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Abstract. A space-bounded Stack Machine is a regular Turing
Machine with a read-only input tape, several space-bounded read-write
work tapes, and an unbounded stack. Stack Machines with a loga-
rithmic space bound have been connected to other classical models of
computation, such as polynomial-time Turing Machines (P) (Cook in J
Assoc Comput Mach 18:4–18, 1971) and polynomial size, polylogarith-
mic depth, bounded fan-in circuits (NC) e.g., Borodin et al. (SIAM J
Comput 18, 1989).
In this paper, we present significant new lower bounds and techniques
for Stack Machines. This comes in the form of a trade-off lower bound
between space and number of passes over the input tape. Specifically, we
give an explicit permuted inner product function such that any Stack
Machine computing this function requires either Ω

(
N1/4−ε

)
space or

Ω
(
N1/4−ε

)
number of passes for every constant ε > 0, where N is the

input size. In the case of logarithmic space Stack Machines, this yields
an unconditional Ω

(
N1/4−ε

)
lower bound for the number of passes. To

put this result in perspective, we note that Stack Machines with log-
arithmic space and a single pass over the input can compute Parity,
Majority, as well as certain languages outside NC. The latter follows
from Allender (J Assoc Comput Mach 36:912–928, 1989), conditional
on the widely believed complexity assumption that PSPACE � EXP.
Our technique is a novel communication complexity reduction, thereby
extending the already wide range of models of computation for which
communication complexity can be used to obtain lower bounds. Infor-
mally, we show that a k-player number-in-hand (NIH) communication
protocol for a base function f can efficiently simulate a space- and
pass-bounded Stack Machine for a related function F , which consists
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of several “permuted” instances of f , bundled together by a combining
function h. Trade-off lower bounds for Stack Machines then follow from
known communication complexity lower bounds.
The framework for this reduction was given by Beame & Huynh-Ngoc
(2008), who used it to obtain similar trade-off lower bounds for Turing
Machines with a constant number of pass-bounded external tapes. We
also prove that the latter cannot efficiently simulate Stack Machines,
conditional on the complexity assumption that E �⊂ PSPACE. It is the
treatment of an unbounded stack which constitutes the main technical
novelty in our communication complexity reduction.

Keywords. Turing Machine, stack, AuxPDA, lower bound,
communication complexity, space bound, reversals, streaming.

Subject classification. 68Q05.

1. Introduction

One of the goals of complexity theory is understanding the rela-
tive power of various models of computation. Consider the classes
P and LOGSPACE of languages decided by deterministic Turing
Machines (TMs) in polynomial time and logarithmic space, respec-
tively. Also consider NC =

⋃
i≥0 NCi, where NCi is the class of lan-

guages decided by (uniform) circuits of polynomial size and depth
O ((log n)i), consisting of bounded fan-in And, Or, and Not gates.
We regard P and LOGSPACE as modeling efficient time-bounded
and space-bounded computation, respectively, and we regard the
class NC as modeling efficient parallelizable computation. We know
that

NC1 ⊆ LOGSPACE ⊆ NC2 ⊆ · · · ⊆ NCi ⊆ · · · ⊆ P,

but we do not know whether any of the inclusions are proper.
One possible way to attack the problem of separating complex-

ity classes defined using different models of computation (e.g., Tur-
ing Machines, combinatorial circuits) and different resource bounds
(e.g., time, space, size, depth) is to rephrase the problem as sepa-
rations of classes based on a common computational model and a
common resource bound and prove lower bounds for that common
resource.



cc (2013) Tradeoff lower lounds for stack machines 3

Consider the problem of characterizing polynomial-time com-
putation in terms of a space bound. We know that a logarith-
mic-space Turing Machine can be simulated by a polynomial-time
Turing Machine, and we believe that the opposite is not true in gen-
eral (i.e., that LOGSPACE � P). Furthermore, we also believe that,
for example, some polylogarithmic-space Turing Machine cannot
be simulated by a polynomial-time Turing Machine. Thus, there
seems to be no obvious way to exactly capture polynomial-time
computation in terms of a space bound.

A stack, also called a push-down store, models an unlimited
storage space that comes with a Last-In First-Out access restric-
tion. A Stack Machine (or SM for short) is a classical Turing
Machine equipped with a push-down tape. Previous work (see e.g.,
Cook 1971) makes a distinction between a “stack” and a “push-
down memory”. In older works a stack is defined as a push-down
memory with additional read-only access to its content. We do
not make such a distinction here. For us a stack is what was
known as a push-down store. In particular, we use the term Stack
Machine to refer to what was previously known as deterministic
auxiliary push-down automaton (or AuxPDA). A space bound for
a Stack Machine refers exclusively to the size of its work tapes
and not to its stack. In light of the previous paragraph, Cook
(1971) gives a fascinating characterization of a time-bounded com-
plexity class in terms of a space-bounded computational model,
showing that the class of languages decided by logarithmic-space
Stack Machines exactly equals that of languages decided by poly-
nomial-time Turing Machines (P).

It is not hard to show that there is no loss in computational
power in assuming that a logarithmic space Stack Machine also
operates in at most exponential (2nO(1)

) time (Ruzzo 1980). A
series of subsequent results, for example, Allender (1989), Borodin
et al. (1989), Ruzzo (1980, 1981), Venkateswaran (1991) establish a
perhaps surprising connection between simultaneously space- and
time-bounded Stack Machines and combinatorial circuits: non-
deterministic logarithmic-space Stack Machines that run in time

2O(logi n) precisely characterize SACi, the extension of NCi in which
Not gates are at the input level and we allow Or gates with
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unbounded fan-in. Furthermore, denoting by SM(s, t) the class
of languages decided by deterministic Stack Machines operating in
space s and time t, we now know that, for every integer i ≥ 1,

NCi ⊆ SM
(
O (log n), 2O((log n)i)

)
⊆ NCi+1 ⊆ · · ·

· · · ⊆ P = SM
(
O (log n), 2nO(1)

)
.

In spite of the connections laid out above between Stack
Machines and major open problems in computational complexity,
this model is not well understood.

1.1. Our contribution. As the main contribution of this work,
we provide involved new lower bounds and techniques specifi-
cally for Stack Machines, which significantly improve Brandenburg
(1977). We do not know how to tackle time lower bounds directly.
Instead, we consider the number of (two-way) passes a Stack
Machine makes over its input. We assume that a Stack Machine
has at least logarithmic space and, without losing generality, that
in every pass, the input head moves from one end of the tape to the
other. Sometimes this measure is also called reversal complexity,
as the number of passes equals one plus the number of reversals.
The lower bounds we prove come in the form of trade-off lower
bounds between space and number of passes. Specifically, we give
two examples of functions for which any Stack Machine requires
either Ω

(
Nβ

)
space or Ω

(
Nβ

)
passes, for some β < 1. In the case

of logarithmic-space Stack Machines, this translates into uncondi-
tional Ω

(
Nβ

)
lower bounds for the number of passes.

Communication complexity has been used to derive lower
bounds in a wide variety of other areas of theoretical com-
puter science: cell probe complexity, VLSI circuit design, Turing
Machine complexity, circuit complexity, pseudorandomness, algo-
rithmic game theory, proof complexity, and streaming. Perhaps as
important as its corollaries, our main technical contribution is to
show that communication complexity can also be used to derive
lower bounds for Stack Machines.

Consider a base function f = fk,n : ({0, 1}n)k → {0, 1} and a
combining function h : {0, 1}m → {0, 1} that is symmetric and has
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a neutral element (e.g., this is the case for OR and XOR, with neu-

tral element 0). Let F = Fk,m·n : (({0, 1}n)m)
k → {0, 1} be a lifted

function which consists, informally, of m instances of f on disjoint
inputs, “permuted” in a way made precise in Section 3, and “glued
together” by h. Our main technical contribution is the following
reduction, saying that a k-player number-in-hand communication
protocol for f can efficiently simulate a Stack Machine for F .

Theorem 1.1. Let k = k(n) ≥ 2 be a non-decreasing function
and let m = m(n) ≥ 1 be a non-decreasing function such that
k ≤ mO(1). Let N = N(n) := k ·m ·n. Let s = s(N) and r = r(N)
be non-decreasing functions and let δ < 1/2 be a constant. Let
d := k · r · log r/

√
m. Let f = fk,n be a boolean base function,

and let F = FN be a function related to f in the sense informally
described above and made precise in Section 3.

Assume there exists a randomized (even, nonuniform) Stack
Machine for F with space bound s, pass bound r, and error δ.
Then, there exists a k-player number-in-hand randomized protocol
for f , with cost O (k · r · s · log(k · r)) and error at most δ + O (d).

As a consequence of Theorem 1.1 and of the known commu-
nication complexity lower bound for the Inner Product function
(Chor & Goldreich 1988), we obtain the following trade-off lower
bound, which is the first of its kind.

Corollary 1.2 (Informal statement). Let ε > 0 and δ < 1/2 be
constants. There exists an “inner product-like” function F = FN ∈
LOGSPACE such that any Stack Machine computing F with error
δ requires space s = ω

(
N1/4−ε

)
or passes r = ω

(
N1/4−ε

)
.

In particular, a log-space Stack Machine needs ω
(
N1/4−ε

)

passes to compute F .

The �-th frequency moment of a sequence ā = (a1, . . . , at),
where ai ∈ [R], is Freq�(ā)=

∑
j∈[R] f

�
j , where fj = |{i∈ [t] | ai =j}|.

Computing Freq� is a well-studied problem in the streaming litera-
ture Alon et al. (1999). As another consequence of Theorem 1.1, we
also obtain the following result, which can be interpreted as saying
that a stack does not help in computing frequency moments.
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Corollary 1.3. Let � > 4, ε ≥ 0, and δ < 1/2 be constants.
There exists a constant 0 < β < 1 such that any randomized Stack
Machine computing a (1+ε) multiplicative approximation of Freq�

with error δ requires space s = ω
(
N ′β)

or passes r = ω
(
N ′β)

,
where N ′ denotes the input size.

In particular, a log-space Stack Machine needs ω
(
N ′β)

passes
to approximate Freq�.

In fact, this corollary holds true even when the Stack Machine
has read-write access to its input (but still the number of passes is
bounded).

For this result, we use a number-in-hand communication
complexity lower bound for the promise Set Intersection func-
tion (Gronemeier 2009), along with a streaming reduction between
the problems of computing the promise Set Intersection function
and the frequency moments of a data stream, originating from Alon
et al. (1999).

Remark 1.4. Clearly, the number of passes is also a lower bound
on the running time of a Stack Machine. If interpreted in this way,
our method comes with an important limitation. Specifically, by
using a reduction to communication complexity, it is not clear how
to obtain any super-linear lower bounds, because the communica-
tion complexity of any function is at most linear. Still, as explained
in Section 7, Stack Machines with logarithmic space and few passes
over the input are quite powerful, so a lower bound on passes can
be seen as interesting in its own right.

Remark 1.5. Some of the technical effort in our proofs is directed
toward dealing with Stack Machines that have two-way rather
than one-way access to their input tape. We point out that these
restrictions are polynomially, but super-linearly, related: A Turing
Machine (with or without a stack) that makes r(N) two-way passes
over an input of size N can be simulated by a similar Turing
Machine M ′ that makes N · r(N) one-way passes. However, the
method presented in this work can only derive lower bounds of the
form r(N) ≥ Ω (Nα) for some 0 < α ≤ 1. Therefore, we cannot
use our current methods to first prove lower bounds for one-way
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access and then transfer them to two-way access using the simple
argument above.

