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a b s t r a c t

We consider the star p-hub center problem recently introduced by Yaman and Elloumi [H. Yaman and S.
Elloumi. Star p-hub center problem and star p-hub median problemwith bounded path lengths, Comput.
Oper. Res., 39 (11) (2012) 2725–2732]. We first show that the problem does not admit a (1.25 − ϵ)-
approximation algorithm for any ϵ > 0 unless P = NP. In particular this gives the first strongNP-hardness
result for the problem in a metric space. We also present, complementing the inapproximability result, a
purely combinatorial 3.5-approximation algorithm for the star p-hub center problem.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this work, we study the star p-hub center problem (abbrevi-
ated as SpHCP) introduced by Yaman and Elloumi [15]. There are
a set of demand nodes (users) located on a metric space, each of
which wants to communicate with all the others through a two-
level hub network specified as follows. There is a given fixed cen-
tral hub, and we can choose another p hubs among the set of
demand nodes and connect each of them to the central hub by a di-
rected link. Then we connect each of the remaining demand nodes
to exactly one of the p chosen hubs. The resulting network is a tree
of depth 2 (or a star–star network), in which the root is the cen-
tral hub, the depth-1 nodes are the hubs, and the depth-2 nodes
(i.e., leaves) are the children of their assigned hubs. (See Fig. 1 for
an example.) The length of each edge equals the distance between
its two endpoints in themetric space. The path length between two
demand nodes is the length of the unique path connecting them in
this tree. The goal of SpHCP is to find p hubs and a corresponding
hub assignment so as to minimize the maximum path length be-
tween any pair of demand nodes.

The star p-hub center problem can be used to model,
e.g., the optimization of the poorest service quality in a two-level
telecommunications network [15]. Yaman and Elloumi [15] proved
the NP-hardness of SpHCP and proposed several formulations of
SpHCPusing integer programs. They also performed computational
studies of the problem through extensive experiments. However,
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to the best of our knowledge, no other theoretical results are
known for SpHCP. Furthermore, in their NP-hardness proof of
SpHCP (Theorem 1 in [15]), the distance function between the
demand nodes is not a metric, which violates the definition of
SpHCP. Thus the complexity of SpHCP (on a metric space) still
remains open.

In this work, we fill in the blank of theoretical aspects of
the star p-hub center problem by investigating its polynomial-
time approximability. We prove that there is no (1.25 − ϵ)-
approximation algorithm for SpHCP on a metric space, unless
P = NP, by a reduction from the dominating set problem. This in
particular implies the (strong) NP-hardness of SpHCP. We then
present a 3.5-approximation algorithm for SpHCP. Our algorithm
is purely combinatorial and easy to implement.
Related work. Various hub location problems have been well
studied in the literature because of their important applications
in transportation and telecommunication systems; here hubs
are intermediate transshipment points for traffic between the
members of origin–destination pairs. See [1,4] for two recent
surveys on network hub location problems. Classical hub location
problems mostly assume that the hubs are fully interconnected
and thus the communication between them need not go through
a central hub. A problem similar to SpHCP under this assumption
is the p-hub center problem introduced by Campbell [3] and
O’Kelly and Miller [14], which was further studied in, e.g.,
[8,11,13]. Recently there has been increasing research attention
to hub location problems with multi-level topologies, such as the
star–star network in SpHCP (i.e., the network connectinghubnodes
to the central hub is a star, and each network connecting users to a
particular hub is also a star). Some problems of interest withmulti-
level network structures have been studied in, e.g., [2,5–7,12].
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Fig. 1. An example of the problemwith p = 2. On the left side, the solid circle is the
central hub and the empty circles are the demand nodes. The right side represents
a hub assignment and the resulting network, in which the chosen hubs are redrawn
as solid squares.

