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Abstract. With recent advances in information extraction techniques,
various large-scale knowledge bases covering a broad range of knowledge
have become publicly available. As no single knowledge base covers all
information, many applications require access to integrated knowledge
from multiple knowledge bases. Achieving this, however, is challenging
due to differences in knowledge representation. To address this problem,
this paper proposes to use linguistic frames as a common representa-
tion and maps heterogeneous knowledge bases to the FrameBase schema,
which is formed by a large inventory of these frames. We develop several
methods to create complex mappings from external knowledge bases to
this schema, using text similarity measures, machine learning, and differ-
ent heuristics. We test them with different widely used large-scale knowl-
edge bases, YAGO2s, Freebase and WikiData. The resulting integrated
knowledge can then be queried in a homogeneous way.

1 Introduction

In the past decades, numerous large-scale knowledge bases (KBs) have become
available and are now essential both in research and in the commercial world,
e.g., for IBM’s Jeopardy!-winning question answering system Watson [16] and for
Google’s Knowledge Graph-driven search results. The Web of Linked Data has
grown to the point that the numerous different KBs that have been published
can no longer easily be visualized in a single cloud image.

Since numerous stakeholders are publishing separate KBs focusing on differ-
ent domains and sources, a given application often needs to combine knowledge
from multiple KBs. Hence, there is a clear need for methods to integrate such
knowledge. A substantial body of work has aimed to address this problem by
automatically aligning individual entries across KBs, both at the schema level [9]
and at the level of entity instances [6]. These methods often produce a list of
binary links using properties such as owl:sameAs. Unfortunately, different KBs
often model the world in quite distinct ways. Despite the adoption of standards
such as the use of subject-predicate-object triples in RDF [15], the same piece
of information can be represented in ways such that a one-to-one alignment is
no longer possible.
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Consider, for instance, a marriage between two people. The YAGO KB [25]
captures this using a binary predicate (isMarriedTo) between two persons. The
Freebase KB [1], in contrast, relies on a special entity called a mediator or
Compound Value Type (CVT) to describe the marriage, as well as several
subject-predicate-object triples to list properties of the marriage, such as
involved people, time, location, etc. In cases like this, which are not uncom-
mon, neither owl:sameAs, rdfs:subClassOf, owl:equivalentProperty, nor
any other individual property or binary relation can fully express the complex
n-ary relationships between these resources.

In this paper, we propose to address this problem by integrating heteroge-
neous data into the FrameBase schema [21], which consists of a large inventory
of frames that homogeneously represent n-ary relations. Frame structures are
used in linguistics to describe the meaning of a sentence as scenarios with multi-
ple participants and properties filling specific semantic roles. A marriage frame
involves two partners, a time and a place, among other things. This is similar
to Freebase’s CVTs. However, in contrast to the few hundreds of CVTs in Free-
base, FrameBase uses a larger number of frames (∼ 20, 000) organized in a dense
hierarchy [11].

While FrameBase offers a flexible system for representing knowledge from
existing knowledge sources [21,22], there has not been any research showing
how to automatically or semi-automatically integrate heterogeneous knowledge
under its schema. In this paper, we develop a generic algorithm to create com-
plex integration rules from external KBs into this schema. These rules go beyond
existing alignment mechanisms designed for binary mappings between elements
of different KBs. In our experiments, we show results on three particularly het-
erogeneous sources: Freebase [1] and WikiData [8] are KBs with an especially
large schema. YAGO2s [25], in contrast, uses only a small number of proper-
ties, but relies heavily on reification to describe phenomena such as time and
locations.

2 Related Work

Connecting knowledge sources is a long-standing problem. At the level of indi-
vidual records in databases, this has variously been addressed as record link-
age, entity resolution, and data de-duplication [7]. In KBs, this roughly corre-
sponds to the problems of ontology alignment, data linking [26], and instance
matching [6].