1.2. Related work. Turing Machines with limited reversals
have been studied before, e.g., Chen & Yap (1991). However, in
that line of work, reversals are bounded on all tapes. By compari-
son, the Stack Machines we consider are significantly more power-
ful, because reversals are unbounded on both their space-bounded
internal tapes and their stack.

This type of a reduction, connecting efficient communication
protocols and space-bounded computation, is not new. One of
the first examples is Babai et al. (1992), which derives time-
space trade-offs for multi-head Turing Machines. Subsequently,
such reductions have been used to derive lower bounds in stream-
ing (Alon et al. 1999), an area of computer science whose object
of study is the power of Turing Machines with small space and a
single (or, very few) pass(es) over the input tape.

At the technical level, Stack Machines are related to (r, s, t)
read-write stream algorithms. The latter are Turing Machines
that have a constant number t of “external” read-write tapes, sev-
eral “internal” tapes of combined space s, and a total number r
of passes, counted over all external tapes. These machines were
introduced by Grohe & Schweikardt (2005) as an extension of the
standard streaming model, in which the machines have access to a
single external read-only tape. Grohe & Schweikardt (2005), Grohe
et al. (2006) derived several lower bounds for deterministic and
one-sided error randomized read-write stream (r, s, t) algorithms.
Beame et al. (2007) showed that two of the standard measures
that are used to bound communication complexity, discrepancy
and corruption, can be used to derive lower bounds for computing
certain direct-sum type functions with two-sided error randomized
stream algorithms. Finally, Beame & Huynh-Ngoc (2008) gave a
simpler and more direct reduction between number-in-hand com-
munication protocols and read-write stream algorithms, obtaining
trade-off lower bounds between space and number of passes that
inspired some the technical arguments in this paper.

Stack Machines and read-write stream algorithms are some-
what similar at the technical level because they both augment a
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space-bounded Turing Machine, with an unbounded stack, on the
one hand, and with several pass-bounded read-write tapes, on the
other hand. However, the motivation for considering these models
is essentially different. Stack Machines are intimately connected
to combinatorial circuits, which in turn model efficient parallel
computation, whereas read-write stream algorithms model efficient
computation in the presence of unlimited but slow “external” mem-
ory and fast but limited “internal” memory. In fact, we show
that read-write stream algorithms cannot efficiently simulate Stack
Machines, conditional on the widely believed complexity assump-
tion that E �⊂ PSPACE.

It is the treatment of the stack that constitutes the main techni-
cal novelty in our result. To put this into perspective, observe that
a Turing Machine equipped with two unbounded stacks can decide
any decidable language, using no workspace at all and a single
pass over the input (e.g., Sipser 1997, Problem 3.9). In compari-
son, Turing Machines with any constant number of external tapes
with space bound s and pass bound r can only compute languages
in DSPACE (r2 · s) (Hernich & Schweikardt 2008, Lemma 4.8).

1.3. Organization. The heart of our result is a new communi-
cation complexity reduction. In Section 2, we give an outline of
this reduction in a simplified setting which still involves most dif-
ficulties. In Section 3, we give the formal definitions needed for
our results. In Section 4, we give the proof of the main reduction,
Theorem 1.1. In Section 5, we give the proofs for the consequences
of our reduction (see Corollaries 1.2 and 1.3). In Section 6, we
put the unconditional lower bounds for logarithmic space Stack
Machines in perspective, showing that Stack Machines with a sin-
gle pass over the input can compute languages outside NC (con-
ditional on PSPACE � EXP), and also that such Stack Machines
cannot be simulated by the read-write stream algorithms of Grohe
& Schweikardt (2005) (conditional on E �⊂ PSPACE). We conclude
in Section 7.

2. Outline of the argument

Consider the regular Inner Product function IP = IP2,n :
({0, 1}n)2 →{0, 1}, which is defined by IP2,n(x1, x2)=

∑n
i=1 x1,i ·x2,i
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where the operations are over F2. Let (x1, x2) be an input, with
xp = (xp,1, . . . , xp,n), where xp,j ∈ {0, 1} for p ∈ [2] and j ∈ [n]. In
the communication complexity world, we are interested in comput-
ing this function with 2 player protocols, in which player p gets xp,
for p ∈ [2]. We know that R2(IP2,n) ≥ Ω (n) (Chor & Goldreich
1988), where R2 denotes the private-coin, randomized 2-party com-
munication complexity, where the error is a constant smaller than
1/2 (see e.g., Kushilevitz & Nisan 1997 for a detailed definition). In
the TM world, we are interested in computing this function when
its input is given on a tape in the natural way: first the n bits of
x1, then the n bits of x2. The input size for the TM is N = 2 ·n. In
this section, we give a simplified outline of our reduction, ignoring
probabilistic machines and two-way passes. We study the trade-off
between the space s(N) and the number of one-way passes r(N)
that a deterministic TM needs. In the full proof, we allow k ≥ 2
players, we allow two-way passes, and we allow randomization in
the TM.

In the absence of a stack. When there is no stack, there is
a simple, well-known, simulation of a space- and pass-bounded
TM by a 2 player communication protocol. Player 1 simulates
the TM until the head first crosses into the input zone contain-
ing x2, at which point it sends the full state of the TM to player
2. The latter continues the simulation until the head crosses back
into x1 and so on. In total, the communication in this protocol is
O (s(N) · r(N)). By the communication complexity lower bound,
we get s(N)·r(N) ≥ Ω (n) = Ω (N). This simple simulation breaks
down in the case of a SM because there might be transfer of infor-
mation via the stack between the parts of the computation when
the input head is scanning x1 and x2. One way to see this is to
observe that the configuration of a TM can be described by O (s)
bits, whereas that of a SM might require up to 2Θ(s) bits.

A framework for dealing with a stack. In order to deal with
the presence of a stack, we adapt a framework that was originally
introduced by Beame & Huynh-Ngoc (2008) in the context of TMs
with several external tapes.
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Consider a function f which we know is hard in the commu-
nication model. We assume that an efficient SM M exists for a
related function F . Using this assumption, we build an efficient
communication protocol P for f . Let x be an input to f in P . The
players in P first construct an input v to F (which contains x and
some public “padding”), they simulate M on v, computing F (v),
and finally they derive f(x) from F (v). The simulation of M on v
must be efficient so that communication lower bounds apply.

Let Γ be the sequence of configurations of M on v. In P , the
players simulate Γ using a series of publicly and privately sim-
ulated sections. The public simulation is “cheap” in the sense
that it does not cost any communication. The private simula-
tion is “expensive” because, at the end of each private section,
the player simulating it must communicate something in order for
the other player(s) to “know where they are” in Γ. Each sec-
tion in Γ where the input head scans a symbol from x (which is
the input to P ) is to be simulated privately by the player who
knows that symbol. Moreover, the basic idea is that, since we do
not have any bounds on how a SM can use its stack, we want to
avoid communicating stack content in P . Thus, we do not mind
if either: A symbol is pushed on the stack during public simu-
lation and popped during either public or private simulation; or
a symbol is pushed on the stack in a privately simulated section
by player p and later popped in a (possibly different) privately
simulated section by the same player p. What we want to avoid
is the remaining scenario: A symbol is pushed on the stack in
a privately simulated section by player p1 and later popped in a
privately simulated section by player p2 �= p1. Informally, the
way we achieve this “protection” against M using its stack on
x is by “hiding” x into the larger input v, so that, with high
probability, M only uses its stack for “meaningless” computa-
tion.

Concretely, let m = n =
√
N/2. Suppose that in a communi-

cation protocol two players want to compute IP2,n, and they have
access to an efficient (space s(N), one-way passes r(N)) SM for
IP2,N/2. We think of IP2,N/2 as m instances of IP2,n glued together
by a top-level XORm gate.
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In the communication protocol P , the players get
inputs x1, x2 ∈ {0, 1}n, respectively. They begin by
choosing a random i∗ ∈ [m] and random y1,i, y2,i ∈
{0, 1}n for i ∈ [m] \ {i∗}, all using public coins. Let
v = (v1, v2) be the input to M defined by, vp,i∗ := xp

and vp,i := yp,i, for i �= i∗ and p ∈ [2]. Henceforth, the
goal of P is to simulate M on v.

Thus, both players know most of the input to the SM, except for
two pieces of n bits each, where their respective inputs from the
communication protocol are embedded in the N bit input v to M .
Furthermore, observe that if they were indeed able to simulate the
SM, they could compute the output for the protocol as IP(x1, x2) =
IP(v1,i∗ , v2,i∗) = XOR2 (IP(v1, v2),XORm−1 (IP(v1,i, v2,i) | i �= i∗)).

Unique stack symbols. For the purposes of the analysis, we
assume that each symbol on the stack is given a unique tag. Thus,
even though the same symbol might appear many times on the
stack, we assume we can distinguish between any of those appear-
ances. In particular, to say that “a symbol is placed on the stack in
configuration γ1 and popped in configuration γ2” formally means
that the stack level is the same in γ1 and in the configuration
immediately following γ2; and the stack level is strictly higher in
any intermediate configuration between those two.

Corrupted instances. A key concept in our argument is that
of a “corrupted instance”. For a SM M and an input v, we say
that instance i is corrupted in v on M if, during the run of M on
v, a symbol is placed on the stack while the input head is scanning
vp1,i and popped while it is scanning vp2,i, where p1 �= p2.

Three claims. Henceforth, our argument is built on the follow-
ing three claims:

(i) The number of corrupted instances in any one input is small.
(ii) The choice of i∗ and of v in the communication protocol is

statistically independent of each other.
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(iii) If the input x to the communication protocol is not embed-
ded in a corrupted instance in the input v to the SM, then
the protocol can efficiently simulate the SM.

The intuition for claim (i). Fix a SM M and an input v. We
want to give a bound for the number of corrupted instances in v
on M . We associate each corrupted instance i ∈ [m] with a unique
4-tuple (l1 ≤ l2, p1 �= p2), such that a symbol is pushed on the stack
in the pass l1 over vp1,i and popped in the pass l2 over vp2,i. Note,
for each corrupted instance there might be several such 4-tuples to
choose from, here, we associate i with only (any) one of them. We
say that i is corrupted by this 4-tuple.

Let l1 ≤ l2 ≤ r and let p1 �= p2 ∈ [2]. During the pass l1 over
vp1 , the input head scans the instances in v going from left-to-right
in the order: 1, 2, . . . ,m. The same is true for the pass l2 over vp2 .
Assume instances i1 �= i2 are corrupted by this particular 4-tuple.
Without losing generality, say 1 ≤ i1 < i2 ≤ m. We see that the
stack symbol associated with i1 is pushed first, then the stack sym-
bol associated with i2, then the stack symbol associated with i1 is
popped, and finally the stack symbol associated with i2 is popped.
This contradicts the First-In Last-Out access semantics of a stack.
Hence, at most one instance is corrupted by any one 4-tuple.

Since the number of 4-tuples is at most 2 · r2, we derive that
at most O (r2) instances can be corrupted in v on M . Thus, as
long as r2/m = o (1), the fraction of corrupted instances in any
one input is small. This argument is extended to work for two-way
access, and slightly improved, as Lemma 4.1.

