
Better Approximations for the Minimum
Common Integer Partition Problem

David P. Woodruff�

1 MIT
dpwood@mit.edu

2 Tsinghua University

Abstract. In the k-Minimum Common Integer Partition Problem, ab-
breviated k-MCIP, we are given k multisets X1, . . . , Xk of positive in-
tegers, and the goal is to find an integer multiset T of minimal size for
which for each i, we can partition each of the integers in Xi so that the
disjoint union (multiset union) of their partitions equals T . This prob-
lem has many applications to computational molecular biology, including
ortholog assignment and fingerprint assembly.

We prove better approximation ratios for k-MCIP by looking at what
we call the redundancy of X1, . . . , Xk, which is a quantity capturing the
frequency of integers across the different Xi. Namely, we show .614k-
approximability, improving upon the previous best known (k − 1/3)-
approximability for this problem. A key feature of our algorithm is that
it can be implemented in almost linear time.

Keywords: minimum common integer partition problem, approxima-
tion algorithms, computational biology.

1 Introduction

In a recent work [2] a new combinatorial optimization problem called the Min-
imum Common Integer Partition problem was introduced. This problem is one
of the many recent combinatorial problems with applications to computational
molecular biology, including ortholog assignment [1, 3, 4, 5] and DNA fingerprint
assembly [10]. The problem also poses interesting new algorithmic challenges.

Formally, the problem is as follows. Consider two multisets X = {x1, . . . , xm}
and T of positive integers. If there is a partition of T into multisets Ti such that
for each i the sum of integers in Ti equals xi, then T is called an integer partition
of X . We say that T is a common integer partition of multisets X1, . . . , Xk if it
is an integer partition of each Xi. The k-Minimum Common Integer Partition
Problem, abbreviated k-MCIP(X1, . . . , Xk), is to find a common integer partition
T of minimum cardinality.

As an example, for a pair of multisets X1 = {2, 2, 3} and X2 = {1, 1, 5}, the
integer partition T = {1, 1, 2, 3} is a minimum common integer partition of the
� The author would like to thank Andrew Yao and Tsinghua University for hospitality

and support while performing this researh.

J. Diaz et al. (Eds.): APPROX and RANDOM 2006, LNCS 4110, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Better Approximations for the MCIP Problem 249

Xi. Indeed, to see that T is an integer partition of X1, partition T into multisets
T1 = {1, 1}, T2 = {2}, and T3 = {3}. Then the sum of integers in T1 is 2, the
sum in T2 is 2, and the sum in T3 is 3. To see that T is an integer partition of
X2, partition it into T1 = {1}, T2 = {1}, and T3 = {2, 3}. To see that T has
minimal size, observe that any integer partition of either X1 or X2 must have
size at least 3. Further, the only integer partition of X1 of size 3 is X1 itself.
However, X1 is not an integer partition of X2. Thus every common partition has
size at least 4, which is the size of T .

A common partition T exists if and only if the integers in each Xi have the
same sum. As this property is easy to verify, we will assume it holds for the rest
of the paper. Let m =

∑k
i=1 |Xi|. We will think that k is much smaller than m,

as is the case in practice. Nevertheless, in our asymptotic notation we will write
the dependence on both m and k.

In [2], it is shown that k-MCIP is NP-hard1, and in fact APX-hard [9] for
every k ≥ 2. To show the former, the authors present a Cook-reduction from
Set-Partition, while for the latter they present an L-reduction from Maximum-
3-Dimensional-Matching with a bounded number of occurrences, which is known
to be APX-hard [7]. The authors also give a 5/4-approximation algorithm when
k = 2 and a 3k(k−1)

3k−2 -approximation algorithm for general k. Note that 3k(k−1)
3k−2 ≈

k − 1/3. The former is based on an approximation algorithm for Set-Packing
with small sets, and the latter is described below. Although their algorithm for
k = 2 is polynomial-time, its running time2 is Ω(m9), which is likely to make
it impractical. Indeed, as mentioned in the applications below, it is likely that
m ≈ 212, for which this running time is much too large to be of use. Their
algorithm for general k is much more efficient, running in time O(mk).

We note that an O(m log k)-time k-approximation for k-MCIP is straightfor-
ward, though in [2] the authors only provide an O(mk)-time k-approximation.
To see this, first suppose k = 2 and the multisets are X, Y . Repeatedly choose an
element x ∈ X and y ∈ X , and add min(x, y) to the common partition. Remove
x from X and y from Y if x = y. Otherwise remove min(x, y) from the multiset
it occurs in and replace max(x, y) with max(x, y)−min(x, y) in the other multi-
set. This procedure produces at most m − 1 numbers in the common partition.
Since the optimal solution has size at least max(|X |, |Y |) ≥ m/2, the algorithm
provides a 2-approximation. It runs in O(m) time. To solve k-MCIP, divide the
input multisets into �k/2� pairs (plus one multiset if k is odd), run the above
algorithm on each pair, and repeat the process on pairs of output multisets. The
running time is now O(m log k) and the output size is again at most m, so we
get an m/(m/k) = k approximation. We refer to this algorithm as k-Greedy.

