
ar
X

iv
:1

10
8.

15
95

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  8
 A

ug
 2

01
1

Tensor network simulation of phase diagram of frustrated J1-J2 Heisenberg model

on a checkerboard lattice
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We use the recently developed tensor network algorithm based on infinite projected entangled
pair states (iPEPS) to study the phase diagram of frustrated antiferromagnetic J1-J2 Heisenberg
model on a checkerboard lattice. The simulation indicates a Neel ordered phase when J2 < 0.88J1, a
plaquette valence bond solid state when 0.88 < J2/J1 < 1.11, and a stripe phase when J2 > 1.11J1,
with two first-order transitions across the phase boundaries. The calculation shows the cross-dimer
state proposed before is unlikely to be the ground state of the model, although such a state indeed
arises as a metastable state in some parameter region.

PACS numbers:

Understanding frustrated quantum magnetic models
is a long standing difficult problem in strongly correlated
physics. Theoretical tools to study these systems are lim-
ited. Exact diagonalization is limited by the small system
size, and quantum Monte-Carlo simulation is hindered by
the infamous sign problem. Among the frustrated mod-
els, the antiferromagnetic J1-J2 Heisenberg model on a
checkerboard lattice (or called the crossed chain model)
is an important example that has raised a lot of interest
[1–7], due to its rich phase diagram and connection with
real materials. This model is described by the Hamilto-
nian

H = J1
∑

〈i,j〉

~Si · ~Sj + J2
∑

〈〈i,j〉〉

~Si · ~Sj (1)

where J1 is the nearest-neighbor spin coupling rate on
a square lattice and J2 is the next-nearest-neighbor spin
coupling rate on a checkerboard pattern of plaquettes,
as depicted in Fig. 1. A number of works provide com-
plimentary studies in different parameter regions. The
complete phase diagram for this model, however, still re-
mains controversial. It is known that the system has
a collinear long-range Neel order when J2 << J1. At
J1 ≈ J2, the calculation based on the strong-coupling
expansion predicts a plaquette valence bond solid as the
ground state [1, 3–5]. In the region with J2 > J1 > 0,
the phase is still under debate. Possibilities include the
fourfold degenerate state with long range spin order, sup-
ported with semi-classical studies [6] and large-N expan-
sion calculation [7], the sliding Luttinger liquid phase,
supported with perturbative random phase calculation
and exact diagonalization of a small system [1], and the
cross dimer state, supported with bosonization approach
[3] and two-step DMRG (density-matrix renormalization
group) simulation [4].
Recently, tensor network algorithms emerge as a

promising method to solve two-dimensional frustrated
quantum systems [8–12]. There are different types of

tensor network algorithms, but all the algorithms share
the basic idea to describe the ground state of the model
Hamiltonian as a tensor network state that respects the
entanglement area law. The tensor network algorithms
belong to the variational method and have no intrinsic
sign problem for frustrated systems. The tensor net-
work algorithms have been tested for a number of non-
frustrated Hamiltonians, and the results agree pretty well
with quantum Monte Carlo simulation [10]. Recently,
the algorithms have also been applied to the frustrated
Heisenberg model on a Kagome lattice [11] and the J1-
J2-J3 model on a square lattice [12].

In this paper, we use a particular type of tensor net-
work algorithm, the iPEPS (infinite PEPS) [9], to sim-
ulate frustrated antiferromagnetic J1-J2 model on a a
checkerboard lattice in the thermodynamic limit. We
construct the complete phase diagram with the following
findings: (1) the simulation shows two first-order phase
transitions respectively at J2/J1 = 0.88 and J2/J1 =
1.11, first from a Neel state to a plaquette valence bond
solid, and then to a spin ordered stripe phase. (2) In the
region with J2/J1 > 1.11 (except for the special point
J1 = 0), our calculation supports the four-fold degener-
ate states proposed in Ref. [6] as the ground state. In
particular, the spin stripe phase seems to be the most
stable one under perturbation. (3) Our simulation pro-
vides strong evidence to show that the cross-dimer state
is not the ground state of the system, although it indeed
emerges as a metastable state in some parameter region
(its energy is always significantly higher compared with
the spin stripe phase).