The intuition for claim (ii). To see why we need (ii), observe
that in the communication protocol P , v is constructed based on
i∗. For (i) to be useful, we would like the choice of i∗ to probabilis-
tically “hide” the instance containing the input to P from the set
of corrupted instances in v on M . It seems that we would need i∗

to be chosen after v.
To achieve (ii), we use an argument that goes through distri-

butional communication complexity (see e.g., Kushilevitz & Nisan
1997): For every distribution D on the inputs to IP2,n in the com-
munication protocol, the players choose them−1 “decoy” instances
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from that same distribution D, so that v is distributed according to
Dm independently of i∗. In this case, we can permute the choices of
v and i∗, so that claim (i) gives a bound on the probability the com-
munication protocol embeds the real input in a corrupted instance.
We go back to randomized communication complexity (for which
we have lower bounds) using Yao’s min–max principle (Kushilevitz
& Nisan 1997, Theorem 3.20) connecting these two measures. This
argument is made precise inside the proof of Theorem 1.1.

The intuition for claim (iii). Assume that the instance i∗,
where the real input x = (x1, x2) to the communication protocol P
is embedded in v, is not corrupted. We argue that P can efficiently
simulate M .

Let Γ be the sequence of configurations that M goes through
on input v. We say that a configuration is input-private to player p
if the input head is scanning a symbol from vp,i∗ (which is where xp

is embedded). Intuitively, we want player p to simulate the transi-
tion out of a configuration that is input-private to player p, because
only it knows the symbols in vp,i∗ = xp. Moreover, symbols might
be pushed on the stack in such a transition, in which case we say
that any such stack symbol is private to player p. We say that a
configuration is stack-private to player p if the transition out of this
configuration pops a stack symbol that is private to player p. Intu-
itively, we want player p to simulate such a transition in order to
avoid communicating stack contents during the protocol. All other
configurations are public. Since we assumed instance i∗ is not cor-
rupted, we know there is no configuration which is input-private
and stack-private to different players.

The players simulate Γ by alternating between public and pri-
vate simulation. At the end of each privately simulated section, the
player performing that simulation communicates: the state of the
SM, the lowest stack level reached during the private simulation
section, the current stack level, and the top stack symbol. It can
be shown that the cost of the communication at the end of each
privately simulated section is O (s). In the proof of Lemma 4.2, we
argue that the information communicated is sufficient for the play-
ers to obtain a “hollow view” of the stack: Each player knows the
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public stack symbols, the stack symbols which are private to itself,
and the locations of the stack symbols private to other players.
Moreover, this hollow view is sufficient for the players to continue
the simulation until the end of Γ.

Finally, let us give an informal bound on the amount of commu-
nication. Observe that input-private configurations form exactly
2 · r contiguous subsequences in Γ. Let us denote these contiguous
zones of input-private configurations in Γ by Sa, for 1 ≤ a ≤ 2 · r.
Let γa and γ′

a be the configurations at the beginning and end of
Sa, respectively. Observe that the stack at the end of Sa (in γ′

a)
contains at most a contiguous zones of private stack symbols, at
most one such zone corresponding to each previous input-private
section Sa′ , with a′ ≤ a. Some of these zones might be accessed
before Sa+1. As explained in detail in the proof of Lemma 4.2, the
players in the protocol can simulate the sequence of configurations
between γ′

a and γa+1 using as many privately simulated sections as
there are contiguous zones of private stack symbols in γ′

a. Since
a ≤ 2 · r, the number of privately simulated sections between γ′

a

and γa+1 is O (r). Summing over all a and taking into account the
privately simulated sections Sa, we get that, in total, the simula-
tion of Γ can be performed using at most O (r2) privately simulated
sections. Hence, the communication bound for the entire protocol
is O (r2 · s).

Putting (i), (ii) and (iii) together, assuming that we have a
SM for IP2,N/2, we obtain a randomized communication protocol
for IP2,n that has error O (r2/m) and cost O (r2 · s). As long as
r2/m = o (1), the known randomized communication complexity
lower bound R2,ε(IP2,n) ≥ Ω (n) applies (Chor & Goldreich 1988),
where R2,ε denotes the 2-party randomized communication com-
plexity for protocols with error ≤ ε (see e.g., Kushilevitz & Nisan
1997 for definitions). Thus, we obtain the trade-off lower bound
r(N)2 · s(N) ≥ Ω (n) = Ω

(
N1/2

)
.

What was left out of this outline. First, the number of play-
ers in this outline is set to k = 2. While this is sufficient to derive
SM trade-off lower bounds for Inner Product-like functions, we
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need to allow the number of players to be a function of the input
size, that is, k = k(n), in order to obtain inapproximability results
for the frequency moments problem in Corollary 1.3.

Second, the Inner Product function is of such a nature that
no matter how the players in P choose the decoy instances yp,i ∈
{0, 1}n for p ∈ [2] and i �= i∗, they can always retrieve f(x) =
IP(x1, x2) from F (v) = IP(v1, v2) by computing the XOR of all
decoy instances IP(y1,i, y2,i) together with F (v). This is a property
of the top-level gate in IP, which is XOR. In order to deal with
the frequency moments problem, we use a reduction involving the
promise Set Intersection problem, which has top-level gate OR. In
this case, in order to be able to retrieve f(x) from F (v), the decoy
instances must be 0-instances, and only then do we have f(x) =
F (v). To accommodate for this requirement and still achieve claim
(ii), we need to treat 0-inputs and 1-inputs differently inside the
proof of Theorem 1.1.

Third, we need to fill in the details of the simulation informally
described as claim (iii).

Fourth, there is the issue of two-way versus one-way passes.
This outline only considers how to obtain trade-off lower bounds
for SMs with one-way access to the input. A SM with two-way
access to the input can compute IP with only 2 passes (use the
stack to store one vector for the inner product). The point where
this framework breaks down is claim (i), which is outright false.
Consider the case when p1 = 1, p2 = 2, the pass l1 = 1 is left-to-
right, and the pass l2 = 2 is right-to-left. We see that the instances
are visited in the pass 1 in the order 1, 2, . . . ,m − 1,m, and they
are visited in the pass 2 in the order m,m− 1, . . . , 2, 1. Then, the
associated “corrupting” stack symbols can be pushed in the order
1, . . . ,m and popped in the order m, . . . , 1, without violating the
access semantics of a stack. Thus, potentially all instances can
be corrupted by a single 4-tuple (1, 2, 1, 2), which is precisely what
happens in the simple 2-pass protocol seen earlier.

In order to obtain trade-off lower bounds for SMs with two-
way access, we need to fix claim (i). To that end, we “scramble”
the order in which the m instances are seen in pass l1 over vp1

and in pass l2 over vp2 , no matter what p1 and p2 are, and no
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matter whether the passes l1 and l2 are left-to-right or right-to-
left. Informally, we achieve this by reordering the m instances
corresponding to each player using a family of permutations Φ =
(ϕ1, . . . , ϕk), with one permutation for each player that has the
following property.

For p ∈ [k], let σp := (ϕp(1), . . . , ϕp(m)) and σrev
p :=

(ϕp(m), . . . , ϕp(1)). Then, for every p1 �= p2, σ
′
1 ∈

{σp1 , σ
rev
p1

}, and σ′
2 ∈ {σp2 , σ

rev
p2

}, σ′
1 and σ′

2 have as
small a common subsequence as possible.

It turns out that there exist families Φ where any such common
subsequence has size O (

√
m) (Beame & Huynh-Ngoc 2008).

3. Definitions and facts

We use standard definitions for computational complexity classes
(see, e.g., Arora & Barak 2009) and communication complexity
notions (see, e.g., Kushilevitz & Nisan 1997).

Notation. We use n to denote the size of the input to a player
in a communication protocol. The number of players is k = k(n),
which is a non-decreasing function of n. A (randomized) k-player
number-in-hand protocol (NIH) is defined as a communication pro-
tocol where each player uses private randomness holds only her own
part (1/k-th) of the input and communication happens through
a shared blackboard (for a detailed definition see Kushilevitz &
Nisan 1997). We use f = fk,n : ({0, 1}n)k → {0, 1} to denote a
generic boolean function which we are interested in computing in
the communication model.

We use F to denote a generic function that we are interested
in computing in the Stack Machine model. In general, F consists
of m instances of a base function fk,n combined together by com-
bining function hm : {0, 1}m → {0, 1}. The number of instances,
m = m(n), is a non-decreasing function of n. We denote by N the
size of the input to F , so N = N(n) = k ·m · n. We use s = s(N)
and r = r(N) to denote non-decreasing functions bounding the
space and the number of passes a SM is allowed (these are defined
below).
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The Inner Product function IP2,n : ({0, 1}n)2 → {0, 1} is de-
fined as in the beginning of the previous section. The Set Inter-
section function SetIntk,n : ({0, 1}n)k → {0, 1} is defined by
SetIntk,n(x1, . . . , xk) =

∨n
i=1

(∧k
j=1xj,i

)
. In the promise Set Inter-

section function pSetIntk,n, we are promised that the inputs satisfy
the following: There is at most one i ∈ [n] such that ∧k

j=1xj,i = 1;
and for every i ∈ [n] where ∧k

j=1xj,i = 0, there is at most one j ∈ [k]
such that xj,i = 1.

Stack machines. A deterministic (uniform) Stack Machine
(SM) is a Turing Machine with a fixed number of internal tapes,
a single read-only external tape of unbounded size containing the
input and a stack. The stack is implemented as an additional one-
way infinite tape that follows the access semantics of a push-down
store (Cook 1971). A randomized SM is allowed to flip an unbiased
coin before every single transition. We say that a randomized SM
computes a (boolean) function with error δ if it computes correctly
(two-sided) with probability ≥ 1 − δ.

Let s, r be non-decreasing functions. A SM has a space bound s
if, for every N , the size of its work tapes is at most s(N) on inputs
of length N . A SM has a pass bound r if, for every N , the number
of passes it makes over the input tape is at most r(N) on inputs of
length N . Neither of these bounds refers in any way to the stack.

Without losing generality, we make the following assumptions
about SMs:

(1) A SM has enough space on its work tapes to record the posi-
tion of the head on the input tape. That is, s(n) ≥ Ω (logN).

(2) In every pass over the input tape, the input head travels from
one end of the tape to the other.

(3) The stack in a SM is empty both at the beginning and at the
end of its computation.

(4) In every transition of a SM, exactly one of the following
occurs:

• the input head moves on the input tape, referred to as
a move transition; or

• a symbol is pushed on the stack, referred to as a push
transition; or
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• a symbol is popped from the stack, referred to as a pop
transition.

It turns out that we need to consider non-uniform Stack
Machines in one of our proofs. Naturally, the non-uniform model is
more powerful than the uniform one, so lower bounds for the non-
uniform model are stronger. Moreover, communication protocols
are by definition a non-uniform model of computation, so when a
communication protocol simulates a Stack Machine, we might as
well assume the Stack Machine is also non-uniform.

For a fixed input length N , a stack automaton AN is an autom-
aton with a read-only input tape of size N , a set of states whose
size can now depend on N , and a stack. Assumptions (1)–(4) still
apply. A stack automaton AN has a space bound s(N) if AN has
at most 2s(N) states. AN has a pass bound r(N) if AN makes at
most r(N) passes over its input.

A non-uniform Stack Machine is a collection A = (AN)N∈N

of stack automata, one for each input length. For non-decreasing
functions r, s, a non-uniform SM A = (AN) has a space bound s
and a pass bound r if, for every N , AN has a space bound s(N)
and a pass bound r(N), respectively.

A (full) configuration of a SM contains:

• the state and the full contents of the work tapes in the uni-
form case, or simply the state in the non-uniform case;

• the location of the head on the input tape; and
• the entire contents of the stack.

A surface configuration of a SM is the same as a full configuration,
but instead of the entire stack contents, it only includes

• the top stack symbol.

Fact 3.1. Let A = (AN) be a non-uniform SM that halts on every
input and runs in space s = s(N). Then, for large enough N and
for every input w of length N , the maximum stack height of A
during its run on w is at most 24·s(N).