In fact, it is not hard to achieve ratio 5k
8 for even k and (5k

8 + 3
8) for odd k.

This was also missed in [2], and already improves the previous best known ratio
for every k ≥ 3. To see this, for simplicity suppose that k is even. Partition the
k multisets into k/2 pairs (X2i−1, X2i). Run the algorithm of [2] for 2-MCIP on

1 Lan Liu and the author have shown that k-MCIP is NP-hard in the strong sense.
2 We assume the unit-cost RAM model on words of size O(log m) and that arithmetic

operations on words can be done in constant time.

250 D.P. Woodruff

each pair. Let the output partition of the algorithm on inputs X2i−1X2i be Yi.
Finally, output k-Greedy(Y1, . . . , Yk/2).

Let opti denote the size of the minimum common partition of X2i−1 and X2i.
Then |Yi| ≤ 5opti/4. Moreover, if opt denotes the size of the minimum common
partition of all of the Xi, then opti ≤ opt for all i. As the common partition
output by k-Greedy never has size larger than its total input size, we get that

|k − Greedy(Y1, . . . , Yk/2)| ≤
k/2∑

i=1

|Yi| ≤
k/2∑

i=1

5opti
4

≤ 5
4

k/2∑

i=1

opt =
5k

8
· opt,

and the ratio of 5k/8 follows.
The main problem with the above algorithm is that it invokes the algorithm

for k = 2 given in [2], and thus its running time is also Ω(m9). Thus the algorithm
is likely to be very impractical.

In this paper we give a new approximation algorithm for k-MCIP which runs
in almost linear time. More precisely, we have a randomized O(m log k) and a
deterministic O(mpoly(k))-time algorithm. Both running times are O(m) for
constant k. Moreover their ratios are bounded above by .614k(1 + o(1)). Since
.614 < 5/8, we not only reduce the running time to linear, we even improve
the approximation ratio of the natural (though inefficient) algorithm sketched
above. Although the algorithm in [2] for general k is also efficient, it was only
shown to achieve ratio k − 1/3. We improve the analysis of [2], and show their
algorithm actually provides a (k − 1/2)-approximation. We also provide an in-
stance to their algorithm for which this is best-possible, which turns out to be a
bit non-trivial. Finally, for the special case when the multisets Xi are disjoint,
we improve the analysis of our algorithm to show a ratio of (k + 1)/2.

Applications: Suppose we are given a collection of k genomes, one for each of
k different species. We look at the following special case: each genome consists
of the same number of copies of a single gene, but the copies are clustered into
different substrings in the different genomes. Thus, we may view each genome i
as a sequence of integer substring sizes xi

1, . . . , x
i
r, with the property that for all

pairs of genomes i, j,
∑

� xi
� =

∑
�′ xj

�′ . The goal in this application is to parti-
tion the substrings into the same collection of strings, minimizing the number of
strings in the common partition. This provides a measure of similarity between
the different genomes, and has been proposed in practice. This is exactly the
Minimum Common Integer Partition problem. For more detail, see [2, 3, 4, 5].

Actually, the main motivating example for k > 2 is DNA fingerprint assem-
bly, as described in great detail on page 3 of [2]. This is a problem that has
arisen in the ongoing Oligonucleotide Fingerprinting Ribosomal Genes (OFRG)
project [10]. The goal of this project is to identify different microbial organisms
using fingerprints obtained in the lab. Here k is a parameter determined by a
specific measuring device, while m refers to a quantity known as the number of
probe subsets of a fingerprint. We refer the reader to [2, 10] for the details, but
we merely state that from [6] we have learned that a typical setting of MCIP
parameters likely to occur in practice is k = 28 and m = 212.

Better Approximations for the MCIP Problem 251

2 Overview of the Algorithms

To illustrate our techniques, we first recall the algorithm CommonElements given
in [2] which invokes the subroutine 2-Greedy described in the introduction. For a
formal treatment of 2-Greedy, see [2] where it is shown to terminate with output
partition size less than m (so the ratio is m/(m/2) = 2) in O(m) time.

The algorithm CommonElements first adds the integers common to all of the
Xi to a common partition, and then repeatedly invokes 2-Greedy. Let X1, . . . , Xk

be an instance of k-MCIP.

CommonElements(X1, . . . , Xk):

1. T ← ∅.
2. While there is an x occurring in all of the Xi, choose such an x, add x

to T , and remove one copy of x from each Xi.
3. Let X ′

1, . . . , X
′
k denote the resulting multisets.

4. T ′ ← 2-Greedy(X ′
1, X

′
2).