In the iPEPS algorithm, at every site, we represent the
state as a five-index tensor with one physical index (with
dimension two for a spin-half system) and four virtual
indices (with internal dimension denoted by D) [9]. The
wave function can be obtained by contracting all the vir-
tual indices. To obtain the expectation value of a physical
quantity, we need to first contract the physical index to
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FIG. 1: Illustration of the J1 − J2 Heisenberg model on a
checkerboard lattice.

form a tensor network with internal dimension D2, and
this tensor network is then contracted from the infinite
boundary through multiplication with a matrix product
state with internal dimension χ. We tune the value of χ
until convergence is achieved in the calculated physical
quantity. As a thumb of rule, typically at χ & D2, the
relative error of energy induced by variation of χ has been
reduced to the order of 10−5, which indicates good con-
vergence already. The dominant error of the calculation
is from the small value of the internal dimension D. As
the calculation time scales with D as D12 (under choice
of χ ∼ D2) [9], the value of D in our simulation is limited
to be about 5. We compare the energy as well as several
other quantities (including the phase boundary specified
below in Fig. 2) calculated with D = 4 and D = 5, and
the difference is within a percent level. As an estimate,
we expect that the relative error of our numerical sim-
ulation, dominated by the limited value of D, is within

or about a percent level for any short-range correlation
function.

The original iPEPS algorithm needs to assume transla-
tional symmetry for calculation in the thermodynamical
limit. The ground state of the Hamiltonian (1) can spon-
taneously break the translational symmetry. To take into
account the spontaneous symmetry breaking, we take a
large unit cell and assume the translational symmetry
only among different cells with no symmetry restriction
for the tensors within the cell. In our simulation, the
unit cell has 4 × 4 sites which is large enough to incor-
porate the relevant ground states for this Hamiltonian
that break the translational symmetry [13]. We apply
imaginary time evolution to reach the ground state of
the Hamiltonian. To avoid being stuck in a metastable
state, we take a number of random initial states for the
imaginary time evolution and pick up the ground state
as the one which has the minimum energy over all the
trials.

In Fig. 3, we show the complete phase diagram for
the Hamiltonian (1) from this calculation. To charac-
terize the phase transition, we calculate derivative of the

ground state energy ∂E
∂J2

=
∑

〈〈i,j〉〉

〈

~Si · ~Sj

〉

with respect

to J2 (J1 is taken as the energy unit) and identify the
singular point of this derivative as the phase transition
point. To characterize properties of different phases, we

calculate the spin order parameter
〈

~Si

〉

for all sites i and

the plaquette order parameter Qαβγδ[14], defined by

Qαβγδ = 2
[〈

~Sα · ~Sβ

〉〈

~Sγ · ~Sδ

〉

+
〈

~Sα · ~Sδ

〉〈

~Sβ · ~Sγ

〉

−
〈

~Sα · ~Sγ

〉〈

~Sβ · ~Sδ

〉]

+ 1/2
[〈

~Sα · ~Sβ

〉

+
〈

~Sγ · ~Sδ

〉

+
〈

~Sα · ~Sδ

〉

+
〈

~Sβ · ~Sγ

〉〈

~Sα · ~Sγ

〉

+
〈

~Sβ · ~Sδ

〉

+ 1/4
]

, (2)

where α, β, γ, and δ denote four spins on a plaquette
as shown in Fig. 1. Different phases are associated with
different characteristic values of these parameters. For
instance, a spin ordered state is characterized by a sig-

nificant value of
〈

~Si

〉

; in contrast, the plaquette valence

bond solid state is characterized by a near-unity Qαβγδ

and a vanishing
〈

~Si

〉

.