For KBs, there has been substantial work on ontology alignment [9] to iden-
tify matching classes from different sources, and in some cases also instances and
properties across different sources [24]. A closely related task is that of canon-
icalizing or reconciliating knowledge from open information extraction [12,18],
which focuses on aligning names of entities and predicates by clustering synony-
mous entries. To achieve this, the knowledge extracted from each text source
has to be reconciled, sometimes using complex graph matching algorithms [18].
But as the same extraction tool is used for each text source, the resulting graphs
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are constructed in similar ways and therefore follow a common model. Hence,
the applied techniques for reconciliation are different from the ones necessary to
reconcile ontologies created by completely independent parties and tools.

Only very little work has considered scenarios in which the same type of
ontological knowledge is modeled in entirely different ways. In these cases, align-
ment by means of binary properties such as equivalence or subsumption is no
longer sufficient, because a KB may not have a direct counterpart for an ele-
ment of another KB. The EDOAL (Expressive and Declarative Ontology Align-
ment Language) format [3] has been proposed to express complex relationships
between properties. It defines a way to describe complex correspondences but it
does not address how to create them. Similarly, complex correspondence patterns
between ontologies – or ontologies and databases – have been described and clas-
sified in an ontology [23]. However, this approach does not provide any method
to create the correspondence patterns, neither fully nor semi-automatically. The
iMAP tool [4] explores a search space of possible complex relationships between
the values of entries in two databases, e.g., room-price = room-rate * (1 +
tax-rate), but these are limited to specific types of attribute combinations. The
S-Match tool [13] uses formal ontological reasoning to prove possible matches
between ontology classes, involving union and intersection operators, but does
not address complex matching of properties beyond this. Ritze et al. [20] use
a rule-based approach to detect specific kinds of complex alignment patterns
between entries in small ontologies.

Unlike previous work, the approach presented in this paper does not focus on
matching individual entities but provides techniques to match knowledge that
can also be expressed with complex patterns involving multiple entities.

3 Frames for Data Integration

FrameBase [21] relies on the concept of linguistic frames as provided by
FrameNet [11]. Such frames represent events or situations with characteristics
denoted as Frame Elements (FEs). As FrameNet’s original purpose is seman-
tic annotation of natural language, many frames have associated Lexical Units
(LUs), i.e., terms that, when appearing in a text, may evoke a frame, which may
be connected via FEs to some other parts of the text.

FrameBase represents the information about “John’s 7-year marriage
to Mary” by creating an entity e that is an instance of FrameNet’s
Personal relationship frame (or a more specific one for marriages, as we
describe later on). Relevant FEs such as the marriage partners and the duration
are then captured by adding triples with e as subject. For instance, properties
Partner 1 and Partner 2 connect e to entities representing John and Mary,
respectively, while the property Duration is used for the time their marriage
lasted.

FrameBase thus repurposes FrameNet frames, originally intended to
represent natural language semantics, for knowledge representation with subject-
predicate-object triples, using what is also called neo-Davidsonian represen-
tation: One first introduces an entity e that is an instance of a frame
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Fig. 1. Example of a hierarchy with a macroframe :frame-Quitting a place, two
cluster-microframes that are direct subclasses of the macroframe, and several LU-
and synset-microframes that are direct subclasses of the cluster-microframe. All the
microframes under a given synset-microframe are also connected via the symmetric
property framebase:similarTo (for clarity, the transitive closure is omitted). The
synset-microframes also have labels extracted from WordNet. The microframe iden-
tifiers have a shared prefix that has been abbreviated.

class, and hence represents a particular event or situation. This entity is then
connected to other entities (for example other frame instances, literals, or named
entities) by means of properties representing the frame elements.

To adapt FrameNet for knowledge representation, FrameBase extends the
inventory of frames defined by FrameNet in a hierarchy consisting of the following
levels (Fig. 1):

– Macroframes are very coarse-grained and correspond to regular frames in
FrameNet. The Personal relationship frame class, for example, subsumes
spouse, marriage, girlfriend, and divorced.

– Microframes inherit the general semantics and FE properties from their parent
macroframes. They can be classified into 3 types:

1. LU-micoframes are based on a frame’s LUs and are represented as sub-
frames in FrameNet, and therefore as subclasses in FrameBase. Personal
relationship-married.a and Personal relationship-divorced.a,
for example, are subclasses of Personal relationship.