2. Problem definition and notation

In the star p-hub center problem, we are given a set of demand
nodes D and a central hub c ∉ D. There is a distance function d(·, ·)
defined on every pair of nodes in D∪{c}. The distance d is a metric
on D ∪ {c}, i.e., d(i, i) = 0, d(i, j) = d(j, i), and d(i, j) + d(j, k) ≥
d(k, i) for all i, j, k ∈ D ∪ {c}. Additionally an integer p ≥ 1 is
given. A hub assignment is a way of designating p nodes from D
as hubs, connecting them to the central hub, and assigning each of
the remaining (non-hub) nodes in D to exactly one of the p chosen
hubs. The hub graph (of a hub assignment) is a tree graph with
vertex set D ∪ {c} in which c is the root, the p selected hubs are
the children of c , and each non-hub node is a child of its assigned
hub node; in addition, each edge {i, j} in this tree has length d(i, j).
The path length between i, j ∈ D, denoted by l(i, j), is the length
of the unique path connecting i and j in the hub graph. The goal
of the star p-hub center problem [15] (SpHCP, for short) requires
one to find a hub assignment such that the maximum path length
between any pair of nodes in D is minimized.

We introduce some notation used in the design of approxima-
tion algorithms for optimization problems. Let Π be a minimiza-
tion problem. An α-approximation algorithm forΠ is a polynomial-
time algorithm that, given any instance I of Π , returns a solution
whose objective value is at most α times that of the optimal solu-
tion of I. (Approximation algorithms for maximization problems
can be analogously defined, but they will not be used in this work.)

3. Approximability of the star p-hub center problem

In this section, we study the star p-hub center problem from an
approximationpoint of view.We first prove the followinghardness
result, which rules out the possibility of designing a polynomial-
time approximation scheme (PTAS) for SpHCP.

Theorem 1. There is no (1.25-ϵ)-approximation algorithm for the
star p-hub center problem for any ϵ > 0, unless P = NP.

Proof. We will prove that, if SpHCP can be approximated within
a factor 1.25− ϵ in polynomial time for some ϵ > 0, then the
dominating set problem can be solved in polynomial time. This
will complete the proof of the theorem, since the dominating set
problem is well known to be NP-hard [9].

Let {G, k} be an instance of the dominating set problem, where
G = (V , E) is the input graph and k is an integer. The goal of the
problem is to decide whether G has a dominating set of size k.
We assume w.l.o.g. that 1 ≤ k ≤ n − 2 and that G contains no
isolated vertex. Construct an instance of SpHCP as follows. The set
of demand nodes is D = {cv | v ∈ V }∪{c ′}; thus there is a demand
node cv corresponding to each vertex v ∈ V , and there is another
demand node c ′ for other uses. There is a central hub c ∉ D. The
distance function d is defined as:

• d(c, cv) = 1 for all v ∈ V , and d(c, c ′) = 2;
• for all distinct u, v ∈ V , d(cu, cv) = 1 if {u, v} ∈ E, and

d(cu, cv) = 2 otherwise;
• d(c ′, cv) = 3 for all v ∈ V .
Fig. 2. An example of the reduction. The graph on the left is an instance of the
dominating set problem. On the right side, d(u, v) = 1 if there is a normal line
segment between u and v, d(u, v) = 2 if there is a bold line segment between u
and v, and d(u, v) = 3 if there is no line segment connecting u and v.

It is easy to verify that d is a metric on D. (See Fig. 2 for an
illustration.) Finally we set the number of allowed hubs as p =
k + 1. This finishes the construction of the SpHCP instance, which
we denote by I. Clearly I can be constructed in polynomial time.

Let OPT(I) denote the objective value of the optimal solution
of I. We claim that G has a dominating set of size k if and only if
OPT(I) ≤ 4. This will complete the proof, because OPT(I) > 4
implies OPT(I) ≥ 5 due to the integrality of the distance function,
and thus any (5/4 − ϵ)-approximation algorithm can distinguish
the two cases.

