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Abstract. We show that laser-assisted hopping of hard-core bosons in a square
optical lattice can be described by an antiferromagnetic J1–J2 XY model with
a tunable ratio of J2/J1. We numerically investigated the phase diagram of the
J1–J2 XY model using both the tensor network algorithm for infinite systems
and the exact diagonalization for small clusters and found strong evidence that
in the intermediate region around J2/J1 ∼ 0.5, there is a spin liquid phase with
vanishing magnetization and valence bond orders, which interconnects the Néel
state on the J2 � J1 side and the stripe antiferromagnetic phase on the J2 � J1

side. This finding opens up the possibility of studying the exotic spin liquid phase
in a realistic experimental system using ultracold atoms in an optical lattice.
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1. Introduction

A spin liquid phase is an exotic state of matter that does not break any symmetry of the
Hamiltonian and has no conventional order even at zero temperature [1]. A number of
microscopic Hamiltonians with frustrated quantum magnetic interaction could support a spin
liquid phase [1–7]. In particular, several previous studies done by spin-wave calculation [8],
exact diagonalization (ED) [9, 24], series expansions [10, 11] and renormalization group
analysis [12, 13] have shown that the antiferromagnetic J1–J2 Heisenberg model may have a
spin liquid phase in a square lattice. Very recently, large-scale numerical investigations based
on complementary methods also found strong evidence supporting this conclusion [4–6]. On
the experimental side, several materials are suspected to be in a spin liquid phase at very low
temperature [1]. However, due to the complication of physics in these materials, it is hard
to make a direct connection between the prediction from the simplified microscopic models
and the phenomenology observed in real materials [1]. Ultracold atoms in an optical lattice
provide a clean platform to realize microscopic models to allow for a controlled comparison
between theory and experiments [14, 15]. Proposals have been made to implement the frustrated
magnetic models in an optical lattice [16–18] and various required configurations of the optical
lattices have been realized experimentally [17]. However, the direct magnetic Heisenberg
coupling, which comes from the higher-order super-exchange interaction, is very weak under
typical experimental conditions [16, 19]. It is still very challenging to reach the extremely low
temperature required for observing the ground state of the magnetic Heisenberg model in an
optical lattice.

In this paper, we show strong evidence that a spin liquid phase can emerge in an
antiferromagnetic J1–J2 XY model in a square lattice. A previous study with spin-wave
calculation has suggested a spin liquid around J2/J1 = 0.5 [20]. Here, our numerical results
confirm this claim and determine the phase boundaries of the model. Our calculations are
based on two complementary methods: the recently developed tensor network algorithm applied
directly to infinite systems [21, 22] and the ED of small clusters which is combined with
the finite-size scaling to infer the phase diagram [23]. Both methods suggest that in a small
region around J2/J1 ≈ 0.5, magnetization and valence bond solid orders all vanish, indicating
a spin liquid phase as the ground state. Different from a Heisenberg model, an XY model
can be realized with hard-core bosons in an optical lattice. In [18], a classical XY model in
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Figure 1. Three Raman laser beams with wave vectors k1, k2 and k3 couple
energy levels of A and B sublattices. (a) Hopping in the y-direction is coupled
by k1 and k2 with strength −J1, while in the x-direction it is coupled by k1 and
k3 with strength J1. J2 is the intrinsic hopping strength in the same sublattice.
(b) The configuration of the wave vectors of the three Raman laser beams.

triangular lattices is simulated by confining ultracold bosonic atoms to form two-dimensional
(2D) arrays of tubes in which the phase of a superfluid can be described as a classical spin.
Our goal is to pursue a quantum XY model. To this purpose, we use local boson occupancy
in the optical lattice as pseudo-spins with occupied sites as up spins and empty sites as down
spins. Through the control of the laser-assisted hopping in a square lattice [25], we propose
a scheme to implement the effective antiferromagnetic couplings for both the neighboring
and the next-neighboring sites with a tunable ratio of J2/J1. In this implementation, both
J2 and J1 are determined by the hopping rates of the hard-core bosons in an optical lattice,
which is much larger than the conventional super-exchange interaction for ultracold atoms
in the Heisenberg model [16, 19]. The large J1–J2 couplings open up the possibility to
experimentally realize this model and observe its spin liquid phase based on the state-of-the-art
technology.