Proof (Proof of Fact 3.1). Assume the claim does not hold. Let
c denote the (constant) number of symbols in the stack alphabet
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of A. Let N be large enough so that s(N) ≥ log c (note that
s(N) ≥ logN by assumption (1)). Fix an input w of size N on
which the stack reaches height more than 24·s(N). Let Γ be the
sequence of configurations of M on w. Let γ ∈ Γ be a configura-
tion in which the stack contains strictly more than 24·s(N) symbols.

For every stack level l, with 1 ≤ l ≤ 23·s(N) + 1 < 24·s(N), let
γl be the last configuration preceding γ in which the symbol at
level l is at the top of the stack. Obviously, the transition out of
γl is a push transition. For every such l, let γ̄l denotes the surface
configuration corresponding to γl.

Observe that a surface configuration can be represented using
logN+s(N)+log c ≤ 3·s(N) bits. Since there are more than 23·s(N)

symbols on the stack, a surface configuration must be repeated.
Accordingly, let 1 ≤ l1 < l2 ≤ 23·s(N) + 1 be stack levels such that
γ̄l1 = γ̄l2 .

By definition, γl1 is the last configuration when the stack level
was l1. Hence, the SM got from γl1 to γl2 without accessing a
symbol at level l1 or below. But then, since γ̄l2 = γ̄l1 , the SM is
bound to repeat this part of its computation, eventually ending up
in a configuration γl3 with l3 − l2 = l2 − l1 and γ̄l3 = γ̄l2 . This
process is repeated indefinitely, so the SM does not halt on w, a
contradiction. �

Permutations, sequences, and sortedness. Let Sm denotes
the set of all permutations of [m]. Let id denotes the identity
permutation. For a permutation π ∈ Sm, let seq(π) denotes the
m-element sequence (π(1), π(2), . . . , π(m)). For a sequence σ, let
σrev denotes σ reversed. For example, seq(π)rev = (π(m), . . . , π(1)).
For two sequences σ1, σ2, let LCS(σ1, σ2) denote their longest com-
mon (not necessarily contiguous) subsequence. For a sequence σ,
let |σ| denotes its length.

Consider two permutations ϕ1, ϕ2 ∈ Sm. We measure their
relative sortedness according to the following experiment.

Intuitively, imagine we lay out seq(ϕ1) = (ϕ1(1), . . . ,
ϕ1(m)) on one tape and seq(ϕ2) = (ϕ2(1), . . . , ϕ2(m))
on another tape. We are allowed two passes, one
over each tape, in parallel, with the heads moving
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independently of each other. We can choose to make
the pass over each tape left-to-right or right-to-left. We
“eliminate” an index a ∈ [m] if, at some point during
the two passes, a is the value being scanned on both
tapes. We define the relative sortedness of ϕ1 and ϕ2

to be the maximum number of indices we can eliminate
in this way.

Formally,

relsort (ϕ1, ϕ2)

:= max {|LCS(σ1, σ2)| | ∀i ∈ [2], σi ∈ {seq(ϕi), seq(ϕi)
rev}}

For example, for

ϕ1 =
(

1 2 3 4 5 6
2 1 4 3 5 6

)
and ϕ2 =

(
1 2 3 4 5 6
3 6 4 1 5 2

)
,

we have relsort (ϕ1, ϕ2) = 4, because (2, 1, 4, 3) is a common sub-
sequence of seq(ϕ1) and seq(ϕ2)

rev.
For a set of permutations Φ = {ϕ1, . . . , ϕt}, we define its rela-

tive sortedness to be the maximum relative sortedness of any two
of its members. Formally,

relsort (Φ) := max {relsort (ϕi, ϕj) | i �= j ∈ [t]} .
We use the following Fact to obtain sets of permutations with

small relative sortedness.

Fact 3.2. Let ϕ1, ϕ2 ∈ Sm. If relsort (ϕ1, ϕ2) = t, then seq(ϕ−1
2 ◦

ϕ1) contains a monotone subsequence of length t.

Proof (of Fact 3.2). First, assume (i1, i2, . . . , it) is a common
subsequence of seq(ϕ1) and seq(ϕ2). In this case, the correspond-
ing sequences of pre-images are both non-decreasing, (ϕ−1

1 (i1) <
ϕ−1

1 (i2) < · · · < ϕ−1
1 (it)) and (ϕ−1

2 (i1) < ϕ−1
2 (i2) < · · · < ϕ−1

2 (it)).
Let i′j := ϕ−1

1 (ij) for j ∈ [t], and observe that ϕ−1
2 (ϕ1(i

′
j)) =

ϕ−1
2 (ij). Then, (i′1, i

′
2, . . . , i

′
t) is a subsequence of (1, 2, . . . ,m), so

(ϕ−1
2 ◦ ϕ1(i

′
1) < ϕ−1

2 ◦ ϕ1(i
′
2) < · · · < ϕ−1

2 ◦ ϕ1(i
′
t)) is an increas-

ing subsequence of (ϕ−1
2 ◦ ϕ1(1), ϕ−1

2 ◦ ϕ1(2), . . . , ϕ−1
2 ◦ ϕ1(m)) =

seq(ϕ−1
2 ◦ ϕ1).
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The cases when the subsequence (i1, i2, . . . , it) comes from
seq(ϕ1)

rev instead of seq(ϕ1), or from seq(ϕ2)
rev instead of seq(ϕ2),

or both, are treated similarly. The only difference is that one or
both of the corresponding sequences of pre-images are now decreas-
ing, which might change the monotonicity of the resulting subse-
quence of seq(ϕ−1

2 ◦ ϕ1). �
By Fact 3.2, to obtain permutations with small relative sorted-

ness, it is enough to require that the (sequences of their) corre-
sponding compositions have small monotone subsequences. This
method comes with a limitation, as by the Erdös–Szekeres The-
orem (Erdös & Szekeres 1935), every sequence of m distinct ele-
ments contains a monotone subsequence of length 
√m�. Thus, the
smallest relative sortedness that we can achieve between two per-
mutations using Fact 3.2 is Θ (

√
m). Grohe & Schweikardt (2005)

show that, in fact, a very simple permutation has asymptotically
optimal relative sortedness with the identity permutation.

Fact 3.3 (Lemma 6 in Grohe & Schweikardt 2005). For every
m, there exists a permutation ψ∗

m ∈ Sm such that relsort (id, ψ∗
m) ≤

2 · √m− 1. Furthermore, ψ∗
m can be computed in space O (logm).

Beame & Huynh-Ngoc (2008) use a simple counting argument
to show that a similar bound, still asymptotically optimal, can be
achieved even for sets of permutations.

Fact 3.4 (Corollary 2.2 in Beame & Huynh-Ngoc 2008). Let
k = k(m) be a function such that k ≤ mO(1). There exists a family
Φ∗ =

(
Φ∗

k,m

)
m

where Φ∗
k,m = {ϕ1, . . . , ϕk} is a set of k permutations

from Sm, such that relsort
(
Φ∗

k,m

) ≤ O (
√
m).

Permuted functions. Let f = fk,n : ({0, 1}n)k → {0, 1} be a
base function. Let h = hm : {0, 1}m → {0, 1} be a combining
function. Let Φ = Φk,m = {ϕ1, . . . , ϕk} be a set of k permuta-
tions from Sm. In what follows, we define LiftMix (fk,n, hm,Φk,m) :

({0, 1}m·n)k → {0, 1} which is a lift-and-mix function that consists
of m instances of f , permuted by Φ, and combined by h.

Let v ∈ ({0, 1}m·n)k be an input. Let v = (v1, . . . , vk), where
vp ∈ {0, 1}m·n for every p ∈ [k]. Let vp = (vp,1, . . . , vp,m), where
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vp,i ∈ {0, 1}n for every (p, i) ∈ [k]×[m]. Let vp,i = (vp,i,1, . . . , vp,i,n),
where vp,i,j ∈ {0, 1} for every (p, i, j) ∈ [k] × [m] × [n]. When v is
given as an input to a TM, v appears on the input tape as

v1,1, . . . , v1,m︸ ︷︷ ︸
v1

, v2,1, . . . , v2,m︸ ︷︷ ︸
v2

, . . . , vk,1, . . . , vk,m︸ ︷︷ ︸
vk

,

and for (p, i) ∈ [k] × [m], vp,i appears as the sequence of bits

vp,i,1, vp,i,2, . . . , vp,i,n.

For (p, i′) ∈ [k] × [m], we say that vp,ϕ−1
p (i′) is the i′-th instance

(of f) inside vp. For i′ ∈ [m], we define the i′-th instance (of f)
inside v to be

v[i′],Φ :=
(
v1,ϕ−1

1 (i′), v2,ϕ−1
2 (i′), . . . , vk,ϕ−1

k (i′)

)
∈ ({0, 1}n)k .

For (p, i) ∈ [k]× [m], vp,i appears in v[i′],Φ if and only if i = ϕ−1
p (i′).

Since this is equivalent to i′ = ϕp(i), we observe the following basic
fact.

Fact 3.5. The order on the tape of the m instances inside vp

is (ϕp(1), ϕp(2), . . . , ϕp(m)), which is precisely seq(ϕp). Thus,
a left-to-right tape scan over vp visits the m instances in the
order seq(ϕp), and a right-to-left tape scan visits them in the order
seq(ϕp)

rev.

We now define the lift-and-mix function
LiftMix (f, h,Φ) : ({0, 1}m·n)k → {0, 1} by

LiftMix (f, h,Φ) (v) := h(f(v[1],Φ), f(v[2],Φ), . . . , f(v[m],Φ)).

We embed an input to f into a specific instance of an input to
F as follows. Let x ∈ ({0, 1}n)k be an input to f . Let i∗ ∈ [m]
be an instance number. Let ȳ−i∗ = (y1, . . . , yi∗−1, yi∗+1, . . . , ym) be
a set of m − 1 inputs to f , where yi ∈ ({0, 1}n)k for i �= i∗. We
define vΦ(i∗, x, ȳ−i∗) to be the input to F in which x is embedded at
instance i∗ and yi is embedded at instance i, for i �= i∗. Formally,

vΦ(i∗, x, ȳ−i∗) := v ∈ ({0, 1}m·n)k such that

{
v[i],Φ = x, i = i∗,

v[i],Φ = yi, i �= i∗.
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Corrupted instances. Let M be a deterministic SM and v be
an input of size N = k · m · n. We say that instance i ∈ [m] is
corrupted in v on M if there exist players p1 �= p2 ∈ [k] such that,
during the run of M on v, a symbol is pushed on the stack when
the input head is scanning vp1,ϕ−1

p1
(i) and that symbol is popped

when the input head is scanning vp2,ϕ−1
p2

(i), where ϕp1 , ϕp2 ∈ Φk,m.

Observe that both strings above are part of v[i],Φ, which is instance
i inside v.

Let BAD(M, v) ⊆ [m] be the set of all instances which are
corrupted in v on M . Observe that this definition implicitly
depends on the values of k,m, n, and Φ, so we should formally
write BADk,m,n,Φ(M, v). We use the shorter form for brevity.

Neutral element. We say that a combining function h has a
neutral element e ∈ {0, 1} if for every b ∈ {0, 1} and for every
i ∈ [m],

h(e, . . . , e︸ ︷︷ ︸
i−1

, b, e, . . . , e︸ ︷︷ ︸
m−i

) = b.

Observe that both OR and XOR have neutral element e = 0.