2. Synset-microframes are created for synsets (sense-disambiguated syn-
onymous words) in WordNet [10] that LUs can be mapped to. For
instance, the two LU-microframes Personal relationship-suitor.n
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and . . . Personal relationship-court.v are connected to each other
by means of synset-microframes.

3. Cluster-microframes are created to cluster sets of LU- and synset-
microframes with similar meaning. Personal relationship, for
instance, clusters (encoded as subclasses) Personal relationship-
married.a, Personal relationship-divorced.a, Personal relation-
ship-suitor.n, and Personal relationship-court.v.

To enable more efficient querying without involving frame instances, FrameBase
also provides Direct Binary Predicates (DBPs) that directly connect pairs of FEs.
For instance, the two partners involved in a marriage are directly connected by
a triple with marriedTo as property. The schema provides both reification and
dereification (ReDer) rules to convert knowledge between the two representations
(frame and DBPs). Two example ReDer rules are presented in Fig. 2.

?S :...isSplitIntoParts ?O

�
?R a :frame-Separating-split.v ,

?R :fe-Separating-Whole 1 ?S ,

?R :fe-Separating-Parts 2 ?O .

?S :dbp-Motion-movesInCarrier ?O

�
?R a :frame-Motion-move.v ,

?R :fe-Motion-Theme 1 ?S ,

?R :fe-Motion-Carrier 2 ?O .

Fig. 2. Two example ReDer rules. The direct binary predicate is the property in the
dereified pattern, on the top. The reified pattern is at the bottom.

Overall, the FrameBase RDFS schema currently contains 19,376 frames,
including 11,939 frames for specific lexical units and 6,418 frames for Word-
Net’s sets of synonyms. In addition to ReDer rules, the schema uses efficient
RDFS+ inference (RDFS extended with a transitive, symmetrical, and recipro-
cal property used to link elements of a cluster).

4 Knowledge Base Integration

We now outline our approach for integrating heterogeneous knowledge bases
using the FrameBase schema. Although the techniques can be applied to a wide
range of KBs, we focus in particular on YAGO2s [25], Freebase [1], and Wiki-
Data [8].

Our integration algorithm produces integration rules describing how to trans-
form knowledge from a KB into FrameBase. These rules do not connect individ-
ual instances but are defined at the schema level and therefore resemble Global-
As-View mappings in relational database systems [5]. Formally speaking, the
produced integration rules can be expressed in first-order logic – with triples
represented as 3-ary predicates (Fig. 3). Nevertheless, we implement these rules
using SPARQL CONSTRUCT queries [14] because SPARQL is a widely sup-
ported standard for KBs available in RDF format. Non-RDF KBs can also be
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Algorithm 1. FrameBase Integration Algorithm.
Require: K � input knowledge base
1: R ← ∅ � set of SPARQL CONSTRUCT rules
2: for all classes C in K do � create class-frame rules
3: for all frames F ∈ mappingsC−F(C) do
4: M ← ∅ � property mappings
5: for all properties P such that ∃ s, o : 〈s P o〉 ∈ K and s ∈ C do
6: for all E ∈ mappingsPF−E(P, F ): E is not in R do
7: M ← M ∪ (P, E)
8: R ← R ∪ ClassFrameRule(C, F, M)
9: for all properties P in K do � create core property-frame rules

10: if the domain of P is not rdf:Statement then
11: for all (F, Es, Eo) ∈ mappingsP−FEE(P ) do
12: R ← R ∪ PropertyFrameRule(P, F, Es, Eo)
13: for all properties P ′ in K do � extend property-frame rules
14: if the domain(P ′)=rdf:Statement then
15: for all properties P in K satisfying 〈P ^rdf:property/P’ y〉 do
16: for all property-frame rules r in R do
17: if r matches PropertyFrameRule(P, F, Es, Eo) then
18: for all frame elements EP ′ ∈ mappingsPF−E(P ′, F ) do
19: Extend(r, P ′, EP ′)
20: return R � final set of integration rules

integrated by either using an alternative rule formalism or invoking off-the-shelf
or custom-purpose RDF converters1.