2. Implementation of the J1– J2 XY model

The J1–J2 XY model is represented by the Hamiltonian

H = J1

∑
〈i, j〉

(X i X j + Yi Y j) + J2

∑
〈〈i, j〉〉

(X i X j + Yi Y j), (1)

where X, Y represent the Pauli operators σx and σy , 〈i, j〉 and 〈〈i, j〉〉 denote, respectively,
the neighboring and the next-neighboring sites in a square lattice as shown in figure 1(a). To
realize this model with hard-core bosons, we consider ultracold atoms in different hyperfine
spins |a〉 and |b〉 loaded into alternating square lattices A and B as shown in figure 1(a).
This configuration can be experimentally realized with the spin-dependent lattice potential [26].
Atoms in spins |a〉 (or |b〉) freely tunnel in the lattice A (or B) with the hopping rate t ; however,
a direct hopping between the A, B lattices is forbidden due to the spin-dependent potential shift.
Instead, the inter-lattice hopping is introduced by the laser-induced Raman transition as shown
in figure 1(a). We use three Raman beams, with wave vectors k1, k2 and k3 and Rabi frequencies

New Journal of Physics 14 (2012) 113039 (http://www.njp.org/)

http://www.njp.org/


4

�1, �2 and �3, respectively. The directions of the laser beams are shown in figure 1(b)
with 1k12 = k1 − k2 = k1 ŷ and 1k13 = k1 − k3 = k1 x̂ . The laser-induced inter-lattice hopping
rates for the neighboring sites are then given by tx =

∫
w∗(xi , yi)�

∗

1�3/δ eik1xw(xi+1, yi)dx dy,
and ty =

∫
w∗(xi , yi)�

∗

1�2/δ eik1yw(xi , yi+1)dx dy, for the hopping along the x, y directions,
respectively, where δ is the detuning. Assume that �3 = −�2 and the Wannier function w(xi , yi)

symmetric along the x, y directions, we have tx = −ty = t ′ (we can always choose t ′ > 0 by
setting an appropriate relative phase between �1 and �3). If the on-site atomic repulsion U
satisfies U � t, t ′, we have the hard-core constraint with at most one boson per site. The hard-
core bosons in this square lattice are then described by the Hamiltonian

H = t ′
∑
〈i, j〉x

a†
i b j − t ′

∑
〈i, j〉y

a†
i b j − t

∑
〈〈i, j〉〉

(a†
i a j + b†

i b j) + h.c. (2)

The hard-core bosons ai , b j satisfy the same commutators as the Pauli operators σ−

i , σ−

j , so
with the mapping ai → σ−

i and b j → r−

j for the odd numbers of rows, and ai → −r−

i and
b j → −r−

j for the even numbers of rows, the Hamiltonian (2) is mapped to the J1–J2 XY model
in equation (1) with J1 = t ′/2 > 0 and J2 = t/2 > 0. Apparently, the ratio J2/J1 is tunable by
changing the magnitude of the Rabi frequencies �∗

1�3.

3. Numerical simulation

In the following, we calculate the phase diagram of the Hamiltonian (1) as a function of the
dimensionless parameter J2/J1 (J1 is taken as the energy unit). We limit our discussion to a half-
filling case. In the limit J2/J1 � 1, the J1 term dominates and the ground state is magnetized
with a Néel order at the momentum k = (π, π). In the opposite limit J2/J1 � 1, the ground
state has a stripe magnetic order at the momentum (π, 0) or (0, π), which minimizes the energy
of the J2 term. In the intermediate region with J2/J1 ∼ 0.5, the Hamiltonian is highly frustrated
with competing interaction terms. Our main purpose is to find the phase diagram in this region
through controlled numerical simulations.