5. For i = 3, . . . , k,
(a) T ′ ← 2-Greedy(T ′, X ′

i).
6. Output T ∪ T ′.

In [2], it is shown that this algorithm is a (k −1/3)-approximation. We will later
show that it is in fact a (k−1/2)-approximation. However, let us first define our
new algorithm to see how it contrasts with this one.

The structure of our algorithm for k-MCIP is as follows. Let [k] = {1, 2, . . . , k}.

HighFrequency(X1, . . . , Xk):

1. T ← ∅.
2. Choose a set-partition π of [k] into pairs of integers, with one unpaired

integer r if k is odd.
3. For each pair (i, j) ∈ π,

(a) Compute Ci,j ← CommonElements(Xi, Xj).
4. If there is only a single pair (1, 2), output C1,2, else

– k even: output HighFrequency({Ci,j | (i, j) ∈ π}).
– k odd: output HighFrequency({Xr} ∪ {Ci,j | (i, j) ∈ π}).

We have not yet specified how to choose the partition π in step 2 of HighFre-
quency. We will try to choose π so that the output in step 4 has minimal size.
For constant k, this is easy to do by an exhaustive enumeration of partitions.
For larger k, we show a random π is a good choice, and in fact this choice can be
efficiently derandomized. For now the choice is not essential, as we merely wish
to compare the structure of HighFrequency with that of CommonElements.

At a high level, the main differences between HighFrequency and CommonEle-
ments are the following. In CommonElements, the multisets X1, . . . , Xk (or more
precisely, X ′

1, . . . , X
′
k) are traversed sequentially, invoking 2-Greedy on each new

252 D.P. Woodruff

Xi, together with the current common partition of X1, . . . , Xi−1. In our algo-
rithm, we traverse X1, . . . , Xk in parallel, and we recurse. Moreover, the traversal
order is not fixed, but rather determined by π. Also, instead of invoking 2-Greedy
on each instance of 2-MCIP we encounter, we invoke CommonElements, which
has a better approximation ratio and still can be implemented in linear time.

To get a feeling for the algorithms, consider the following example. Suppose
k = 4 and the input multisets are X1 = {2, 3}, X2 = {1, 4}, X3 = {2, 3}, and
X4 = {2, 3}. When we run CommonElements, step 2 has no effect since although
items 2 and 3 occur many times, they do not occur in X2. In step 4 we may
assume that T ′ = {1, 1, 3} (we are constructing a worst-case execution of 2-
Greedy). Then after the first iteration of step 5a, we have T ′ = {1, 1, 1, 2}, and
after the last iteration we obtain T ′ = {1, 1, 1, 1, 1} (again, in the worst-case).

However, let π = {1, 2}, {3, 4}. Then C1,2 = {1, 1, 3} or C1,2 = {1, 2, 2}, but
C3,4 = {2, 3}, so that the output of step 4 is {3, 1, 1} or {2, 2, 1}, which are
of minimal size. Thus, our algorithm HighFrequency is able to exploit the high
frequency of integers 2, 3 in the input, even though CommonElements is not. This
is the reason we’ve named our algorithm HighFrequency.

One of the main technical aspects of this paper is how to handle the case
when there are not many integers occurring in multiple input mutisets Xi. In
this case we show that even the optimal solution must be large, as intuitively if
many integers have low frequency, then most of the integers in the Xi will have
to be split into at least two new integers in any common partition. We show
this by developing a framework for capturing the frequency of integers across
the different input mutisets.

In the next section we prove a key lemma for lower-bounding the size of the
optimal common partition, and in section 4 we use this lemma to analyze the
performance of HighFrequency. We believe our lower bound can lead to future
results. For example, in the next section we use this characterization to improve
the analysis of the main algorithm of [2].

3 A Key Lemma and Two Quickies

Consider an instance S of k-MCIP consisting of k multisets of integers S =
{X1, . . . , Xk}. We will define a certain quantity of S, called its redundancy, which
captures the distribution of the number of occurrences, across the different Xi,
of integers occurring in S.

At first glance it may seem that our definition is needlessly complicated. After
presenting it, we explain the need for this complication.

Recall that the Xi are multisets, but may also be viewed as ordered lists.
Thus, we may refer to the element in the jth position of Xi for 1 ≤ j ≤ |Xi|.

Consider elements T of [|X1| + 1] × [|X2| + 1] × · · · × [|Xk| + 1]. T translates
naturally into a multiset T̃ as follows: if its ith coordinate j does not equal
|Xi|+1, add the integer in the jth position of Xi to T̃ . We say that T is lonely if
the multiset T̃ has the form {t, t, . . . , t}. In this case we use the notation int(T)
to denote the integer t. We say a set C of lonely elements of [|X1| + 1] × [|X2| +

Better Approximations for the MCIP Problem 253

1] × · · · × [|Xk| + 1] is consistent if there are no two distinct elements T, T ′ ∈ C
and an i for which Ti = T ′

i �= |Xi| + 1. That is, no two elements of C can agree
on any coordinate i, unless they both have the value |Xi|+1 on that coordinate.