Algorithm 1 sketches our approach, which relies on three mapping functions
that are discussed in Sect. 4.3 and three rule instantiation functions given in
Fig. 3. The mapping functions relate entities from the source KB with entities
from FrameBase into which they can be translated, but they do not provide the
structure of the integration rules. The structure is specified by the instantiation
functions, which take elements from the source KB and FrameBase, and return
structured integration rules.

The instantiation functions are used to create two kinds of integration rules:
(i) class-frame rules, which convert classes and properties from the original KB
into similar elements in FrameBase (Sect. 4.1) and (ii) property-frame rules,
which convert properties from the source KB into frames (Sect. 4.2).

4.1 Class-Frame Rules

The process of creating class-frame rules starts in line 2 in Algorithm1, rely-
ing on mapping functions mappingsC−F and mappingsPF−E. Class-frame rules
are produced by the rule instantiation function ClassFrameRule(C,F,M) from
Fig. 3. They convert a class C into a frame F that represents an event, situation
1 http://www.w3.org/wiki/ConverterToRdf.

http://www.w3.org/wiki/ConverterToRdf
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ClassFrameRule(C,F,M)
given M = {(P1, E1), ...(Pn, En)}
∀v1...vnvn+1(

∃e1(
tf (e1, rdf:type, F ) ∧
tf (e1, E1, v1) ∧
...

tf (e1, En, vn)

) ← (

ts(vn+1, rdf:type, C) ∧
ts(vn+1, P1, v1) ∧
...

ts(vn+1, Pn, vn)

)

)

PropertyFrameRule(P, F,Es, Eo)

∀v1v2(∃e1(
tf (e1, rdf:type, F ) ∧
tf (e1, Es, v1) ∧
tf (e1, Eo, v2) ∧

) ← ts(v1, P, v2)

)

Extend(r, P ′, EP ′)
given r = PropertyFrameRule(P, F,Es, Eo)

Add inside ∃e1(...) in r
... ∧ ∀v3(tf (e1, EP ′ , v3) ← ∃e2(

ts(e2, rdf:type, rdf:Statement) ∧
ts(e2, rdf:subject, v1) ∧
ts(e2, rdf:predicate, P ) ∧
ts(e2, rdf:object, v2)

ts(e2, P
′, v3)

)

)

Fig. 3. Instantiation functions for the integration rules used by Algorithm 1. ts(s, p, o)
stands for a triple in a source KB and tf (s, p, o) for a triple in FrameBase. vi and ei
are variables (universally and existentially quantified, respectively) over entities in the
source KB.

or state of affairs, given M = {(P1, E1), . . . (Pn, En)} maping properties Pi for
C to frame elements Ei of F . Figure 4 provides an example of a class-frame rule
automatically generated for integrating Freebase.

CONSTRUCT {

_:e a :frame-Win_prize-win.v ; :fe-Win_prize-Time ?y

; :fe-Win_prize-Prize ?a ; :fe-Win_prize-Competitor ?aw

; :fe-Win_prize-Explanation ?hf ; :fe-Win_prize-Competition ?c

; :fe-Win_prize-Rank ?al ; :fe-Win_prize-Event_description ?ed .

} WHERE {

?m a fb:award.award_honor .

OPTIONAL { ?m fb:award.award_honor.year ?y }

...honor.award ?a } ...honor.award_winner ?aw }

...honor.honored_for ?hf } ...honor.ceremony ?c }

...honor.achievement_level ?al } ...honor.notes_description ?ed } }

Fig. 4. Class-frame rule, automatically generated rule for integrating Freebase.
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#SOURCE_PROPERTY_NAME=’depicts’

#SOURCE_PROPERTY_DESCR=’depicted person, place, object or event’

CONSTRUCT {

_:r a :frame-Communicate_categorization-depict.v .

_:r :fe-Communicate_categorization-Speaker ?S .

_:r :fe-Communicate_categorization-Item ?O .

} WHERE { ?S <http://www.wikidata.org/entity/P180> ?O }

Fig. 5. Property-frame rule, automatically generated for integrating Wikidata.

4.2 Property-Frame Rules

In general, the purpose of a property-frame rule is to translate a property in a
source KB as an instance of a frame with at least two properties. These rules
are built in two steps.