Our numerical simulations are based on two complementary methods: ED for small
clusters [23] and tensor network simulation for infinite systems [21, 22]. The ED method
is limited by the cluster size, and we use extrapolation based on the finite-size scaling to
infer the phase diagram for the infinite system. The tensor network algorithm is a recently
developed simulation method inspired by quantum information theory [21]. It can be considered
as an extension of the density matrix renormalization group (DMRG) method to the 2D case,
replacing the matrix product state in the DMRG method with the tensor network state that better
matches the geometry of the underlying lattice [21]. We use a particular version of the tensor
network algorithms, the infinite projected entangled pair states (iPEPS) method [22], which
applies directly to infinite systems using the translational symmetry. To take into account the
ordered states for the Hamiltonian (1) that spontaneously break the translational symmetry, in
our simulation we take a unit cell (typically 2 × 2 and 4 × 4) that is large enough to incorporate
the relevant symmetry breaking orders [28]. We apply imaginary time evolution to reach the
ground state of the Hamiltonian. To avoid being stuck in a metastable state, we take a number of
random initial states for the imaginary time evolution and pick the ground state as the one which
has the minimum energy over all the trials. The accuracy of the iPEPS simulation depends on
the internal dimension D of the tensor network state. The simulation time scales up very rapidly
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Figure 2. Average magnetization ms as a function of J2/J1. The insets show the
spin configuration and the valence bond distribution 〈σi · σ j〉 at J2/J1 = 0, 0.5
and 0.9 obtained with the iPEPS on a 4 × 4 unit cell with D = 6. The width
and color of the bonds are scaled such that the negative energy is shown by a
thicker bond with a darker color and the positive energy is shown by a thinner
bond with a lighter color and the length of the spin is proportional to its magnetic
moment ms.

with the dimension D, which limits D to a small value in practice. We typically take D between
4 and 6 in our simulation.

3.1. Local order parameters from infinite projected entangled pair states (iPEPS)

Figure 2 shows the major result from the iPEPS simulation. First, we look at the average
magnetization ms = (1/Ns)

∑
i

√
X i

2 + Yi
2 + Z i

2 as a function of J2/J1, where the average is
taken over the Ns sites in the unit cell. The calculation shows that for small or large J2/J1, the
ground states are magnetic (with the Néel or the stripe order, respectively), which is consistent
with our intuitive picture. In the intermediate region with 0.466 J2/J1 6 0.54, there is a sudden
drop of all the magnetic orders to a tiny value. Although the iPEPS method under a small
dimension D could be biased toward a less entangled state, which is typically an ordered state,
it would not be biased toward a disordered spin liquid state. So, when we see a sudden large
drop of the magnetic orders from the simulation, it must be a real effect, strongly indicating that
there is a new phase in the intermediate region with vanishing magnetic orders. The remaining
small ms may be due to the finite dimension D and should vanish when D is scaled up.

To figure out the property of the phase in the intermediate region, we further check different
kinds of valence bond solid orders. We calculate all the neighboring valence bonds 〈σi ·σ j〉 in
the unit cell and the result is shown in figure 2. For a valence bond solid state, the spatial
symmetry should be spontaneously broken for the valence bond distribution. Figure 2 shows
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Figure 3. (a) Spin–spin correlation 〈σi · σ j〉 as a function of distance d along the
diagonal direction at J2/J1 = 0.1 (cross), 0.5 ( circle) and 0.9 (open diamond).
(b) Semi-log plot of spin–spin correlation 〈1σi · 1σ j〉 after subtracting the local
averages. (c) Semi-log plot of dimer–dimer correlation 〈1Da

i 1Da
j 〉 (a = x, y)

as a function of distance d along the diagonal direction at J2/J1 = 0.5.