In the inserts of Fig. 2, we show the order parame-

ters
〈

~Si

〉

and Qαβγδ as functions of J2/J1. These order

parameters change abruptly at the corresponding phase
transition points, and the points of abrupt change are in
agreement with the singularity points of ∂E

∂J2

. The or-
der parameters and the derivative of the ground state
energy both have finite jumps at the phase transition
points, which strongly indicates that we have two first-

order transitions as we increase the ratio J2/J1, first from
a Neel ordered state to a plaquette valence bond solid
state at J2/J1 = 0.88, and then from the valence bond
solid state to another spin-ordered phase (its nature will
be discussed below) at J2/J1 = 1.11. The possibility of
two second order phase transitions with a coexistence re-
gion of the spin and the valence bond solid orders in the
intermediate region has been discussed in the literature
[15]. Within the resolution of our numerical simulation
(the resolution is 0.01 for the ratio J2/J1 near the phase
transition points), we do not find a coexistence region
and the result supports a direct first-order transition.

The nature of ground states in these three phases are
further studied through calculation of the spin correlation
function. In Fig. 3, We show the nearest-neighbor spin-

spin correlation
〈

~Si · ~Sj

〉

and orientation of local spins
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FIG. 2: (Color online) The main plot shows ∂E/∂J2 as a
function of J2/(J1 + J2). Insets show the plaquette order
(solid line with crosses) and the spin order (red dashed line
with circles) as functions of J2/J1near the transition points.

FIG. 3: (Color online) The upper left figure (a) shows orienta-
tions of local spins (red arrows) on the checkerboard lattice at
J2 = 0.5. The upper right figure (b) shows nearest neighbor

spin-spin correlations < ~Si ·
~Sj > along horizontal, vertical

and diagonal bonds on a 16-site unit-cell at J2 = 1.0. The
width and colors of the bonds are scaled such that the neg-
ative correlation is represented by thicker bonds with darker
color. The lower figures show both spin orientation and corre-
lations < ~Si ·

~Sj > in a Neel* state (c) and a stripe phase (d)
at J2 = 2. Fig. (e) illustrates the dimer state, which appears
as a metastable state at some parameters.

with respect to the first spin on the up-left corner in each
16-site unit-cell for three different J2 values. At J2 = 1,
strong nearest-neighbor spin correlations (valence bonds)
around the plaquettes breaking the lattice translational
symmetry suggests a plaquette ordered state near this
point, consistent with the finding in Fig. 2. At J2 = 0.5,
the spin orientation indicates a conventional Neel ordered
state. At J2 = 2, antiferromagnetic Neel order appears
along the diagonal chains, but not in the horizontal or
vertical axes. With imaginary time evolution starting
from randomly chosen initial states, we actually get two

different kinds of spin configurations shown in Fig. 3(c)
and 3(d) for the final state. Their energies are almost
degenerate within resolution of our numerical program.
These spin configurations are in agreement with the four-
fold degenerate states found in Ref. [6] based on the
large-S expansion (the other two degenerate states are
obtained from Fig. 3(c) and 3(d) through a 90-degree
rotation of the spin orientation). The spin configuration
in Fig. 3(c) is called the Neel*-state in Ref. [3], where
the single-site spin ↑ or ↓ in the conventional Neel state is
replaced by the two-site unit ↑↑ or ↓↓. The configuration
in Fig. 3(d) represents a spin stripe phase, where the spin
orientations form a stripe along the horizontal or vertical
direction, breaking the lattice rotational symmetry. The
stripe phase is also predicted in the large-N calculation
[7].

To further clarify the phase at J2 = 2, we also show

the spin-spin correlation
〈

~Si · ~Sj

〉

in Fig. 3(c) and 3(d).