4. The reduction

Theorem 1.1 (Restated). Let k = k(n) ≥ 2 be a non-decreas-
ing function, and let m = m(n) ≥ 1 be a non-decreasing func-
tion such that k ≤ mO(1). Let N = N(n) := k · m · n. Let
s = s(N) and r = r(N) be non-decreasing functions. Let δ < 1/2
be a constant. Let Φ = (Φk,m)m be a family of permutations,
where Φk,m = {ϕ1, . . . , ϕk} are k permutations from Sm. Let d :=
k · r · log r · relsort (Φk,m) /m.

Let f = fk,n be a boolean base function and let h = hm be
a combining function with a neutral element. Let F = FN :=
LiftMix (fk,n, hm,Φk,m).

Assume there exists a randomized non-uniform SM M for F
with space bound s, pass bound r, and error δ. Then, there exists
a randomized k-player NIH communication protocol P for f , with
cost O (k · r · s · log(k · r)) and error at most δ + O (d).
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To prove this Theorem, we use the following two Lemmas,
which correspond to claims (i) and (iii) in the outline from Sec-
tion 2. Throughout this entire section, let n, k,m,N, s, r,Φ be as
in Theorem 1.1. Furthermore, in what follows for the fixed Φ the
players construct an input vΦ(·), which we denote by v(·) for sim-
plicity.

The first Lemma gives a bound on the number of corrupted
instances inside a fixed input. As such, it directly corresponds to
claim (i) from the outline in Section 2. As opposed to that claim,
the Lemma allows for a growing number of players k = k(n) and
for two-way passes over the input tape thanks to the “scrambling”
of instances according to the family of permutations Φ.

Lemma 4.1. Let M ′ be a deterministic non-uniform SM with
space bound s and (two-way) pass bound r. Let v′ be an input
of size N . Then, |BAD(M ′, v′)| ≤ O (k · r · log r · relsort (Φk,m)).

The next Lemma corresponds to claim (iii) from the outline in
Section 2. It says that if the players in a communication protocol
embed their input in a non-corrupted instance, then the protocol
can efficiently simulate the SM.

Lemma 4.2. Let M ′ be a deterministic non-uniform SM. Let
i∗ ∈ [m] be an instance number, and let ȳ−i∗ = (y1, . . . ,
yi∗−1, yi∗+1, . . . , ym) be a set of m − 1 inputs to f . Then, there
exists a deterministic k-player NIH communication protocol P ′ =
P ′(M ′, i∗, ȳ−i∗) such that, on input x:

• if i∗ ∈ BAD(M ′, v(i∗, x, ȳ−i∗)), then P ′ outputs “fail”;
• otherwise, P ′ correctly simulatesM ′ and outputsM ′(v(i∗, x,
ȳ−i∗));

• the cost of P ′ is O (k · r · log(k · r) · s).
We give the proofs of Theorem 1.1 and Lemmas 4.1 and 4.2 in

the following three sections.

4.1. Proof of the main theorem. In this section, we prove
Theorem 1.1 using Lemmas 4.1 and 4.2.

For every q, let Mq denote the deterministic non-uniform SM
obtained by running M with random string q.
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Let D be any distribution on the space ({0, 1}n)k of inputs to
f . Below, we give a randomized protocol PD for f with cost and
error as described in Theorem 1.1, but with error computed over
the choice of the input x from D and of the random coins ρ in
P . By standard arguments,1 we can fix ρ to obtain a deterministic
protocol with the same error, but only over the choice of x from D.
Since such a protocol exists for every distribution D, by Yao’s min–
max principle (e.g., Theorem 3.20 in Kushilevitz & Nisan 1997),
the conclusion of Theorem 1.1 follows.

Without loss of generality, assume that the neutral element of
the combining function h is e = 0. If instead we have neutral
element e = 1, the same proof applies with the roles of 0 and 1
reversed.

If D has support only on 0-inputs or only on 1-inputs, PD is
trivial. Otherwise, let D0 be the distribution D, conditioned on
f(x) = 0. Similarly, we define D1 as D conditioned on f(x) = 1.

Consider the following protocol PD:

On input x (where player p gets xp) and shared random
string ρ:
Publicly draw i∗ uniformly from [m]
Publicly draw ȳ−i∗ = (y1, . . . , yi∗−1, yi∗+1, . . . , ym−1) from

(D0)
m−1

Publicly draw q uniformly
(where q has as many bits as the running time
of M)

Run P ′ = P ′(Mq, i
∗, ȳ−i∗) (from Lemma 4.2) on input x,

simulating Mq on v(x, i∗, ȳ−i∗)
If P ′ outputs “fail”, then PD outputs 1.
Else, PD outputs the same value as P ′, that is,

Mq(v(x, i
∗, ȳ−i∗))

Observe that, since the neutral element of h is e = 0, and
since the instances in ȳ−i∗ are drawn from D0, we always have
f(x) = F (v), where v = v(i∗, x, ȳ−i∗). Clearly, the cost of PD is

1 That is, some ρ must perform well on the average. Now consider the
deterministic algorithm that fixes the randomness to this ρ (see Theorem 3.20
Kushilevitz & Nisan 1997) for a detailed similar argument.
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equal to the cost of P ′, which is O (k · r · log(k · r) · s). To argue
about the error in PD, we define the following events:

A = A(x, ρ): PD is correct on input x with coins ρ,
B = B(q, v): M is correct on input v with coins q (i.e.,
Mq(v) = F (v)),
C = C(i∗, q, v): instance i∗ is not corrupted in v on Mq

(i.e., i∗ /∈ BAD(Mq, v)).

Our goal is to show Pr
[
A

] ≤ δ + O (d). By Lemma 4.2, the sim-

ulation in P ′ fails if and only if C. Let α := Prx[f(x) = 1]. We
write

Pr[A] = α · Pr[A|f(x) = 1] + (1 − α) · Pr[A|f(x) = 0].

For the left term, consider the conditioning f(x) = 1. PD is
correct if either the simulation in P ′ fails (and PD correctly out-
puts 1), or the simulation in P ′ does not fail and Mq is correct.
Thus, C∨ (C∧B) ⇒ A, in particular B ⇒ A, so Pr[A|f(x) = 1] ≥
Pr[B|f(x) = 1]. The event f(x) = 1 is independent of the choice
of q, and by the correctness condition of M , ∀v,Prq[B(q, v)] ≥
1 − δ. Hence, Pr[B|f(x) = 1] =

∑
x PrD1 [sample x] · Pr[B|x] ≥∑

x PrD1 [sample x] · (1 − δ) = 1 − δ.
For the right term, consider the conditioning f(x) = 0. Then,

PD is correct whenever the simulation in P ′ works and Mq is cor-
rect, thus B ∧ C ⇒ A, and

Pr [A | f(x) = 0] ≥ Pr [B | f(x) = 0] · Pr [C | B, f(x) = 0] .

As before, Pr[B|f(x) = 0] ≥ 1 − δ. Next, i∗ is clearly statisti-
cally independent of x and q. Furthermore, under the conditioning
f(x) = 0, we claim that i∗ is statistically independent from v. To
see this, notice how the distribution obtained on pairs (i∗, v) in
PD is the same as independently choosing m 0-inputs from D0 and
combining them in v, and choosing i∗ uniformly from [m]. Thus,
in the expression Pr[C(i∗, q, v)|B(q, v), f(x) = 0], the conditioning
depends on (x, v, q), C itself depends on i∗, and i∗ is statistically
independent from (x, v, q).
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By Lemma 4.1,

∀(q, v), Pr
i∗

[
C(i∗, q, v)

]
≤ O (k · r · log r · relsort (Φk,m))

m
≤ O (d).

Then, Pr[C|B, f(x) = 0] >
∑

x PrD0(x) · (1 −O(d)) = 1 − O (d).
Putting everything together, we get

Pr [A] = α · Pr [A|f(x) = 1] + (1 − α) · Pr [A|f(x) = 0]

≥ α · (1 − δ) + (1 − α) · (1 − δ) · (1 − O (d))

≥ (1 − δ) · (1 − O (d)).

Then, Pr
[
A

] ≤ δ + O (d).

4.2. Bounding the number of corrupted instances. In this
Section, we formally prove Lemma 4.1, which corresponds to claim
(i) in the outline from Section 2.

Let M ′ be a deterministic non-uniform SM with space bound
s and pass bound r. Let v′ be an input of size N . We want to
show that the number of corrupted instances in v′ on M ′ (that is,
|BAD(M ′, v′)|) is at most O (k · r · log r · relsort (Φk,m)).

We say that instance i ∈ BAD(M ′, v′) is corrupted by the
4-tuple (l1, l2, p1, p2) if l1 ≤ l2, p1 �= p2, and this is the lexico-
graphically smallest 4-tuple such that a symbol is pushed on the
stack during pass l1 with the input head scanning vp1,ϕ−1

p1
(i) (which

is instance i inside vp1), and popped from the stack during pass l2
with the input head scanning vp2,ϕ−1

p2
(i) (which is instance i inside

vp2). In what follows, we first consider the question of how many
instances can be corrupted by one 4-tuple. Then, we argue that
not all 4-tuples can simultaneously corrupt instances.

Fix one 4-tuple (l1, l2, p1, p2). Let I ⊆ [m] be the set of in-
stances that are corrupted by this 4-tuple and let t = |I|. Label
the instances in I by (i1, i2, . . . , it), in the order in which they
are visited in the pass l1 over vp1 . By Fact 3.5, we see that,
depending on whether the pass l1 is left-to-right or right-to-left,
(i1, i2, . . . , it) is a subsequence of either seq(ϕp1) or seq(ϕp1)

rev. Fur-
thermore, because of the First-In Last-Out semantics of a stack,
the instances in I must be visited in the order (it, . . . , i2, i1) in



28 David & Papakonstantinou cc (2013)

the pass l2 over vp2 . Then, again by Fact 3.5, (it, . . . , i2, i1) is a
subsequence of either seq(ϕp2) or seq(ϕp2)

rev. Therefore, we see
that in any case (i1, i2, . . . , it) is a common subsequence of one of
{seq(ϕp1), seq(ϕp1)

rev} and one of {seq(ϕp2), seq(ϕp2)
rev}. Hence,

t ≤ relsort (ϕp1 , ϕp2) ≤ relsort (Φk,m).
Next, consider the r × r matrix A, where A[l1, l2] := 1 if there

exist p1, p2 ∈ [k] such that some instance is corrupted by the tuple
(l1, l2, p1, p2) and A[l1, l2] := 0 otherwise. Note that A = 0 under
the main diagonal, because for a tuple to corrupt an instance we
must have l1 ≤ l2.

Moreover, for j ≥ 1, consider the diagonal l2 − l1 = j, and two
entries on this diagonal that are j′ cells apart, for 1 ≤ j′ < j. We
claim that we cannot have A[l1, l1+j] = 1 and A[l1+j

′, l1+j+j′] =
1. Assume this were true. Then, some instance i is corrupted
because a symbol is pushed on the stack in the pass l1 and popped
in the pass l1 + j, and another instance i′ is corrupted because a
symbol is pushed on the stack in the pass l1 + j′ and popped in the
pass l1 + j + j′. But, with these settings, l1 < l1 + j′ < l1 + j <
l1 + j + j′, which contradicts the First-In Last-Out semantics of a
stack.

Hence, for j ≥ 1, the diagonal l2 − l1 = j can contain at most
r/j 1’s. In total, we see that A contains at most O (r · log r) 1’s.

Finally, for fixed l1 ≤ l2, consider the k× k matrix B = B(l1,l2),
where B[p1, p2] := 1 if some instance is corrupted by the tuple
(l1, l2, p1, p2) and B[p1, p2] := 0 otherwise. First, consider the case
when both passes l1 and l2 are left-to-right.