We define the weighted-size of a set C of lonely elements Tj to be
∑|C|

j=1 |T̃j |.

Definition 1. The r-redundancy of S, denoted Red(r,S), is the maximum,
over all consistent sets C of at most r lonely elements, of the weighted-size of C.

We note that a simpler alternative, though incorrect, definition is the following:
define the degree of a variable x as deg(x, S) = |{i | x ∈ Xi}|. Then define the
redundancy Red(r, S) to be maxx1,...,xr distinct

∑r
i=1 deg(xi, S).

Although simpler, this definition fails to capture the following example: X1 =
{1, 1}, X2 = {1, 1}. Here, Red(2, S) = 4. Indeed, consider C = {(1, 1), (2, 2)}.
Then the elements (1, 1), (2, 2) are both lonely since their corresponding multisets
have the form {1, 1}. Moreover, they are consistent. Finally, the weighted size of
C is 4. However, the alternative definition would put Red(2, s) = deg(1, S) = 2.
One could instead remove the word “distinct” from the definition, but this also
does not solve the problem, since then for X1 = {1, 3, 4} and X2 = {1, 2, 5} it
would return Red(3, s) = 6 since x1 = x2 = x3 = 1, but our definition gives
Red(3, s) = 4 with say T1 = (1, 1), T2 = (2, 4), and T3 = (3, 4).

Define opt(S) to be the size of a minimum common partition of S. When S is
clear from the context, we will often just write opt. Recall that m =

∑k
i=1 |Xi|.

The following lemma lower bounds opt in terms of the redundancy of S.

Lemma 1. opt ≥ (2m − Red(opt, S))/k.

Proof. Let T be a minimum common integer partition of X1, . . . , Xk. Define the
bipartite graph with right partition T and left partition S (here S is the multiset
union3 of the Xi). Each x ∈ S is incident exactly to those elements ti ∈ T which
partition x. So, for instance, the sum over all neighbors of x is equal to x.

Then Red(opt, S) is an upper bound on the number of degree-1 vertices in the
left part. To see this, we construct a consistent set C of opt lonely elements whose
weighted-size is exactly the number of degree-1 vertices in the left part. For each
vertex v on the right, let S̃(v) denote v’s neighbors on the left with degree 1. As
each such v is incident to exactly 1 element in each Xi, we can naturally associate
S̃(v) with an element S(v) of [|X1| + 1] × [|X2| + 1] × · · · × [|Xk| + 1], where
S(v)j = |Xj |+1 iff v partitions a vertex in Sj with degree more than 1. Then S(v)
is lonely since each integer in S̃(v) equals the integer corresponding to v. The set
{S(v) | v on the right } is consistent since if w = S(v)j = S(v′)j for v �= v′ and
j ≤ |Xj|, then w would have degree more than 1. Finally, {S(v) | v on the right }
has exactly opt elements. Thus, its weighted size is at most Red(opt, S). Since
every degree-1 vertex on the left is counted exactly once in the weighted-size of
{S(v) | v on the right }, there are at most Red(opt, S) such vertices.

3 The multiset union of two multisets is defined by the following rule: if x occurs f1

times in the first multiset and f2 times in the second, then x occurs f1 + f2 times in
the multiset union.

254 D.P. Woodruff

Resuming the proof of the lemma, there are at least m−Red(opt, S) remaining
vertices in the left part, and each has degree at least 2. Thus, there are at least
Red(opt, S) + 2(m − Red(opt, S)) = 2m − Red(opt, S) edges in the graph. On
the other hand, every vertex on the right has degree exactly k. Thus, 2m −
Red(opt, S) ≤ k|T | = k · opt, and the lemma follows by dividing by k.

Corollary 1. If for all j �= j′, Xj and Xj′ are disjoint, then k-MCIP is (k +
1)/2-approximable in O(m log k) time.

Proof. In this case Red(r, S) ≤ r for any r, and the bound above gives opt ≥
2m/(k + 1). The claim follows by running k-Greedy whose output size is ≤ m.

We now look at the approximation ratio of CommonElements. In [2], it is shown
the ratio is 3k(k−1)/(3k−2) ≤ k−1/3. On the other hand, 3k(k−1)/(3k−2) ≥
k − 1/3 − ε for any constant ε > 0 and large enough k. We show,

Corollary 2. CommonElements outputs a (k − 1/2)-approximation.