Strong nearest-neighbor spin correlation appears along
the diagonal chains. However, the distribution of these
spin correlations does not break the symmetry of the lat-
tice, so it is not a cross dimer or other valence bond solid
state. The cross dimer state is predicted for this model in
[3, 4] for some region of J2/J1. In a cross dimer state, the
nearest-neighbor spin correlations form the cross dimer
pattern illustrated by Fig. 3(e). We indeed get this kind
of cross dimer configuration from the imaginary time evo-
lution starting from a pure cross dimer state for a certain
region of J2/J1 as shown in Fig. 4. However, the ener-
gies of the cross dimer states are strictly higher than the
four-fold degenerate states shown in Fig. 3(c) and 3(d).
So the cross dimer state is only a metastable phase in
this region and does not give the real ground state. We
compare the energy of our calculation with the energy
of the DMRG calculation in Ref. [4], and our energy is
significantly lower than the corresponding result in [4]
on the side J2 > J1. For instance, at J2 = 2, our result
shows a ground state energy of E = −0.876J1 for a stripe
state, much lower than the energy of E ≃ −0.75J1 for a
cross dimer state at the corresponding point in Ref. [4].
Because of this large energy difference, it is unlikely that
the cross dimer state emerges as the real ground state of
the system.

Some literature predicts a sliding Luttinger liquid state
on the J2 > J1 side of the antiferromagnetic checkerboard
model [1, 2]. We do not find evidence to support a tran-
sition to a sliding Luttinger liquid state in our numerical
simulation. Of course, due to the limitation of the inter-
nal dimension D of the variational tensor network state
in our calculation, it is possible that the sliding Luttinger
liquid state is poorly approximated by the tensor network
state with a small internal dimension and thus missed in
our numerical simulation. We can not rule out this pos-
sibility, however, we feel its chance is small due to the
following test: we know at the limiting point J1 = 0,
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FIG. 4: (Color online) Ground state energy calculated by
iPEPS (blue squares) for different J2/(J2 + J1). The dashed
line denotes energy of a pure dimer state, the green dia-
monds denote energy of meta-stable dimer states calculated
by iPEPS with imaginary time evolution from an initial pure
dimer state.

FIG. 5: (Color online) (a) Long-range spin correlations along
a diagonal chain obtained with D = 3 (crosses), D = 4
(squares), and D = 5 (circles) at J2 = 2. (b) The same corre-
lation for a Heisenberg chain calculated with D = 3 (circles),
D = 5 (squares), D = 15 (diamonds), and D = 30 (triangles).

the model reduces to decoupled Heisenberg chains whose
ground state is described by a Luttinger liquid with al-
gebraic decay of the spin correlation function. We use
the same tensor network algorithm to calculate the long
range spin correlation for the limiting case at J1 = 0. At
this 1D limiting point, we can have a much larger internal
dimension D in numerical simulation, and in Fig. 5(b)
we compare the result with D varying from 2 to 30. We
see that the result at D = 5 has correctly demonstrated
the algebraic decay of the spin correlation function and
almost converged to the result at D = 30. So we do not
necessarily need a large internal dimension for the tensor
network algorithm to uncover the algebraic decay associ-
ated with a spin liquid state. Keeping the same internal
dimension at D = 5, we turn on J1 (now a 2D model
with J2 > J1 > 0), and find that long range spin corre-
lation appears along the diagonal chains (see Fig. 5(a)),
indicting that the spin order along this direction is very
likely a real effect.
Although our numerical program can not distinguish

the energy of the four degenerate states shown in Fig.
3(c,d) at the J2 > J1 side, it is very likely that the stripe

phase will emerge as the real ground state in practice
because of its robustness to perturbation in the Hamil-
tonian. In real realization of the model Hamiltonian (1),
the J1 coupling along the horizontal and the vertical di-
rections might be slightly different, or apart from the
J2 coupling on the checkerboard pattern, there might be
small antiferromagnetic J2 coupling along the other pla-
quettes. With any of these types of perturbation (which
sound to be inevitable in practice), the energy of the
Neel*-state will be lifted, and the stripe phase will emerge
as the unique ground state of the system.
In summary we have used the iPEPS method, a type

of tensor networks algorithms, to calculate the ground
states of the frustrated anti-ferromagnetic J1-J2 Heisen-
berg model on a checkerboard lattice. We construct the
complete phase diagrams, indicting two first order phase
transitions, first from a Neel state to a plaquette valence
bond solid and then to a spin stripe phase. The calcula-
tion helps to clarify some of the previous debates on the
phase diagram of this important model and provides a
novel example for applications of the recently developed
tensor network algorithms to frustrated systems.
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