We claim that, for j′ ≥ 1, we cannot have B[p1, p2] = 1 and
B[p1 + j′, p2 + j′] = 1. Assume this were true. Then, some instance
i is corrupted because a symbol is pushed on the stack during the
pass l1 over vp1 and popped during the pass l2 over vp2 , and another
instance i′ is corrupted because a symbol is pushed on the stack
during the pass l1 over vp1+j′ and popped during the pass l2 over
vp2+j′ . But in the pass l1, vp1 is visited before vp1+j′ , and in the
pass l2, vp2 is visited before vp2+j′ . This contradicts the First-In
Last-Out semantics of a stack.

Hence, on every diagonal i2 − i1 = j, the matrix B can con-
tain a single 1. In total, B contains at most O (k) 1’s. The cases
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where either pass l1 or l2 or both are right-to-left are treated simi-
larly (except that we have to count the entries on the top-right to
bottom-left diagonals when the directions of the two passes differ).

So, at most O (k · r · log r) 4-tuples can corrupt instances,
and each 4-tuple can corrupt at most relsort (Φk,m) instances.
Therefore,

|BAD(M ′, v′)| ≤ O (k · r · log r · relsort (Φk,m)).

4.3. Simulating a SM with a protocol. In this Section, we
prove Lemma 4.2, which corresponds to claim (iii) in the outline
from Section 2.

Let M ′ be a deterministic non-uniform SM with space bound
s and pass bound r. Let i∗ ∈ [m] and let ȳ−i∗ be a set of m − 1
inputs to f . Our goal is to show that there exists a deterministic
k-player NIH communication protocol P ′ = P ′(M ′, i∗, ȳ−i∗) that,
on input x,

• if i∗ ∈ BAD(M ′, v(i∗, x, ȳ−i∗)), then P ′ outputs “fail”;
• otherwise, P ′ correctly simulates M ′ and outputs M ′(v(i∗, x,
ȳ−i∗));

• the cost of P ′ is O (k · r · log(k · r) · s).
Fix an input x and let v := v(i∗, x, ȳ−i∗). Observe that the play-

ers in P ′ share i∗ and ȳ−i∗ , and their private inputs are x1, . . . , xk.
Thus, from the input v to M ′, they each know all instances i �= i∗,
and from instance i∗, player p only knows xp. Furthermore, observe
that the goal of P ′ is not to compute f , but rather, to compute
the output of M ′ on v.

Private input symbols. We say that an input symbol from v
is private to player p if it’s part of vp,ϕ−1

p (i∗), which is where xp, the
input to player p, is embedded in v. Input symbols that are not
private to any player are public.

Private stack symbols. Let Γ be the sequence of configura-
tions of M ′ on v. Consider a configuration γ ∈ Γ and look at
the contents of the stack in γ. For every symbol ξ appearing on
the stack, we say that the stack symbol ξ is private to player p if



30 David & Papakonstantinou cc (2013)

the input head was scanning an input symbol private to player p
in the configuration prior to the transition in which ξ was pushed
on the stack. A stack symbol that is not private to any player is
public.

Input-private and stack-private configurations. We say
that configuration γ is input-private to player p if the input head
in γ is scanning an input symbol that is private to player p. We say
that configuration γ is stack-private to player p if it is not input-
private to player p, the transition out of γ is a pop transition and
the top stack symbol in γ is private to player p. A configuration
that is neither input-private nor stack-private is public.

Intuitively, player p is responsible for simulating the transi-
tions out of configurations that are input-private or stack-private
to itself. Note that, there exists a configuration that is input-
private and stack-private to two different players if and only if
i∗ ∈ BAD(M ′, v).

Hollow view. We say that player p sees a hollow view of the
stack in a configuration γ if player p knows:

(i) the stack height;
(ii) for every symbol on the stack, whether it is public, or the

player to which it is private (without knowing the symbol
itself);

(iii) all stack symbols that are public or private to itself; and
(iv) for every p′ �= p, the top stack symbol in any contiguous zone

of symbols private to player p′.

We say that a player sees a hollow view of the configuration γ if it
knows the state of the SM, the location of the input head, and it
also sees a hollow view of the stack in γ.

Some simple facts. In the protocol P ′, the players simulate Γ
transition by transition, always using hollow views of the configu-
rations along the way. We observe the following facts.

(1) If a player p sees a hollow view of a configuration γ, then
that player can determine whether γ is public, input-private
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to some player (since it knows the location of the input head),
or stack-private. There is a mild subtlety involving the latter,
specifically, the definition of γ being stack-private involves
knowing that the transition out of γ is a pop transition. To
this end, observe that, by virtue of part (iv) of the hollow
view of the stack, if γ is not input-private, then player p
knows the transition out of γ, even in the case when the top
stack symbol is private to another player.

(2) If a player sees a hollow view of a public configuration γ, then
that player can compute a hollow view of the configuration
following γ (denoted by next(γ)).

(3) As long as i∗ /∈ BAD(M ′, v), if player p sees a hollow view of
a configuration γ which is input-private or stack-private to
player p, then player p can compute a hollow view of next(γ).

(4) If player p sees a hollow view of a configuration γ that is
input-private to itself, it can detect whether γ is stack-pri-
vate to another player p′ �= p.

The protocol. We now describe the protocol P ′. The sequence Γ
is split into several contiguous sections, each of which is of exactly
one of the following three types:

(a) Public sections. These sections start with some public con-
figuration (not just any), they consist exclusively of public
configurations, and they extend up to, and including, the
first configuration which is no longer public.

Inductively, by facts (1) and (2) above, if all players have a
hollow view of the configuration at the beginning of a pub-
lic section, they can all simulate the entire public section
starting at that configuration. At the end of the section, the
players give control of the simulation to that player to which
the configuration reached is input-private or stack-private.
All this is done without any communication.

(b) Input-private sections. Each such section starts with, and
contains, a maximal sequence of input-private configurations
to some player p, and it ends with the single configuration
immediately following that sequence. The latter might be
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public, or input-private to a player other than p, or stack-
private to any player (including p).

Inductively, by facts (1), (3), and (4) above, if player p sees
a hollow view of the configuration γ at the beginning of a
sequence of input-private configurations to itself, it can either
detect that instance i∗ is corrupted, in which case player p
aborts the simulation and the protocol P ′ outputs “fail”, or
simulate the entire section. Let γ′ be the configuration at the
end of the section. At this point, player p communicates:

(v) the state in γ′;
(vi) the input head position in γ′;
(vii) the stack height L′ in γ′;
(viii) the top stack symbol in γ′;
(ix) the lowest stack height L′′ achieved in a configuration

between γ and γ′; and
(x) the stack symbol at level L′′.

(c) Mixed stack-private and public sections. Each such section
begins with a configuration that is stack-private to some
player p and contains a mix of configurations that are either
stack-private to p or public.

Let γ be the configuration at the beginning of such a sec-
tion. Let p be the player to which it is stack-private, and
assume this player has a hollow view of γ. Let γ′ be the
first configuration following γ which is either input-private
to any player (including p), or stack-private to a player other
than p. Inductively, by facts (1), (2), and (3) above, player
p can simulate the entire sequence of configurations between
γ and γ′.

The key technical point of this entire proof is determining
the right place where a player stops a privately simulated
section of type (c). It turns out that this is not γ′: doing
so could result in public symbols being placed on the stack
which would only be known to player p, unless they would be
subsequently communicated, which would affect the cost of
the protocol. Furthermore, it turns out it is also a bad idea
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for player p to end this section at the first public configuration
encountered: the subtlety here is that the stack level might
go up and down, and each time it goes down a few private
stack symbols are being popped from the same contiguous
section of private stack symbols. This scenario would hurt
the cost of the protocol, for we could only bound the amount
of communication in terms of the length of the contiguous
zones of private stack symbols, which can be large.

Instead, player p, looking at the entire sequence from γ to
γ′, computes the minimum possible stack level for this sec-
tion, and finds the last configuration γ′′ preceding, and pos-
sibly equal to, γ′ where the stack level is minimal. At this
point, player p communicates (v)–(viii) for configuration γ′′.
Observe that, by definition of γ′′, (ix) and (x) are equal to
(vii) and (viii), respectively.

Having defined the types of simulated sections, we show that
the players have enough information to carry out the simulation.
Let A be the number of different sections in the simulation. We
claim that for every 1 ≤ a ≤ A, all players eventually see a hollow
view of the configuration at the beginning of section a. We prove
this by induction on a.

For a = 1, observe that the initial configuration is either public
or input-private to player 1. In either case, all players see a hollow
view of the stack, because the stack is empty.

Inductively, assume all players have a hollow view of the con-
figuration γ at the beginning of section a ≥ 1.

If the section is of type (a), by fact (2), all players see a hollow
view of the configuration at the end of this section.

If the section is of type (b), let p be the player to which γ is
input-private. Clearly, by fact (3), p itself sees a hollow view of the
configuration γ′ at the end of the section. After p communicates
(v)–(x), each player p′ �= p updates its view of the stack as follows:
it truncates the stack at height L′′; fills it to the height L′ with
symbols private to player p; to compute part (iv) of the hollow
view, player p′ obtains the top stack symbol in γ′ from (ix), and
the stack symbol at level L′′ from (x). Taking into account (v) and
(vi), now player p′ sees a hollow view of γ′.
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If the section is of type (c), let p be the player to which γ is
stack-private. Let γ′′ be the configuration where this section ends.
Clearly, by facts (2) and (3), player p sees a hollow view of γ′′.
After p communicates (v)–(viii) at the end of the section, each
player p′ �= p updates its view of the stack as follows: it truncates
the stack at height L′; and it updates the top stack symbol using
(vii). Taking into account (v) and (vi), now p′ sees a hollow view
of γ′′.

This completes the description of the protocol P ′. If i∗ /∈
BAD(M ′, v), the players get to the final configuration, obtaining
the output of M ′ on input v. If i∗ ∈ BAD(M ′, v), one of the players
detects this during a section of type (b), the simulation is aborted,
and P ′ and outputs “fail”.

The cost of the protocol. We now compute the amount of
communication in P ′. The number of sections of type (b) is k · r,
one for every player, in every pass. For 1 ≤ a ≤ k · r, let Sa be the
a-th section of type (b) and let γa and γ′

a be the configurations at
the beginning and at the end of Sa.

Fix a < k · r, and look at the stack in γ′
a. It contains public

stack symbols, and several contiguous zones of private stack sym-
bols, at most one such zone for every previous section of type (b).
Furthermore, and crucially, observe that

Claim 4.3. The number of sections of type (c) in between Sa and
Sa+1 equals the number of different contiguous zones of private
stack symbols from γ′

a (the end of Sa) from which a symbol is
popped before γa+1 (the beginning of Sa+1).

Proof (of Claim 4.3). This critical property follows from the
way sections of type (c) are terminated. Specifically, we claim
it is impossible for two different sections of type (c) between Sa

and Sa+1 to pop symbols from the same contiguous zone of stack
symbols private to some player p.

Assume, for the sake of contradiction, that there are two sec-
tions S ′

1 and S ′
2 between Sa and Sa+1 that pop symbols from the

same contiguous zone of stack symbols private to player p. In
between S ′

1 and S ′
2, there can be no input-private configurations
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(by definition of Sa and Sa+1), and also no configurations stack-pri-
vate to a player other than p (otherwise, the zones of private stack
symbols corresponding to S ′

1 and S ′
2 would not be contiguous).