Creation of Core Property-Frame Rules. The process of creating core
property-frame rules starts in line 9 in Algorithm 1, relying on the mapping func-
tion mappingsP−FEE. Core property-frame rules are produced by the instantia-
tion function PropertyFrameRule(P, F,Es, Eo) from Fig. 3. Each RDF triple in
the source KB matching pattern ?x P ?y, is transformed into a frame instance
of type F with two frame-element properties Es and Eo whose values are ?x
and ?y, respectively. Figure 5 provides an example of a core property-frame rule
automatically generated for integrating Wikidata.

Extending Core Property-Frame Rules to Capture RDF Reification.
Additional clauses may be added by Algorithm1 in the loop starting in line 13.
This process relies on the mapping function mappingsPF−E. It uses the instan-
tiation function Extend(r, P ′, E) from Fig. 3, which takes a property-frame rule
r = PropertyFrameRule(P, F,Es, Eo) as argument and returns an extended ver-
sion of it to capture knowledge attached to triples by means of RDF reifica-
tion [21]. KBs such as YAGO use this to represent n-ary relationships, but the
FrameBase model is more efficient for this purpose. Figure 6 provides an example
of an extended property-frame rule generated for integrating YAGO.

4.3 Mapping Functions

The mapping functions use an automatic general technique meant to be used
with big and dynamic source KBs, extended with heuristics that apply for com-
mon patterns across large source KBs or cover most small source KBs.

P-FEE Mapping Function. Given property P from the source KB,
mappingsP−FEE(P ) returns 3-tuples of a frame F , and frame element properties
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CONSTRUCT { :event a :frame-Ride vehicle-flight.n core
; :fe-Ride vehicle-Source ?s ; :fe-Ride vehicle-Goal ?o core
; :fe-Ride vehicle-Vehicle ?objTransp . extension

} WHERE { ?s yago:isConnectedTo ?o . core
OPTIONAL { ?sid rdf:type rdf:Statement . extension
?sid rdf:subject ?s ; rdf:object ?o extension
; rdf:predicate yago:isConnectedTo . extension

OPTIONAL { ?sid yago:byTransport ?objTransp }}} extension

Fig. 6. Extended property-frame rule, generated for integrating YAGO.

Es, Eo associated with P . Informally, it means that property P from the source
KB can be substituted with a path ^Es/Eo in FrameBase.

General Method. For the general variant of mappingsP−FEE(P, F ), we exploit
the fact that the direct binary predicates built into FrameBase, which allow
us to directly connect two frame elements, are directly mappable to external
properties that should evoke a frame and two frame elements. Since the direct
binary predicates were created with labels that follow the prevailing conventions
in other LOD KBs [21], we can use a text similarity measure to find equivalent
direct binary predicates, and for those found, use the frame and FEs in the
associated reification rule. For example, if a property in a source KB is named
“is split in”, it turns out to be similar to the direct binary property “is split
into parts” from the first example in Fig. 2, which can be used to create an
integration rule that translates that source KB property into the reified pattern
of FrameBase’s ReDer rule.

To compare direct binary predicates with external ones, the text similarity
we use is cosine distance of bag-of-words vectors. We split predicate names into
tokens using capitalization, use proper lemmatization (with Stanford CoreNLP
3.6.0 [17]) instead of stemming, and do not filter stop-words, since in this case cer-
tain closed-set parts of speech such as prepositions are very important. The use
of this measure significantly improved the results compared to using ADW [19],
arguably because the latter is not tuned for our kind of text. Besides, our method
was much faster.

For each external KB property, we run the similarity function against all
existing DBPs in FrameBase, and we take the best candidate if it has a score
higher than a threshold of 0.8. The threshold value was chosen empirically to
balance precision and recall.

Additional Heuristics. Our system admits manually crafted heuristics to be
added to mappingsP−FEE(P, F ). When one of the heuristics fire, they take prefer-
ence over the general method. The vast majority of datasets in the Linked Open
Data cloud rely on very small hand-crafted ontologies and vocabularies. In this
case, relying on the heuristics is particularly useful, because they can cover most
of the elements of the source KB. In particular, we do this for YAGO2s, which
is not a small ontology per se (it has a rather big class hierarchy and millions of
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instances) but uses just 77 different non-metadata properties. The heuristics can
be expressed using an RDF ontology that is loaded by the system at startup.

