 Ti, N :=
⋃t

i=1 T−i, and Z := T0. In this way, P ,N , and Z
represent the sets of simple intervals having positive, negative, and zero coeffi-
cient values respectively. In a similar way, we define Z :=

⋃
I∈Z I, and for each

1 ≤ i ≤ t, we define Pi :=
⋃

I∈Ti
I, and Ni :=

⋃
I∈T−i

I. Note that these are sets
of points while sets like P and N defined before are collection of simple intervals.
Finally, let P :=

⋃t
i=1 Pi and N :=

⋃t
i=1 Ni. Clearly, [Δ] = P ∪N ∪ Z. Noting

that Pi = ∅ (resp., Ni = ∅) if and only if Ti = ∅ (resp., T−i = ∅), and applying
Lemma 2, we obtain:

Lemma 3. If Pi = ∅ for some i ≥ 0, then Pj = ∅ for all j ≥ i. Similar result
holds also for Ni.

The following lemma entirely determines the coefficient of any simple interval in
any cut. The proof is not difficult, but requires a lot of case analysis. For lack of
space, we defer it until the full version of the paper.

Lemma 4. Fix 0 ≤ i ≤ t. For any I ∈ I, we have:

cp(I) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cp∗(I) + i if p ∈ Pi and I ∈ N ∪ Z,

|cp∗(I)− i| if p ∈ Pi and I ∈ P ,

cp∗(I) + i if p ∈ Ni and I ∈ P ∪ Z ,

|cp∗(I)− i| if p ∈ Ni and I ∈ N .

The following corollary is immediate from Lemma 4.

Corollary 1. EMD(Cp) = EMD(Cp∗) = OPT for every p ∈ Z.

We are now ready to prove our main theorem.
Theorem 3 (Restated). Choose a cutting point p ∈ [Δ] uniformly at ran-

dom. Then, for every ε such that 0 < ε < 1/6,

Pr[EMD(Cp) ≤ (1 + 10ε)OPT ] ≥ ε.

Proof. Choose p ∈ [Δ] uniformly at random. Then Pr[p ∈ S] = |S|/Δ for any
subset S ⊆ Z. Thus for every interval I,

Pr[p ∈ (l(I), r(I)]] = (r(I) − l(I))/Δ = len(I)/Δ.

If |Z| ≥ εΔ, then from Corollary 1 we obtain

Pr[EMD(Cp) = OPT ] ≥ Pr[p ∈ Z] = |Z|/Δ ≥ ε,

and thus the theorem holds. In the remaining of the proof we assume that |Z| =
|P0∪N0| < εΔ, which implies that |

⋃t
i=1(Pi∪Ni))| = |P ∪N | > (1−ε)Δ > εΔ.

Let k be the smallest nonnegative integer for which
∣∣∣
⋃k

i=0(Pi ∪Ni)
∣∣∣ ≥ εΔ. Then

we have 1 ≤ k ≤ t and ∣∣∣∣∣

k−1⋃

i=0

(Pi ∪Ni)

∣∣∣∣∣ < εΔ. (7)

We know that Pr[p ∈
⋃k

i=0(Pi∪Ni)] ≥ ε. Thus, the following claim will conclude
the proof of Theorem 3.
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Claim. For every p ∈
⋃k

i=0(Pi ∪Ni), EMD(Cp) ≤ (1 + 10ε)OPT .

Proof. Let i be any integer such that 0 ≤ i ≤ k. Pick an arbitrary cutting point
p ∈ Pi∪Ni. (This can be done since if Pi∪Ni = ∅, then by Lemma 3, Pi′∪Ni′ = ∅
for all i′ ≥ i, and thus by (7) we have |P ∪ N | = |

⋃i−1
j=0(Pi ∪ Ni)| < εΔ. This

gives Δ = |P ∪N |+ |Z| < 2εΔ < Δ, which is a contradiction.)
We only prove the claim for the case p ∈ Pi, since another case p ∈ Ni is

similar. When i = 0, the claim follows directly from Corollary 1, so we assume
that i ≥ 1. Due to Lemma 4, we have:

EMD(Cp) =
∑

I∈P∪N∪Z
cp(I) · len(I)

=
∑

I∈N∪Z
(cp∗(I) + i)len(I) +

∑

I∈P
|cp∗(I)− i| · len(I)

=
∑

I∈N∪Z
(cp∗(I) + i)len(I) +

t∑

j=i

∑

I∈Pj

(j − i)len(I)

+
i−1∑

j=1

∑

I∈Pj

(i − j)len(I).

For similar reasons, we know that

OPT =EMD(Cp∗) =
∑

I∈I
cp∗(I)·len(I) =

∑

I∈N∪Z
cp∗(I)·len(I)+

t∑

j=1

∑

I∈Pj

j·len(I).

Therefore,

0 ≤ EMD(Cp)−OPT

=
∑

I∈N∪Z
i · len(I)−

t∑

j=i

∑

I∈Pj

i · len(I) +
i−1∑

j=1

∑

I∈Pj

(i− 2j)len(I)

≤ i
∑

I∈N∪Z
len(I)− i

t∑

j=i

∑

I∈Pj

len(I) + i

i−1∑

j=1

∑

I∈Pj

len(I).