Hence, all configurations between S ′
1 and S ′

2 are either public or
stack-private to player p. Moreover, the stack level in S ′

2 is strictly
lower than in S ′

1. Then, player p should not have ended section
S ′

1 so early, instead, it should have simulated the entire section of
configurations between S ′

1 and S ′
2, and then it should have contin-

ued with S ′
2 (i.e., the period from S ′

1 through S ′
2 should really be

all one segment).
Clearly, for every contiguous zone of private stack symbols from

which symbols are popped in between Sa and Sa+1, there must be
at least one associated section of type (c). By the argument above,
there will be exactly one such section of type (c). �

Let γk·r+1 denotes the final configuration. Consider the (k ·r)×
(k · r) matrix B, where B[a1, a2] := 1 if, in between γ′

a2
(the end

of Sa2) and γa2+1 (the beginning of Sa2+1 or the final configura-
tion), a private stack symbol is popped that was pushed in Sa1 ;
and B[a1, a2] := 0 otherwise.

Claim 4.4. There are at most O (k · r · log(k · r)) 1 entries in B.

Proof (of Claim 4.4). The matrix is 0 under the main diago-
nal, because for a symbol from Sa1 to be popped after Sa2 , we
must have a1 ≤ a2. Consider the diagonal a2 − a1 = j for some
j ≥ 1. We claim that it is impossible to have B[a, a + j] = 1 and
B[a + j′, a + j + j′] = 1 for some a and some 0 < j′ ≤ j. Assume
B[a, a+ j] = 1, so in between γ′

a+j and γa+j+1 a symbol is popped
that was pushed in Sa. But then, the stack in γa+j+1 can no longer
contain any symbols pushed in Sa′ , for any a′ such that a < a′ ≤
a+ j. In particular, for a′ = a+ j′, all symbols pushed in Sa+j′ are
no longer on the stack in γa+j+1, which precedes, or equals, γa+j+j′ ,
Hence, it is impossible to have B[a+ j′, a+ j + j′] = 1.

The argument above shows that the matrix B contains at most
k · r/(j + 1) 1 entries on the diagonal a2 − a1 = j. Hence, in total,
it contains at most O (k · r · log(k · r)) 1 entries. �

Lastly, we observe the following.
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Claim 4.5. The number of sections of type (c) in between Sa and
Sa+1 is at most the number of 1 entries in column a of matrix B.

Proof (of Claim 4.5). By Claim 4.3, every section of type (c) in
between Sa and Sa+1 is associated with a contiguous zone of stack
symbols from γ′

a (the end of Sa) that are private to some player
p. Since all private stack symbols pushed in Sa′ are contiguous on
the stack (this is true at any point of the simulation), we see that
there can be at most one section of type (c) for every section Sa′

such that symbols from Sa′ are popped in between Sa and Sa+1,
or, equivalently, such that B[a′, a] = 1. �

Putting everything together, first observe that sections of type
(a) do not result in any communication. There are k · r sec-
tions of type (b), and by Claims 4.4 and 4.5, there are a total
of O (k · r · log kr) sections of type (c).

And the end of every section of type (b) or (c), items (v)–(x)
are communicated. The full state takes O (s) bits, the input head
position takes logN ≤ O (s) bits, the stack height takes O (s) bits
by Fact 3.1. Thus, every communication consists of O (s) bits. The
total cost of the protocol P ′ is thus O (k · r · log kr · s).

5. Consequences

Corollary 1.2 (Restated). Let ε > 0 and δ < 1/2 be constants.
There exists a constant α = α(ε) > 0 such that the following holds.
Let m = m(n) := nα, let k = k(n) := 2, and let N := 2 ·m ·n. Let
Ψ∗

2,m := {id, ψ∗
m} for the permutation ψ∗

m defined in Fact 3.3. Let

F = FN := LiftMix
(
IP2,n,XORm,Ψ

∗
2,m

)
.

Every randomized SM that computes F with error δ requires
space s = ω

(
N1/4−ε

)
or two-way passes r = ω

(
N1/4−ε

)
.

Observe that, by Fact 3.3, the function F ∈ LOGSPACE.
The proof of Corollary 1.2 mainly consists of setting the right

parameters in order to apply Theorem 1.1. The conclusion fol-
lows from the known communication complexity lower bound
R2(IP2,n) ≥ Ω (n) (Chor & Goldreich 1988), where recall that R2

denotes the private-coin, randomized 2-party communication com-
plexity, where the error is a constant smaller than 1/2.
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Proof (of Corollary 1.2). If ε ≥ 1/4, there is nothing to prove.
Otherwise, let β := 1/4 − ε > 0. Since 0 < β < 1/4, we get

0 <
1

1 − 2β
<

1

2β
.

Define α so that α+1 is in between the two quantities above. That
is,

α :=

(
1

1 − 2β
+

1

2β

)
· 1

2
− 1.

Then, 1/(1 − 2β) − 1 < α and α < 1/(2β) − 1. By algebra, these
inequalities imply:

β(α+ 1) < α/2,(5.1)

2β(α+ 1) < 1.(5.2)

Assume that there exists a randomized SM M that computes
F with error δ with space bound s = O

(
Nβ

)
and pass bound

r = O
(
Nβ

)
. By Theorem 1.1, there exists a randomized com-

munication protocol for IP2,n with cost O (k · r · log(k · r) · s) and
error at most δ + O (d), where d = k · r · log r · relsort

(
Ψ∗

2,m

)
/m.

Observe that

O (d) = O

(
k · r · log r · relsort

(
Ψ∗

2,m

)

m

)

= O

(
k · r · log r√

m

)
(by Fact 3.3)

= O

(
r · log r√

m

)
(since k = 2)

= O

(
(2 ·m · n)β · log(2 ·m · n)β

√
m

)
(since N = 2 ·m · n
and r = O

(
Nβ

)
)

= O

(
nβ(α+1) · log n

nα/2

)
(since m = nα)

−→ 0 (by Equation (5.1))

Hence, eventually, d < (1/2 − δ)/2, and the error in P becomes at
most δ + (1/2 − δ)/2 < 1/2. By standard arguments, repeating P
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a constant number of times and taking the majority vote, we get
a protocol for IP2,n with error at most 1/3.

Similarly, observe that

O (k · r · log kr · s)
n

=
O

(
(m · n)2β · log n

)

n

=
O

(
n2β(α+1) · log n

)

n
−→ 0,

where in the limit we use Equation (5.2). Therefore, the cost of the
protocol P for IP2,n (even after being repeated a constant number
of times) is o (n). This contradicts the known communication com-
plexity lower bound R2(IP2,n) ≥ Ω (n) (Chor & Goldreich 1988).

�

Corollary 1.3 (Restated). Let � > 4, ε ≥ 0 and δ < 1/2 be
constants. There exists a constant 0 < β < 1 such that any ran-
domized SM computing a (1 + ε) multiplicative approximation of
Freq� with error δ requires space s = ω

(
N ′β)

or passes r = ω
(
N ′β)

,
where N ′ denotes the input size.

In order to prove Corollary 1.3, we use one more result, say-
ing that an efficient SM A computing frequency moments can be
transformed into an efficient SM B computing the permuted Set
Intersection function FN = LiftMix

(
pSetIntk,n,ORm,Φk,m

)
, for

any permutation family Φ = (Φk,m)m. Subsequently, we apply
Theorem 1.1 to obtain an efficient NIH protocol for the prom-
ise Set Intersection function for which we have the lower bound
Rk(pSetIntk,n) ≥ Ω (n/k) (Gronemeier 2009).

This following streaming reduction originates in Alon et al.
(1999), where there are no permutations Φ to deal with. It was
rewritten in Beame & Huynh-Ngoc (2008) to deal with the case of
several external tapes, where the permutations Φ are needed. The
version in here is a combination of the two: We need to deal with
permutations, and we also have to perform it “online”, because we
have no external tapes in this model. In order to deal with the
permutations Φ, we use non-uniformity.
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Lemma 5.3. Let � > 1, ε ≥ 0 and 0 < δ < 1/2 be constants.
Let n, k,m,N, s, r,Φ be as in Theorem 1.1. Set k = k(n) :=
Θ

(
(m · n)1/�

)
. Let FN := LiftMix

(
pSetIntk,n,ORm,Φk,m

)
.

Assume there exists a randomized SM A with space bound
s, pass bound r, and error δ that computes a (1 + ε) multipli-
cative approximation of Freq�. Then, there exists a randomized
non-uniform SM B = (BN) that computes FN with space bound
s′(N)=s(N)+O (logN), pass bound r′(N)=r(N)+2, and error δ.

Proof (of Lemma 5.3). Let v be an input of size N to BN .
First, we assume BN has another special tape on which it can
write an input to A and then simulate A. We describe what this
input ā = ā(v) is, and we show that BN can compute F (v) from
the output of A on ā. Then, we explain how to deal with the
fact that BN has no extra tape, and the construction of ā and the
simulation of A on ā have to be performed in parallel.

The SM BN begins its computation by counting, in one pass,
the number of 1’s in v, and saving this number as the value C on
logN bits of its work tape. In pass number 2, BN moves the input
head back to the left end of the tape.

We think of the input to each instance of pSetIntk,n as consist-
ing of n columns and k rows. The output is 1 if there exists an all-1
column and 0 otherwise. By the promise, we know the number of
1’s in each column is either 0, 1 or k, and also that there is at most
one all-1 column in each instance of pSetIntk,n We think of v, the
input to FN , as consisting of m · n columns, n of them for each of
the m instances.

If C < k, there cannot be an all-1 column in any of the m
instances of pSetIntk,n, so BN simply outputs 0. Also, if C > m ·n,
there must be at least two 1’s in some column of one of the m
instances of pSetIntk,n (there are only m · n columns in total). In
this case, by the promise in pSetInt, there is an all-1 column, so
BN outputs 1. From now on, assume neither of the above easy
cases occurs, so k ≤ C ≤ m · n.

Next, BN constructs an input ā to A as follows. The bits in v
are ordered first by player number p ∈ [k], then by part i ∈ [m]
(recall, them instances in vp occur in the order (ϕp(1), . . . , ϕp(m))),
and finally by bit position j ∈ [n].
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For every (p, i, j) such that vp,i,j = 1,
BN appends an element with value val(i, j) := (ϕ−1

p (i)−
1) · n+ j to ā.

The property of this construction is that the values corresponding
to the 1’s from the same column of v are all equal and are different
from the values corresponding to any other 1’s.

We assume BN is given ϕ−1
1 , . . . , ϕ−1

k ∈ Sm as non-uniform
advice, that is, it is hard-coded in the state transition of BN . To see
this is possible without affecting the space bound of BN , observe
that the input for this computation is (p, i) ∈ [k] × [m] and the
output is ϕ−1

p (i) ∈ [m]. Thus, O (logN) bits are enough to describe
both an input and an output as part of a state of BN . We have
already assumed that the space bound is always at least s(N) ≥
Ω (logN).

Next, observe that ā consists of exactly C numbers from [m ·n],
so it is encoded as a bit string of length N ′ = O (C · logmn) ≤
O (m · n · logmn) = o (N), because N = k · m · n and k =
Θ

(
(m · n)1/�

)
. Hence, eventually, N ′ ≤ N .

After constructing ā, BN runs A = AN ′ on input ā. If AN ′

makes an error, which happens with probability δ, so does BN .
Otherwise, AN ′ outputs some value

V ∈
[

1

1 + ε
· Freq�(ā), (1 + ε) · Freq�(ā)

]
.

At this point, B outputs 0 if and only if V ≤ C · (1 + ε) and B
outputs 1 otherwise. We need to argue B is correct.