PF-E Mapping Function. Given a property P from the source KB and a
frame F associated with P , mappingsPF−E(P, F ) returns frame element prop-
erties E with domain F , and associated with P . Informally, this means that
property P from the source KB can be substituted with property E in Frame-
Base.

General Method. The implementation of mappingsPF−E(P, F ) computes the
text similarity between the name of P concatenated with the name of its range,
and the names of the FEs whose domain is F , using the ADW similarity mea-
sure [19]. It chooses the candidate with the maximum score for each FE. Note
that our algorithm only considers these mappings in restricted settings, e.g. when
a frame F has already been chosen. This greatly reduces the set of candidates
in practice and enables this approach to deliver good results.

Additional Heuristics. To the general method, we add a heuristic that
increases similarity to 1 if the following condition is met: endsWith(P,X) ∧
endsWith(FE,Y). The possible values required for X and Y can also be loaded
from the heuristic ontology. For Freebase, we use the following two pairs:
(X,Y ) ∈ {(from, time), (place, place)}. For YAGO, 4 pairs are required:
(X,Y ) ∈ {(happenedIn, place), (happenedOnDate, time), (endedOnDate, time),
(startedOnDate, time)}.

C-F Mapping Function. Given a class C from the source KB,
mappingsC−F(C) returns frames F associated with C. Informally, this means
that class C from the source KB can be substituted with class F in FrameBase.

General Method. We let F (C) denote a candidate set of relevant frames F . In
order to filter out noisy and incomplete parts of the source KB, mappingsC−F(C)
returns ∅ for classes from the origin KB that do not have at least 10 instances
and at least 3 outgoing properties with text annotations. Otherwise, F (C) is
defined to include all LU-microframes with non-zero lexical overlap (some word
in common in the text labels) between C’s name and the set of text labels for
the synonymous frames from the cluster that F belongs to. Clusters of syn-
onymous frames are formed by LU-microframes that are deemed equivalent via
links through synset-microframes. To disambiguate and choose the best frame F
among all candidates F (C), we train (and later test, c.f. Sect. 5.1) logit and SVM
classifiers over (C,F ) pairs of this form, taken from a gold standard. The (C,F )
pairs are considered true when there is a class-frame rule in the gold standard
with C in the antecedent and F in the consequent, and false otherwise. Then,
for each source KB item, we choose the frame whose pair has the highest score.
Although this entails an implicit assumption of functionality, in practice, this
results in very significant gains in precision. As input to the model, we use the
following four features:
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1. The lexical overlap between (i) C’s name and (ii) the lexical labels of the
cluster of synonymous LU-microframes for F .

2. The lexical overlap between (i) the syntactic head of C’s name determined
iteratively using the Collins Algorithm [2] and (ii) the lexical labels of the
cluster of synonymous LU-microframes for f .

3. The lexical overlap between the descriptions (the longer text labels sometimes
identified as comments).

4. If C is a class, the lexical overlap between the union of labels and descriptions
of the outgoing properties, upweighting the labels by a factor of 10. When
available, the labels and descriptions of the ranges are added too.

For all features, we lemmatize and filter out stop words (closed word classes)
and use TF-IDF to compute the feature values (although the second feature is
boolean in practice).

In Sect. 5.1, we test this method using a gold standard manually created for
Freebase [1], which is a typical case of a large, open-ended schema, where a fully
automatic approach becomes more necessary.

Additional Heuristics. A high-accuracy heuristic can be applied for those
source KBs that are linked to WordNet, leveraging that FrameBase includes a
significant part of WordNet synset as synset-microframes, which are linked to
FrameNet-based LU-microframes.

The heuristic works as follows. If a given source KB class C is associated
with a WordNet synset, the synset-microframe based on this synset is looked
up in FrameBase. If found, this is the match, and if it is not found, a class C ′

is selected that is the next most specific WordNet-based parent of C. That is,
C ′ ⊃ C ∧ (C ′′ ⊃ C → C ′′ = C ′). Now a synset-microframe is searched for C ′.
If it is not found, the process is repeated until a match is found, or a maximum
number of steps is reached (e.g., 6), in order to avoid overly general rules. With
this method, a sound rule can still be created, even if it loses some specificity,
and it accounts for the fact that not all synsets are mapped in FrameBase.