First consider the ‘‘only if’’ part. Let S ⊆ V be a dominating set of
Gwith |S| = k. Consider a hub assignment of I obtained as follows:
Choose {cv | v ∈ S} ∪ {c ′} as the set of p = k + 1 hubs. Then,
for each vertex u ∈ V \ S, assign the demand node cu to a hub cv ,
with v satisfying that {u, v} ∈ E and v ∈ S (this can be done since
S is a dominating set of G). Note that no non-hub demand node
is assigned to c ′. It is then easy to verify that the maximum path
length between any two nodes in the underlying hub graph is at
most 4. Hence, OPT(I) ≤ 4.

We now consider the ‘‘if’’ direction. Suppose OPT(I) ≤ 4 and
consider a hub assignment that achieves the optimal objective
value. We first observe that c ′ must be a hub node. In fact, if c ′ is
not a hub, let cu be the hub to which c ′ is assigned, and cv be a hub
other than cu (note that p = k + 1 ≥ 2). Then the path length
between c ′ and cv is l(c ′, cv) = d(c ′, cu) + d(cu, c) + d(c, cv) =
3+1+1 = 5, which contradicts our assumption that OPT(I) ≤ 4.
Thus c ′ is a hub. If there is some cv that is assigned to c ′, then
the path length between cv and a hub other than c ′ is at least
d(cv, c ′)+ d(c ′, c)+ 1 = 6, a contradiction. Therefore no demand
node is assigned to c ′.

Let H be the set of demand nodes other than c ′. We have |H| =
p − 1 = k. Let S = {v ∈ V | cv ∈ H}. We claim that S is a
dominating set of G. Assume to the contrary that S is not a
dominating set; then there exists v ∈ V \ S such that S contains
no neighbors of v. Let cu ∈ H be the hub node that cv is assigned
to. Then the path length between cv and c ′ is l(cv, c ′) = d(cv, cu)+
d(cu, c)+ d(c, c ′) = 2+ 1+ 2 = 5, contradicting our assumption
again. Therefore, S is a dominating set of G of size k. This completes
the reduction from the dominating set problem to SpHCP, and
hence Theorem 1 follows. �

In the above hardness proof, the distance between two demand
points can only be 1, 2, or 3. Thus the following corollary is
immediate from Theorem 1.

Corollary 1. The star p-hub center problem is strongly NP-hard.

Next, to match the inapproximability result, we present a
constant factor approximation algorithm for SpHCP.

Theorem 2. There is a 3.5-approximation algorithm for the star p-
hub center problem.

Proof. Let I = (D ∪ {c}, d, p) be an instance of the star p-hub
center problem, where D is the set demand nodes, c is the central
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Fig. 3. An example of the parameters. On the left is an instance of SpHCP in which the solid circle is the central hub and the others are demand nodes, and p = 2. On the
right is an optimal solution, where solid squares are selected hubs and edges represent the assignment (with the lengths). Then we have d0 = 1.4, d1 = 1.5, d2 = 1.2, and
vmax is the rightmost node. In this case, it is easy to see that OPT = 1.2 + 1 + 1.4 + 1.5 = 5.1. The two lower bounds in (1) and (2) are respectively d1 + d0 = 2.9 and
d1 + d2 = 2.7.
Algorithm 1: Approximation algorithm for SpHCP (D ∪
{c}, d, p)

1 Guess the correct values of d0, d1, d2, and vmax. Their
meanings are provided in the proof.

2 H ← {v ∈ D | d(v, c) ≤ d0}.

3 Create an instance J of the k-center problem with forbidden
centers, in which D \ {vmax} is the set of demand nodes,
H \ {vmax} is the set of allowed centers, k = p, and the
distance metric is the restriction of d to D \ {vmax}.

4 Apply the greedy 2-approximation algorithm for the k-center
problem with forbidden centers (Algorithm 2), to obtain an
approximate solution of J. Assume that H∗ ⊆ H is the set of
centers opened in the solution.