Proof. Recall the notation of section 2. Suppose CommonElements adds � integers
to T in step 2. It follows that T ′ is of size at most m − �k. Thus, |T ∪ T ′| ≤
� + (m − �k) = m − �(k − 1). On the other hand, there are at most � elements
with corresponding multisets of size k in any consistent set C of lonely elements.
It follows that the weighted-size of C, and thus Red(opt, S), can be at most
�k + (opt − �)(k − 1). Applying Lemma 1, k · opt ≥ 2m − (�k + (opt − �)(k − 1)),
which, after rearranging, shows opt ≥ (2m − �)/(2k − 1). Using that k ≥ 2 and
� ≥ 0, the corollary follows from the following bound on the approximation ratio,

(2k − 1)
m − �(k − 1)

2m − �
≤ (2k − 1)

m − �/2
2m − �

= (2k − 1)
1
2

= k − 1
2
.

Claim. The approximation ratio of CommonElements is at least k − 1/2 − o(1).

Proof. Let r be a large positive integer, and consider X1 = X2 = · · · = Xk−1 =
{1, 1, 3, 3, 5, 5, 7, 7, . . . , 2r + 1, 2r + 1}, and Xk = {2, 6, 10, 14, . . . , 4r + 2}. Then∑

x∈Xi
x =

∑
x∈Xj

x = 2(r + 1)2 for all i �= j. Thus, S = {X1, . . . , Xk} is an
instance of k-MCIP. The optimal solution is X1, which has size opt = 2r + 2.

The output of CommonElements on S is just the output of steps 3-6 on S (e.g.,
T ′) since no integer occurs in all of the Xi, and thus step 2 does not modify S. In
2-Greedy it is not specified how to choose the two integers x, y, and our strategy
is to present a sequence of choices for which T ′ is of size at least (2k−1)r−O(k2).
It will follow that the approximation ratio is at least

(2k − 1)r − O(k2)
2r + 2

=
(2k − 1)(r + 1) − (2k − 1) − O(k2)

2r + 2
= (k − 1/2) − O(k2)

2r + 2
,

which can be made arbitrarily close to k − 1/2 by increasing r.
We show by induction, after i invocations of 2-Greedy, 0 ≤ i ≤ k − 2 (recall

that there are k −1 invocations in total - we handle the last one separately), the
common partition of X1, . . . , Xi+1 generated by CommonElements has the form:

{1, 1, 3, 3, . . . , 2(r − i) + 1, 2(r − i) + 1} ∪ 1(2i) ∪ 2(s), (1)

Better Approximations for the MCIP Problem 255

where a(b) indicates b copies of a, and where s = 2
∑i−1

j=0(r − j).
Base Case: When i = 0, we have not yet invoked 2-Greedy, and so the

multiset in expression 1 should be equal to X1. Since 2i = 0 and s = 0 in this
case, this holds by definition of X1.

Inductive Step: Suppose expression 1 is the common partition after i ≥ 1
invocations, and consider the (i+1)st invocation, in which the common partition
after i invocations is invoked together with Xi+2 = {1, 1, 3, 3, . . . , 2r+1, 2r+1}.
We claim 2-Greedy may first repeatedly subtract 1s and 2s from Xi+2 until the
two multisets both have the form {1, 1, 3, 3, . . . , 2r + 1 − 2i, 2r + 1 − 2i}. To see
this, since each integer in Xi+2 is odd, and there are 2i integers in Xi+2 larger
than 2r+1−2i, 2-Greedy may subtract 2i different 1s so that Xi+2 has the form

{1, 1, . . . , 2r+1−2i, 2r+1−2i, 2r+2−2i, 2r+2−2i, 2r+4−2i, 2r+4−2i,. . ., 2r, 2r}.

Next, observe that the sum of the last 2i terms of Xi+2, 2
∑i

j=1(2r +2j − 2i), is
equal to s. Thus, 2-Greedy may subtract s different 2s so that the two multisets
become {1, 1, 3, 3, . . . , 2r+1−2i, 2r+1−2i}, as claimed, and the current partition
is 1(2i) ∪ 2(s).

Next 2-Greedy may choose pairs, (1, 3), (1, 3), (3, 5), (3, 5), . . . , (2r−1−2i, 2r+
1 − 2i), (2r − 1 − 2i, 2r + 1 − 2i), where the first element in each pair is from
the common partition after i invocations, and the second is from Xi+2. The first
element in each pair is added to the new partition. The multisets now have the
form {2r+1−2i, 2r+1−2i} and 1(2) ∪2(2(r−i)). Finally, 2-Greedy may subtract
1 from the two different 2r + 1 − 2i, and then repeatedly subtract 2. Thus the
common partition after i + 1 invocations has the form

1(2i) ∪ 2(s) ∪ {1, 1, 3, 3, . . . , 2r − 1 − 2i, 2r − 1 − 2i} ∪ 1(2) ∪ 2(2(r−i)),

which is easily seen to satisfy the inductive hypothesis.
Last Invocation: By the inductive argument, the common partition ofX1, . . . ,