This heuristic is particularly relevant for YAGO2s, whose upper class hier-
archy is based on WordNet nouns, which makes the mapping obvious. However,
it also applies to any other KB for which a mapping to WordNet exists, even if
this is an external or a-posteriori one. Since WordNet is a very commonly used
linguistic resource, this is reasonably common in LOD KBs.

5 Evaluation

5.1 Integration Rules Created

In this section we present examples of creating integration rules with Algorithm 1
for the test cases of YAGO2s, Freebase (2014-09-21 version), and WikiData
(2015-09-28 version).
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Table 1. Evaluation of mapping external
classes to FrameBase classes.

Baseline-1 Baseline-2 Our method

Logit SVM

Recall 0.21 0.60 0.50 0.77

Precision 0.12 0.15 0.88 0.77

F1 0.15 0.24 0.63 0.77

Table 2. Evaluation of map-
ping external properties to
FrameBase properties.

Metric Score

Precision 0.81

Recall 0.30

Accuracy 0.36

Creation of Class-Frame Integration Rules

Freebase. To evaluate the results of this method on an arbitrary KB, we pro-
duced a manual gold standard consisting of 31 classes and 141 external properties
from Freebase [1], paired with their candidate frames or FE properties, respec-
tively. The gold standard is available at http://framebase.org/data. Using two
independent annotators, we obtained a Cohen’s kappa (inter-annotator agree-
ment) k = 0.69 for class to macroframe mappings, and k = 0.38 for property to
frame element mappings. The second is lower because it accumulates the errors
from the first, which illustrates how difficult it is to create a gold standard for
structured knowledge integration. The classes were randomly chosen from Free-
base, disregarding classes whose candidate set did not include a valid match
in FrameBase. Freebase was chosen for testing this method because it features
Compound Value Types (CVTs), which have a similar role to frames, but we are
also able to map some non-CVT classes. Out of a total of 155 outgoing proper-
ties for the randomly chosen Freebase classes, 141 could successfully manually
be matched to frame elements in the gold standard.
Table 1 shows the results for automatic class mappings, averaging over 10 random
training/test partitions of ratio 2:1. We compare three different methods.

– Baseline-1 takes the frame class with maximum lexical overlap in names (as in
feature 1 of our method) and for which the candidate set F (x) consists of all
FrameBase classes (which is a sort of metric that can be configured with the
Link Specification language in Silk [26], a state-of-the-art ontology alignment
system). However ontology alignment systems alone cannot produce complex
mappings.

– Baseline-2 uses the same measure as above, but applying the candidate set
F (C) chosen in our method, described in Sect. 4.3.

– Our method described in Sect. 4.3, using a logistic regression (logit) classifier
and the functional assumption in conjunction with a fixed acceptance thresh-
old of p > 0.5, where p is the probability obtained from the logit.

– Our method described in Sect. 4.3, using a support vector machine (SVM) with
radial kernel, selecting, for each source KB class, the candidate frame whose
score is highest, given by the distance to the frontier (functional assumption).

http://framebase.org/data
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Table 2 provides the results obtained by our method for properties, averag-
ing over 10 random training/test partitions of the ground truth data, each of
ratio 2:1. Precision and recall are calculated with respect to the gold standard.
We obtain higher precision with the logit method because we use the output
probabilities to apply a condition that filters out false positives at the cost of a
lower recall. Both classifier-based methods outperform the baseline.

Note that in general, word sense disambiguation is considered a hard and
yet unsolved problem in natural language processing. This is particular rele-
vant when matching properties that come with little or no metadata. For exam-
ple, the Freebase classes education.academic post and base.banned.exiled must
be mapped to the Employing and Residence-reside.v frames, respectively, for
which there is no obvious lexical connection. The same applies when mapping,
for example, Freebase properties education.academic post.institution and geog-
raphy.river.length to frame elements Employing-Employer and Natural features-
Descriptor, respectively. A complete high-precision integration of Freebase into
another knowledge base thus requires a larger community effort with additional
manual revisions. Our system can be used to automatically propose suggestions
to speed up this process.