that in the entire region of J2/J1, the valence bond distribution has the same symmetry as the
underlying Hamiltonian, which indicates that the ground state of the Hamiltonian (1) has no
valence bond solid orders. Together with the above calculation of the magnetic orders, this
suggests that the Hamiltonian (1) has a spin liquid phase with no orders in the intermediate
region with 0.466 J2/J1 6 0.54. This spin liquid phase seems to have the same feature as the
Z2 spin liquid in the intermediate coupling region of the J1–J2 Heisenberg model found in the
recent numerical simulation [4, 5].

3.2. Long-range spin–spin and dimer correlations from iPEPS

To further confirm this picture, we calculate the long-range spin correlation and dimer
correlation with the iPEPS method and the result is shown in figure 3 for J2/J1 = 0.1, 0.5
and 0.9. The spin correlation 〈σi · σ j〉 is calculated along the diagonal direction x̂ + ŷ.
Both the Néel and the stripe phases have long-range correlations, with constant or staggered
values along the diagonal direction. The intermediate phase has an exponentially decaying
spin–spin correlation, which is in agreement with the behavior of the Z2 spin liquid phase with
a finite spin gap [1, 4]. The dimer operator Dα

i is defined by Dα
i = σi · σi+α for the bond (i, i + α),
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Figure 4. Finite-size scaling of the magnetic order parameter at (a) k = (π, π)

and (b) k = (π, 0) at J2/J1 = 0 (dot), 0.5 (square) and 0.9 (diamond).

where α = x̂ or ŷ denotes the orientation of the dimer. In figure 3(c), we show the dimer–dimer
correlations 〈1Dx

i 1Dx
j 〉 and 〈1Dy

i 1Dy
j 〉 at J2/J1 = 0.5 along the diagonal direction, where

1Di ≡ Di − 〈Di〉. The correlations decay exponentially with distance, in agreement with a spin
liquid phase with no dimer orders.

3.3. Structure factors from the exact diagonalization method

In the following, we present a study of the Hamiltonian (1) with the complementary ED method,
which provides further evidence for a spin liquid phase in the intermediate region. To be
consistent with the periodic boundary condition required for the finite-size scaling and to
incorporate the momentum k = (π, π) responsible for the Néel order, the size of the clusters
for the ED is taken to be 16, 20 and 32 sites4. From the spin correlation 〈σi · σ j〉, we calculate
the corresponding static structure factor m2

s (k, N ) = (1/N )
∑

i j eik·(ri −r j )〈1σi · 1σ j〉, where N
is the size of the cluster and 1σi ≡ σi − 〈σi〉. The Néel order and the stripe order correspond
to peaks at k = (π, π) and (π, 0), respectively. Finite-size clusters always have non-zero order
parameters, and one needs to do finite-size scaling, with a simple scaling formula m2

s (k, N ) =

m2
s (k, ∞) + a/

√
N (

√
N corresponds to the linear size), to infer the value of m2

s (k, ∞) for the
infinite system. In figure 4, we show the finite-size scaling for m2

s (k, N ) at J2/J1 = 0, 0.5 and
0.9 in three different regions. The results are consistent with the findings of the iPEPS method,
i.e. there is a stripe order with k = (π, 0) at J2/J1 = 0.9 and a Néel order with k = (π, π) at
J2/J1 = 0. At J2/J1 = 0.5, the finite-size scaling indicates a vanishing stripe order. However,

4 20 and 32 sites cluster are defined with base side vectors (4,2) and (4,4), respectively.
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Figure 5. Finite-size scaling of the dimer order parameter at k = (π, 0) and
the plaquette order parameter at k = (π, π) at J2/J1 = 0 (dot), 0.5 (square) and
0.9 (diamond).

at k = (π, π), the data become non-monotonic with N due to the shape of the cluster and the
finite-size scaling becomes inconclusive in this case. The non-monotonic shape effect has also
been observed in ED for the J1–J2 Heisenberg model [23].