Xk−1 has the form of expression 1 with i = k − 2, namely, the form {1, 1, 3, 3, . . . ,

2r−2k+5, 2r−2k+5}∪1(2k−4)∪2(s), where s = 2
∑k−3

j=0 (r−j) = (2k−4)r−O(k2).
Recall Xk = {2, 6, 10, 14, . . . , 4r + 2}. First 2-Greedy may repeatedly subtracts 1s
and 2s from the two mutisets, so that they become

{1, 1, 3, 3, . . . , 2r − 2k + 5, 2r − 2k + 5} and {2, 6, . . . , 4r − 4k + 10},

and the common partition has the form 1(2k−4)∪2(s). Note that since every integer
in Xk is even, this can be accomplished by first subtracting s different 2s from the
largest integers of Xk, followed by 2k − 4 different 1s. Now 2-Greedy may choose
pairs (1, 2), (3, 6), (5, 10), . . . , (2r−2k+5, 4r−4k+10), so that the multisets both
have the form {1, 3, . . . , 2r − 2k + 5}.

Then it chooses pairs (1, 3), (3, 5), . . . , (2r − 2k + 3, 2r − 2k + 5), so that the
multisets have the form {2r − 2k + 5} and 1 ∪ 2(r−k+2). Finally, 2-Greedy may
add 1 ∪ 2(r−k+2) to the common partition, so the output of Common-Elements is

1(2k−3) ∪ 2(r−k+2+s) ∪ {1, 3, 5, . . . , 2r − 2k + 5} ∪ {1, 3, 5, . . . , 2r − 2k + 3}.

Since 2k−3+r−k+2+s ≥ (2k−3)r−O(k2), and there are 2r−O(k) elements
in the last two sets, the output partition has size (2k − 1)r − O(k2), as needed.

256 D.P. Woodruff

4 Analysis of HighFrequency

In this section we prove our main theorem, Theorem 1. We use the probabilistic
method to show that there are good set-partitions π that HighFrequency can
choose in step 2. We quantify how well HighFrequency performs in terms of the
average size f of a multiset from an optimal consistent set of lonely elements. On
the other hand, we also use Lemma 1 to lower bound the size of the minimum
common partition in terms of f . We then choose f so that the ratio between
this upper and lower bound is maximized, which is a worst-case ratio.

In the following, we will use O(), Ω(), o(), ω() to denote functions of k which
are independent of m, e.g., o(1) is a function which tends to 0 as k → ∞.

Theorem 1. HighFrequency outputs a .614k(1 + o(1))-approximation.

Proof. First observe that for two multisets Xi, Xj containing c(Xi, Xj) elements
in common 4, the output size of CommonElements(Xi, Xj) is at most

((|Xi| + |Xj | − 2c(Xi, Xj)) − 1) + c(Xi, Xj) < |Xi| + |Xj | − c(Xi, Xj).

In particular, its output size is always less than its input size.
Suppose in the ith invocation of HighFrequency, the algorithm is called with

multisets Y1, . . . , Yr. Then HighFrequency will partition these multisets into pairs
(with one extra Yj if r is odd) and invoke CommonElements on each pair.
For any call to CommonElements in the ith invocation of HighFrequency, say
CommonElements(Ya, Yb), |CommonElements(Ya, Yb)| < |Ya| + |Yb| − c(Ya, Yb).
Let ci be the sum of c(Ya, Yb) over all pairs (Ya, Yb) in the ith invocation.

Let mi denote the output size of the ith invocation of HighFrequency, so for
example, m1 is the input size to the first recursive call (or the output size of
HighFrequency if there are no recursive calls). Define m0 = m. Let x be such that
2x = o(

√
k). Since 2x ≤ k for large enough k, there are at least x invocations of

HighFrequency (and in fact, there may be many more, though we will only need
to consider the first x). Then for 1 ≤ i ≤ x, mi < mi−1 − ci. Summing these
inequalities up for all i and canceling common terms, mx < m −

∑x
i=1 ci. Since

|HighFrequency(X1, . . . , Xk)| ≤ mx, we have |HighFrequency(X1, . . . , Xk)| < m−∑x
i=1 ci. It follows that,

Eπ1,...,πx [|HighFrequency(X1, . . . , Xk)|] < m − Eπ1,...,πx

[
x∑

i=1

ci

]

,

where πi is a uniformly random set-partition chosen in the ith invocation of
HighFrequency, and thus each of the integer pairs (a, b) in each invocation is (by
itself) a uniformly random pair of integers. Indeed, by symmetry the first chosen
pair and also all other pairs have the same probability distribution, namely they
4 By elements in common, we mean we can find c(Xi, Xj) disjoint pairs of elements,

each pair containing one element from Xi and one element from Xj , such that the
elements within each pair are equal as integers. So if Xi = {1, 1, 3, 4} and Xj =
{1, 1, 2, 5}, then c(Xi, Xj) = 2, even though 1 is the only integer value in common.