YAGO. 450 class-frame integration rules were automatically created for
YAGO2s. The results are given in Table 3. It shows how the number of matches
decreases as n increases and the WordNet-based heuristic for mappingsC−F(C)
moves up the WordNet hierarchy. For n > 6 the results are negligible. The ratio
of correctly matched entities is 0.789, which is equivalent to the precision of
the WordNet-FrameNet mapping used for creating the schema [21] – via clus-
tering of near-equivalent microframes, which uses other links in FrameNet and
WordNet that are annotated by experts and therefore expected to be nearly
error-free. Figure 7 provides an example of a class-frame integration rule created
for YAGO2s.

CONSTRUCT { ?s a :frame-Change_of_leadership-revolt.n ;

:fe-Change_of_leadership-Place ?o .

} WHERE { ?s a/rdfs:subClassOf yago:wordnet_rebellion_100962129 .

OPTIONAL { ?s yago:happenedIn ?o } }

Fig. 7. Class-frame rule, automatically generated for integrating YAGO2s.

Property-Frame Integration Rules
State-of-the-art ontology alignment systems cannot produce something compa-
rable to property-frame integration rules because the binary links produced by
these systems (equality, subsumption, etc.) cannot reflect the complex 4-ary
nature of property-frame integration rules.
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Table 3. Number of created class-frame rules for YAGO2s. Matches(n) denotes the
number of matches obtained for n being the maximum number of generalization steps.
For each column, the left side shows the number of created rules and the right side
the number of triples in YAGO2s matching these rules. endedOnDate has no significant
occurrence in YAGO2s and was therefore omitted.

happenedIn happenedOnDate startedOnDate

Rules Triples Rules Triples Rules Triples

Matches(0) 38 11,149 86 16,836 4 13

Matches(1) 25 944 83 3,579 5 5

Matches(2) 24 469 58 14,329 1 1

Matches(3) 15 1,232 39 2,315 1 2

Matches(4) 9 540 30 986 0 0

Matches(5) 5 42 14 121 0 0

Matches(6) 2 2 11 39 0 0

All matches 118 14,378 321 38,205 11 21

No match 42 633 148 13,195 0 0

Total 160 15,011 469 51,400 11 21

% Match 73 % 95 % 68 % 74 % 100 % 100 %

WikiData. We use the general method to automatically extract property-frame
rules from WikiData. We evaluate it on YAGO2s, as we can re-use the manually
created FrameBase mappings for YAGO2s (described below) as a ground truth.
Evaluating the results directly we obtain a precision of 0.80, and using the YAGO
ground truth we obtain a recall of 0.21. Figure 5 shows an example of a rule
extracted from WikiData.

YAGO. Using the RDF ontology with manually specified heuristics mentioned
in Sect. 4.3, 62 out of the 77 non-metadata properties in YAGO2s (i.e., 81 %)
could be perfectly integrated into FrameBase using simple property-frame rules.

6 Conclusion

In this paper, we have shown that knowledge base heterogeneity is a problem
that goes beyond just the use of different identifiers that need to be aligned. We
provide a general analysis of declarative constructs – integration rules – that can
also achieve kinds of mappings other than basic entity alignments. We further
show that FrameBase is able to incorporate multiple broad-coverage knowledge
sources, despite their structural heterogeneity, opening up the possibility for it
to serve as a hub for semantic integration of other KBs.

We also provide practical methods to produce these rules, combining general
methods with heuristics. The quality of the output is certainly not perfect, but
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while traditional ontology alignment is already a difficult task, complex mappings
have combinatorially more possible candidates and are thus much harder. Our
results constitute a first step towards a more comprehensive linking of knowledge.

The total size of the instance data obtained from these source KBs is
40,411,393 statements, which renders it the largest collection of facts linked to
FrameNet.

All FrameBase data (schema, ReDer rules, integration rules, instance data,
and gold standards) is published under a CC–BY 4.0 International license at
http://framebase.org.
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