To check for possible valence bond solid orders from ED, we similarly cal-
culate the structure factors m2

d(k, N ) = (1/N )
∑

i j eik·(ri −r j )〈1Dx
i 1Dx

j 〉 and m2
p(k, N ) =

(1/N )
∑

i j eik·(ri −r j )(〈Pi Pj〉, corresponding respectively to the dimer order Dx
i and the plaque-

tte order Pi = (Qi + Q−1
i )/2, where Qi (Q−1

i ) is the clockwise (counterclockwise) cyclic per-
mutation operator on the plaquette i with its explicit (lengthy) expression given in [28, 29].
The rotational symmetry is always preserved at finite size, so we only need to check one
component of the dimer order, say Dx

i . At finite size, the structure factors peak at k = (π, 0) for
the dimer order Dx

i and at k = (p, p) for the plaquette order Pi ; however, an extrapolation to
the infinite system at these momenta as shown in figure 5 indicates vanishing dimer and
plaquette orders in all three regions of J2/J1. This result, again, is in agreement with the finding
from the iPEPS calculation.

4. Experiment features and setup consideration

Before concluding the paper, we briefly discuss the experimental signature of the three different
phases for the Hamiltonian (1) in the implementation with hard-core bosons. The Néel ordered
state and the stripe phase correspond to Bose–Einstein condensates at the momenta k = (π, π)

and k = (π, 0), respectively. The standard time-of-flight imaging measurement can then reveal
the condensate peak at these non-trivial momentum points [15]. The spin liquid phase, on
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the other hand, would not show any condensation peaks due to a lack of magnetic orders.
Furthermore, the exponential decayed spin–spin correlation ensures a spin gap [4, 5], which
implies a charge gap in implementation with hard-core bosons. We therefore expect to see an
incompressible phase at half-filling, which is different from the Mott insulator state appearing
at the integer filling and a charge density wave state with a density order that breaks the
translational symmetry. To have some idea of the relevant energy scale, we take an explicit
parameter estimation using 23Na atoms as an example. For 23Na atoms in an optical lattice with
the laser wave length λ = 594.71 nm and the recoil energy ER = 24.4 kHz [27], we find that
J2 in the Hamiltonian (1) is about J2 ∼ 500 Hz when the lattice depth V0 = 10 ER. The laser-
induced tunneling J1 can be easily tuned to be comparable with J2 by choosing an appropriate
intensity for the Raman laser beams. This energy scale is significantly larger compared with the
conventional super-exchange energy scale J 2/U . It is hard to calculate the explicit temperature
required for the observation of the spin liquid state. However, as the effective interaction rate
increases by a factor of U/J , we expect that the required temperature will increases by the
same factor U/J compared with the implementation based on the super-exchange interaction.
In a real experiment, there is also inhomogeneousity due to a weak global harmonic trap. The
spin liquid state corresponds to the half-filling region. The radius of this region can be roughly
estimated by Rhf =

√
(21T)/Mω2, where 1T is the triplet spin gap corresponding to the energy

required to break a singlet pair, M is the atomic mass and ω is the trapping frequency. The
triplet spin gap 1T is roughly of the order of J2 [4]. For 23Na atoms in a trap with the trapping
frequency ω = 2π × 50 Hz, we estimate Rhf ∼ 44 lattice sites, which can be resolved easily with
the current technology.

5. Conclusion

We have proposed an experimentally feasible scheme to implement the J1–J2 XY model
with ultracold hard-core bosons in a square optical lattice. Through a detailed numerical
simulation of this model using two complementary methods, we found strong evidence that this
model has a spin liquid phase in the intermediate region of J2/J1. The proposed experimental
implementation, with a tunable ratio of J2/J1, opens up a realistic possibility of looking for the
long-pursued spin liquid phase in a well-controlled Hamiltonian model.
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