If F (v) = 0, then all m instances of pSetIntk,n inside v are
0-instances, so, by the promise, each column has at most one 1.
Hence, all numbers in ā are distinct, and Freq�(ā) = C. On the
other hand, if F (v) = 1, then there are b ≥ 1 1-instances in v
and m− b 0-instances. Again by the promise, of all the m · n col-
umns in v, b of them have k 1’s, and all others have at most one
1. Then, Freq�(ā) = C − b · k+ b · k� ≥ C + k� − k. Furthermore, if
C ·(1+ε) < (C+k�−k)/(1+ε), the ranges of possible output values
V of AN ′ are disjoint between the cases F (v) = 0 and F (v) = 1.
Thus, B is correct to output 0 if and only if V ≤ C · (1 + ε).
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We see that the ranges are disjoint if and only if k� − k >
ε ·C ·(2+ε). Since � > 1, for large enough k, k�−k > k�/2. We also
know thatm·n ≥ C. Thus, it is enough to have k� > 2·ε·m·n·(2+ε),
which we achieve by setting k := Θ

(
(m · n)1/�

)
. This completes

the argument that BN is correct.
Lastly, we turn to the issue that BN does not have an extra tape

to first write ā and then simulate AN ′ on ā, but has to do these
in parallel. To this end, BN operates as follows. At every step, it
keeps the three values (p, i, j) ∈ [k]×[m]×[n], corresponding to the
location of the input head in v, using logN bits on its work tapes.
BN also has a buffer of log(m · n) ≤ logN bits, which it fills with
the value val(i, j) ∈ [m · n]. BN simulates AN ′ by using the buffer
as the input tape of AN ′ , using space s(N ′) on its work tapes, and
using its own stack as the stack of AN ′ . At any point where AN ′

attempts to move the head left (respectively, right) and the corre-
sponding value from ā is not in the buffer, BN pauses the simulation
of AN ′ , scans left (respectively, right) on its input tape until it finds
the next 1 bit, and refills the buffer with the new value val(i, j).
Observe that BN uses at most as many passes as AN ′ during this
simulation. In total, BN makes at most r(N ′) + 2 ≤ r(N) + 2
passes, and uses space s(N ′) + O (logN) ≤ s(N) + O (logN). �

Proof (of Corollary 1.3). We set the parameters first. Let β :=
(�− 4)/(5 · (�+ 1)). Observe that 0 < β < (�− 4)/(4 · (�+ 1)) < 1.
By algebra, this implies

0 <
1

1 − (2/�) − 2β(1 + 1/�)
<

1

(2/�) + 2β(1 + 1/�)
.

Set α so that α+1 is halfway in between the two quantities above,
that is,

α :=

(
1

1 − 2/�− 2β(1 + 1/�)
+

1

2/�+ 2β(1 + 1/�)

)
· 1

2
− 1.

Thus,

1

1 − 2/�− 2β(1 + 1/�)
< α+ 1 <

1

2/�+ 2β(1 + 1/�)
.
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By algebra, the two inequalities above imply:

(1 + α)
1

�
+ (1 + α)β

(
1 +

1

�

)
<
α

2
,(5.4)

2(1 + α)
1

�
+ 2(1 + α)β

(
1 +

1

�

)
< 1.(5.5)

Assume there exists a SM A approximating Freq� to within
(1 + ε) that has space bound O

(
N ′β)

, pass bound O
(
N ′β)

, and
error δ. We derive a contradiction.

Set m := nα and k = k(n) := Θ
(
(m · n)1/�

)
= Θ

(
n(1+α)/�

)
.

Set Φk,m := Φ∗
k,m, for the family of permutations Φ∗

k,m defined
in Fact 3.4. By Lemma 5.3, there exists a randomized non-
uniform SM B = BN for FN = LiftMix

(
pSetIntk,n,ORm,Φ

∗
k,m

)

with space bound s := s(N) = O
(
Nβ

)
= O

(
(kmn)β

)
, pass bound

r := r(N) = O
(
Nβ

)
= O

(
(kmn)β

)
, and error δ. By Theo-

rem 1.1, there exists a randomized NIH communication protocol P
for pSetIntk,n with cost O (k · r · log(k · r) · s) and error δ + O (d)

where d = k · r · log r · relsort
(
Φ∗

k,m

)
/m.

Observe that

O (d) = O

(
k · r · log r · relsort

(
Φ∗

k,m

)

m

)

= O
(

k · r · log r√
m

)
(by Fact 3.4)

= O
(

n(1+α)/� · n(1+α)(1+1/�)β · log n

nα/2

)
(using r = O

(
(k · m · n)β

)

and replacing)
−→ 0 (by Equation (5.4))

Thus, eventually d < (1/2 − δ)/2, and the error in P becomes at
most δ + (1/2 − δ)/2 < 1/2. By standard arguments, repeating P
a constant number of times and taking the majority vote we get a
similar protocol with error at most 1/3.

Furthermore, observe that

O (k · r · log(k · r) · s)
n/k

=
O

(
n2(1+α)/� · n2(1+α)(1+1/�)β · log n

)

n
−→0,
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where we first used r, s ≤ (k · m · n)β, replaced for n, and finally
used Equation (5.5). Therefore, the cost of P , even after con-
stantly many repetitions, is o (n/k). This contradicts the known
lower bound Rk(pSetIntk,n) ≥ Ω (n/k) (Gronemeier 2009). �

6. Perspective

Our trade-off lower bounds for Stack Machines become uncondi-
tional lower bounds for the number of passes when restricted to log-
arithmic space. At first sight, sublinear polynomial lower bounds
might seem weak. To put this into perspective, we show that, con-
ditional on some widely believed complexity assumptions, Stack
Machines with even a single pass over the input decide languages
outside NC and outside POLYLOGSPACE.

Let C be the class of languages decidable by logarithmic space
Stack Machines with a single pass over the input. Allender (1989)
proves the following lemma (we include a proof for completeness).

Lemma 6.1. C contains all unary languages (tally sets) in P.

Proof (of Lemma 6.1). Let U be a unary language in P.
By Cook (1971), there exists a logarithmic space Stack Machine
M deciding U . We build another logarithmic space Stack Machine
M ′ deciding U , but now using a single pass over the input. M ′

simulates M as follows. On input x = 0n, M ′ makes one pass over
the input tape, computing n. This is stored on a work tape in
binary, using space O (log n). The work tape of M ′ also has an
O (log n) bit counter that holds the position of the input head of
M , initialized at 1. (We assume that M receives its input x = 0n

on a read-only tape of size n+2, with exactly one blank to the left
and right of x.) Henceforth, M ′ simulates M without accessing its
own input tape. Instead, M ′ increases and decreases the counter
to simulate right and left transitions of M , and it decides based on
the value of the counter if the symbol that would be seen by M is
a 0 or a blank (it is a blank if and only if the counter equals 0 or
n+ 1). M ′ has additional O (log n) space, so it is itself a logarith-
mic space Stack Machine. �
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By Allender (1989), if PSPACE � EXP then there exist unary lan-
guages in P \ NC. By Lemma 6.1, this immediately implies the
following.

Corollary 6.2. If PSPACE � EXP, then C contains a language
not in NC.

We also obtain2 a similar result involving POLYLOGSPACE in-
stead of NC.

Lemma 6.3. If E �⊂ PSPACE, then there exists a unary language
in P \ POLYLOGSPACE.

Proof (of Lemma 6.3). Assume there exists L ∈ E \ PSPACE.
Let int : {0, 1}∗ → N denotes the function which maps a bit string
s to the nonnegative integer whose binary representation is s. Let
U =

{
0int(1x)

∣
∣ x ∈ L

}
.

First, we show that U ∈ P. Let ML be a Turing Machine
deciding L in time 2O(n′) where n′ is the input size. We construct
a Turing Machine MU deciding U as follows. On input y = 0n,
MU first computes n in binary, obtaining a string x such that
n = int(1x). This takes O (n) time. Observe that |x| ≤ O (log n).
Also, by definition of U , y ∈ U if and only if x ∈ L. Now, MU

simulates ML on x, and accepts if and only if the latter accepts.
This takes time 2O(|x|) ≤ 2O(log n) = nO(1).

Second, we show that U /∈ POLYLOGSPACE. To do this, we
prove that U ∈ POLYLOGSPACE implies L ∈ PSPACE, contradict-
ing the definition of L. So, let MU be a Turing Machine deciding
U is space (log n′)O(1) where n′ is the input size. We build a Turing
Machine ML deciding L as follows. On input x, ML first computes
n = int(1x), and stores it in binary on a work tape, on 1+ |x| bits.
Observe that x ∈ L if and only if 0n ∈ U . Next, the goal of ML

is to simulate MU on input 0n. However, ML must perform this
simulation without writing 0n explicitly on a tape, which would
take space superpolynomial in the length of its input x. Instead,
ML uses a O (log n) ≤ O (|x|) bit counter to keep track of the
position of the input head of MU , initialized at 1. (We assume

2 Book (1974) shows similar results using similar types of arguments.
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that MU receives its input 0n on a read-only tape of size n + 2,
with exactly one blank to the left and right of x.) ML increases
and decreases the counter to simulate right and left transitions of
MU , and it decides based on the value of the counter if the symbol
that would be seen by MU is a 0 or a blank (it is a blank if and
only if the counter equals 0 or n + 1). We know that MU uses
(log n)O(1) ≤ |x|O(1) space, so in total, ML uses |x|O(1) space. �

Lemmas 6.1 and 6.3 immediately imply the following.

Corollary 6.4. If E �⊂ PSPACE, then C contains a language not
in POLYLOGSPACE.

Finally, we address the comparison between Stack Machines
and the read-write stream algorithms of Grohe & Schweikardt
(2005). These are Turing Machines that have internal tapes and
a constant number of read-write external tapes, space is bounded
on the internal tapes, and passes are bounded over all external
tapes. There is an “obvious” simulation of a Stack Machine by a
read-write stream algorithm with 2 external tapes: use the second
external tape to simulate the stack. However, if the Stack Machine
makes a few passes over its input tape, it does not follow that the
read-write stream algorithm makes a few passes over both of its
external tapes. The crucial point is that there is no bound on the
number of passes the Stack Machine makes on its stack, but such
a bound appears in the read-write stream algorithm simulating
the Stack Machine. As a result, this particular simulation cannot
be used to obtain trade-off lower bounds for Stack Machines from
similar lower bounds for r/w Stream Algorithms.

More generally, recall the following fact.

Fact 6.5. (Hernich & Schweikardt 2008, Lemma 4.8) Turing Ma-
chines with any constant number of external tapes, with space
bound s (on internal tapes) and pass bound r (on external tapes)
can be simulated in DSPACE (r2 · s).
Together, Corollary 6.4 and Fact 6.5 show that, assuming E �⊂
PSPACE, a logarithmic space Stack Machine with a single pass
over the input cannot be simulated by a Turing Machine with any
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constant number of external tapes, space bound (log n)O(1), and
pass bound (log n)O(1).

7. Discussion

When considering logarithmic space Stack Machines, Corollaries
1.2 and 1.3 give lower bounds on the number of passes over the
input tape that are only sublinear, and they become uninteresting
if directly translated into time lower bounds. However, in light
of Corollaries 6.2 and 6.4, we believe it is interesting to interpret
these results without attempting to translate them into time lower
bounds.

Logarithmic space Stack Machines are closely connected to
combinatorial circuits. As such, we ask whether such machines
restricted to a sublinear polynomial number of passes characterize
(even partially) a natural circuit family. We point out that this
family has the following properties: (i) the circuits are of polyno-
mial size; (ii) the family can compute Parity and Majority; and
(iii) the family can compute some languages outside NC (again,
assuming PSPACE � EXP).
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