By definition we have
∑

I∈N len(I) = |N |,
∑

I∈Z len(I) = |Z| < εΔ, and∑
I∈Pj

len(I) = |Pj |. Thus,

0 ≤ EMD(Cp)−OPT ≤ i(|N |+ εΔ−
t∑

j=i

|Pj |+
i−1∑

j=1

|Pj |). (8)

This indicates that

|N | ≥
t∑

j=i

|Pj |−
i−1∑

j=1

|Pj |−εΔ =
t∑

j=1

|Pj |−2
i−1∑

j=1

|Pj |−εΔ = |P |−2|
i−1⋃

j=1

Pj |−εΔ.
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Using (7) and the fact that i ≤ k, we have |
⋃i−1

j=1 Pj | ≤ εΔ, and hence

|N | ≥ |P | − 3εΔ. (9)

We show that Ni �= ∅. Assume to the contrary that Ni = ∅, then by Lemma
3 we have Ni′ = ∅ for all i′ ≥ i. Thus by (7) it holds that |N | = |

⋃i−1
j=0 Ni| ≤

|
⋃k−1

j=0 (Pi ∪Ni)| < εΔ. Then from (9) we get |P | ≤ |N |+ 3εΔ < 4εΔ, and thus
Δ = |P | + |N | + |Z| < 4εΔ + εΔ + εΔ = 6εΔ < Δ, which is a contradiction.
Hence our assumption is false, which proves that Ni �= ∅. So there exists at least
one point p′ ∈ Ni. By symmetry, if we use p′ ∈ Ni instead of p and repeat the
above steps, we can obtain a counterpart of (9) as follows:

|P | ≥ |N | − 3εΔ. (10)

Using (10) in (8) yields that

EMD(Cp)−OPT ≤ i(|N |+ εΔ−
t∑

j=i

|Pj |+
i−1∑

j=1

|Pj |)

= i(|N | − |P |+ 2|
i−1⋃

j=1

Pj |+ εΔ)

≤ 6iεΔ.

Notice that

OPT ≥
t∑

j=i

∑

I∈Pj∪Nj

cp∗(I) · len(I) =
t∑

j=i

∑

I∈Pj∪Nj

j · len(I)

≥ i
∑

I∈
⋃

t
j=i(Pj∪Nj)

len(I) = i · |
t⋃

j=i

(Pj ∪Nj)|

= i · (Δ− |
i−1⋃

j=0

(Pj ∪Nj)|)

≥ i · (Δ− εΔ) (using (7) and that i ≤ k)

= i(1− ε)Δ.

Therefore, as ε < 1/6,

EMD(Cp) ≤ OPT + 6iεΔ ≤ OPT +
6ε

1− ε
OPT ≤ (1 + 10ε)OPT.

��

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)



108 J. Brody, H. Liang, and X. Sun

2. Andoni, A., Do Ba, K., Indyk, P., Woodruff, D.P.: Efficient sketches for earth-
mover distance, with applications. In: Proceedings of the 50th Annual Symposium
on Foundations of Computer Science, FOCS (2009)

3. Cabrelli, C.A., Molter, U.M.: A linear time algorithm for a matching problem on
the circle. Information Processing Letters 66(3), 161–164 (1998)

4. Grauman, K., Darrell, T.: Fast contour matching using approximate Earth Movers
distance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR (2004)

5. Grauman, K., Darrell, T.: Efficient image matching with distributions of local
invariant features. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, CVPR (2005)

6. Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of sketching
and streaming small norms. In: Proceedings of the 21st ACM-SIAM Symposium
on Discrete Algorithms, SODA (2010)

7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91–110 (2004)

8. McGregor, A.: Open problems in data streams and related topics. In: IITK Work-
shop on Algorithms For Data Streams (2006),
http://www.cse.iitk.ac.in/users/sganguly/workshop.html

9. McGregor, A.: Open problems in data streams, property testing, and related topics.
In: Bernitoro Workshop on Sublinear Algorithms (2011)

10. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12(3), 315–323 (1980)

11. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science 1(2), 117–236 (2005)

12. Naor, A., Schechtman, G.: Planar earthmover is not in L1. SIAM Journal on Com-
puting 37(3), 804–826 (2007); Preliminary version in FOCS 2006

13. Rabin, J., Delon, J., Gousseau, Y.: Circular earth mover’s distance for the com-
parison of local features. In: Proceedings of the IEEE International Conference on
Pattern Recognition (ICPR). IEEE Computer Society (2008)

14. Rabin, J., Delon, J., Gousseau, Y.: A statistical approach to the matching of local
features. SIAM Journal on Imaging Sciences 2(3), 931–958 (2009)

15. Rabin, J., Delon, J., Gousseau, Y.: Transportation distances on the circle. Journal
of Mathematical Imaging and Vision 41(1-2), 147–167 (2011)

16. Rubner, Y., Tomassi, C., Guibas, L.J.: A metric for distributions with applica-
tions to image databases. In: Proceedings of the 6th International Conference on
Computer Vision, ICCV (1998)

17. Rubner, Y., Tomassi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)
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