Better Approximations for the MCIP Problem 257

are uniformly drawn at random from all possible pairs. Thus, E[c(Ya, Yb)] =
E[c(Ya′ , Yb′)] for every two integer pairs (a, b), (a′, b′) determined by πi.

We may bound E[c(Ya, Yb)] as follows. Consider the largest (in terms of
weighted size) consistent set of opt lonely elements of [|X1| + 1] × · · · × [|Xk| +
1]. Suppose the sizes of their corresponding multisets are f1, . . . , fopt, and let
f = �

∑
j fj/opt�. Observe that f is a positive integer since each fj ≥ 1. Now

from Lemma 1 we know that opt ≥ (2m − Red(opt, S))/k. But Red(opt, S) =∑opt
i=1 fi ≤ (f + 1)opt, and after rearranging, we have opt ≥ 2m/(k + f + 1).
Suppose f < k/5. Then, since |HighFrequency(X1, . . . , Xk)| < m, we have

|HighFrequency(X1, . . . , Xk)|
opt

<
m
2m

k+f+1

=
k + f + 1

2
<

6k

10
(1+o(1))= .6k(1+o(1)),

and the theorem is proven in this case.
Let us now handle the case when f ≥ k/5. Consider two input multisets Ya, Yb

in the ith invocation of HighFrequency. Each is formed by successively applying
CommonElements on at most 2i−1 different input multisets Xi. Suppose a lonely
element S with int(S) = y intersects each of the (at most) 2i−1 input multisets
corresponding to Ya. Then y will occur in Ya. This also holds for Yb. Thus, if y
occurs in the (at most) 2i different input multisets corresponding to Ya and Yb,
y will be common to Ya and Yb. By our choice of π1, . . . , πi, the set of these (at
most) 2i input multisets is uniformly random amongst all such sets. Thus,

E[c(Ya, Yb)] ≥
∑

j

(fj

2i

)

(
k
2i

) =
∑

j

fj(fj − 1) · · · (fj − (2i − 1))
k(k − 1) · · · (k − (2i − 1))

.

We claim the above expession is minimized when all of the fj are at least as large
as f = �

∑
j fj/opt�. To see this, suppose, w.l.o.g., that f1 ≥ f2 ≥ · · · ≥ fopt. If

this were not the case, then f1 ≥ f + 1 and fopt ≤ f − 1. Suppose we decrease
f1 by 1 and increase fopt by 1. Then the average is the same and we still have
f1 ≥ f . On the other hand, the expression changes by

2i

k · · · (k − (2i − 1))
(
(f1 − 1) · · · (f1 − (2i − 1)) − fopt · · · (fopt − (2i − 1) + 1)

)
.

Now, f1 > f ≥ k/5 > 2i for large enough k (since i ≤ x) and f1 −j > fopt −j+1
for all j, so the above expression is non-negative. This substitution of variables
did not cause the value of the sum to increase, so the sum is minimized when
all the fj are at least f . Moreover, since f > 2i,

E[c(Ya, Yb)] ≥
∑

j

f(f − 1) · · · (f − (2i − 1))
k(k − 1) · · · (k − (2i − 1))

≥
∑

j

(
f − 2i

k − 2i

)2i

since k ≥ f > 2i

≥
∑

j

c2i

(
1 − 5·2i

k

1 − 2i

k

)2i

where c = f/k, and f ≥ k/5.

258 D.P. Woodruff

To analyze this, observe that Θ(2i

k) = 1/ω(2i) since i ≤ x and 2x = o(
√

k). We
use the following inequality, which follows from Proposition B.3 of [8].

(

1 − 1
ω(2i)

)2i

/

(

1 − 1
ω(2i)

)

≥ e−2i/ω(2i) ≥
(

1 − 1
ω(2i)

)2i

.

Plugging these inequalities into our bound above, we have that, E[c(Ya, Yb)] ≥
∑

j c2i

(1 − o(1)) = opt · c2i

(1 − o(1)). In the ith invocation there are at least
�k/2i� pairs. By linearity of expectation, Eπ1,...,πx [ci] ≥

⌊
k
2i

⌋
E[c(Ya, Yb)], and so

Eπ1,...,πx [ci] ≥
⌊

k
2i

⌋
· opt · c2i

(1 − o(1)). Thus,

Eπ1,...,πx [|HighFrequency(X1, . . . , Xk)|] < m − opt
x∑

i=1

⌊
k

2i

⌋

c2i

(1 − o(1)).

Since HighFrequency chooses the optimal π1, . . . , πx, it follows that

|HighFrequency(X1, . . . , Xk)| < m − opt
x∑

i=1

⌊
k

2i

⌋

c2i

(1 − o(1)).

The approximation ratio R of HighFrequency is |HighFrequency(X1, . . . , Xk)|/opt.
Dividing the expression above by opt gives R < m

opt −
∑x

i=1

⌊
k
2i

⌋
c2i

(1− o(1)).
Now since c ≤ 1 and x = o(k), we can drop the floors,

R <
m

opt
−

x∑

i=1

(
k

2i
− 1

)

c2i

(1 − o(1)) <
m

opt
+ o(k) −

x∑

i=1

k

2i
· c2i

.

Recall that we have shown k+f+1
2 ≥ m

opt . Using this and f = ck, we have

R <
k

2
+ o(k) + k max

c

(
c

2
−

x∑

i=1

c2i

2i

)

.

We upper bound R by k
2 +o(k)+k maxc

(
c
2 − c2

2 − c4

4 − c8

8

)
, as looking at higher

terms turns out to only negligibly reduce the approximation ratio further. Set
p(c) = c

2 − c2

2 − c4

4 − c8

8 . Then p′(c) = 1
2 − c − c3 − c7. We solve p′(c∗) = 0.

By continuity, it is easy to see that there is exactly one positive real solution
c∗. A MATLAB routine shows that this value c∗ satisfies .4222 < c∗ < .4223.
Moreover, p′′(c) is non-positive for any c, and thus c∗ is a local maximum. Again
by computation, p(c∗) < .11391. At the extremes p(1/5) ≤ 1/10 and p(1) < 0,
and thus c∗ is a global maximum. It follows that R < k

2 + o(k) + .114k =
.614k(1 + o(1)), and the proof is complete.

Remark 1. We claim that our analysis cannot show R < k/2. Indeed, one can
construct S for which |HighRedundancy(S)| = m − (k − 1). Then, using Lemma
1, the best lower bound we can obtain for opt is 2m/k. Thus, R > k/2 − o(1).

Better Approximations for the MCIP Problem 259

Theorem 2. k-MCIP is .614k(1+o(1))-approximable in O(m log k) probabilistic
time and O(mpoly(k)) deterministic time. Here, o(1) → 0 as k → ∞.

Proof. It remains to establish the running time. The proof of Theorem 1 actually
shows that only 3 invocations of HighFrequency are necessary to achieve the
bound .61391k(1 + o(1)). So if we choose π1, π2, and π3 judiciously, we may
choose the πi, i ≥ 4, arbitrarily. By a Markov bound, the probability over the
choices of π1, π2, and π3, that the approximation ratio is less than .614k(1+o(1))
is Ω(1). To evaluate HighFrequency and all recursive calls on a given set of set-
partitions πi takes O(m log k) time since (1) there are O(log k) recursive calls,
(2) CommonElements can be implemented in time proportional to its input size,
and (3) the sum of input sizes across all calls to CommonElements in a given
invocation of HighFrequency is at most m. By a Chernoff bound, we can output a
.614k(1+o(1))-approximation in O(m log k) time with probability at least 99/100
by running HighFrequency on O(1) different triples (pi1, π2, π3) and outputting
the smallest partition found. The choice of (π1, π2, π3) can be derandomized in
mpoly(k) time with the method of conditional expectations. We omit the details.

Conclusions. We have given an O(m log k)-time algorithm for k-MCIP with
approximation ratio .614k, improving the previous bound of k − 1/3. The best
lower bound is Ω(1). We believe it may be possible to slightly improve our aprox-
imation ratio, but that significant progress will require a new approach.

Acknowledgment. We thank the referees and Lan Liu for helpful comments.

References

[1] X. Chen. The minimum common partition revisited, manuscript, 2005.
[2] X. Chen, L. Liu, Z. Liu, and T. Jiang. On the minimum common integer partition

problem, CIAC 2006.
[3] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Computing

the assignment of orthologous genes via genome rearrangement, APBC, 2005.
[4] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment

of orthologous genes via genome rearrangement. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB) 2-4, pp. 302-315, 2005

[5] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. A parsimony approach
to genome-wide ortholog assignment, RECOMB, 2006.

[6] Tao Jiang. Personal Communication.
[7] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. In-

formation Processing Letters (IPL) 37: 27-35, 1991.
[8] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University

Press, 1995.
[9] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. J. Computer and System Sciences (JCSS) 43: 425-440, 1991.
[10] L. Valinsky A. Schupham, G. D. Vedova, Z. Liu, A. Figueroa, K. Jampachaisri,

B. Yin, E. Bent, R. Mancini-Jones, J. Press, T. Jiang, and J. Borneman. Oligonu-
cleotide fingerprinting of ribosomal RNA genes (OFRG), pp. 569-585. In Molecular
Microbial Ecology Manual (2nd ed). Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2004.

	Introduction
	Overview of the Algorithms
	A Key Lemma and Two Quickies
	Analysis of HighFrequency

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