5 return the solution that opens H∗ as the set of p hubs and
assigns each node in D to its nearest hub in H∗.

hub, d is the distance metric on D ∪ {c}, and p is the number
of allowed hubs. Let OPT denote the objective value (i.e., the
maximum path length) of the optimal solution (say S) of I, and
D∗ ⊆ D be the set of hub nodes opened by S. Suppose each node
v ∈ D is assigned to the hub f (v) ∈ D∗. (A hub node is assigned
to itself, i.e., f (v) = v for v ∈ D∗.) Let d0 := maxv∈D∗ d(c, v) be
the largest distance between c and any hub node in D∗. Let d1 and
d2 be the largest distance and second largest distance (considering
multiplicity) among the node–hub distances {d(v, f (v)) | v ∈ D \
D∗}, respectively. (For example, if the collection of distances
between nodes and their assigned hubs is {5, 5, 4, 3, 0, 0}, thenwe
have d1 = d2 = 5, but not d1 = 5, d2 = 4.) We assume that p ≥ 2
and d1 > 0; otherwise the instance is very easy to solve. See Fig. 3
for an illustration of the parameters.

Our algorithm is presented as Algorithm 1. Line 1 of Algorithm
1 guesses the values of d0, d1, d2, and the node vmax ∈ D with
d(vmax, f (vmax)) = d1. (Note that vmax is the node with the largest
distance to its assigned hub in the optimal solutionS.)We certainly
do not know their exact values. However, since each of them has
only polynomially many possible values, we can run the algorithm
for all of their possible values and take the best solution. Therefore,
in the following we assume that we know d0, d1, d2, and vmax.

We next prove that Algorithm 1 is indeed a 3.5-approximation
algorithm for SpHCP. We will accomplish this by first establishing
lower bounds of OPT with respect to the guessed parameters, and
then showing an upper bound of ALG, the maximum path length
between two demand nodes in our solution. Comparing ALG with
OPT yields the desired result.

We first prove the lower bounds on OPT. Let h, v1, v2 ∈ D
be the nodes witnessing d0, d1, d2, respectively; that is, d(h, c) =
d0, d(v1, f (v1)) = d1, and d(v2, f (v2)) = d2. If h ≠ f (v1), then
Algorithm 2: A 2-approximation for k-center with forbidden
centers
1 //Let C be the set of demand nodes, C ′ ⊆ C be the set of
allowed centers, and d be the metric on C . Assume w.l.o.g.
that k ≤ |C ′|.

2 Guess the objective value of the optimal solution, say OPT .
(Note that there are at most |C ′| · |C | possible values for OPT .)

3 R← C; S ← ∅.

4 while R ≠ ∅ and |S| < k do
5 Choose an arbitrary node v ∈ C ′ ∩ R.
6 B(v)← {u ∈ R | d(u, v) ≤ 2 · OPT }.
7 R← R \ B(v); S ← S ∪ {v}.
8 end
9 return S

the path length between v1 and h in the optimal solution S is
d(v1, f (v1)) + d(f (v1), c) + d(c, h) ≥ d1 + d0. If h = f (v1), then
the path length between v1 and any v ∈ D \ {v1, h} is at least
d(v1, h)+ d(h, c) ≥ d1 + d0. Hence, we have

OPT ≥ d1 + d0. (1)

We then consider the path length between v1 and v2 in the optimal
solution. Clearly the path connecting v1 and v2 must contain the
two edges {v1, f (v1)} and {v2, f (v2)}, and thus we have

OPT ≥ d(v1, f (v1))+ d(v2, f (v2)) = d1 + d2 ≥ 2d2. (2)

Next, we establish an upper bound on ALG by examining our
algorithm. By our choice of d0, the set H defined in line 2 contains
all hub nodes in the optimal solution S, i.e., D∗ ⊆ H . In line 3,
we create an instance J of the k-center problem with forbidden
centers. This problem is defined as follows: The input consists of a
set C of demand points in a metric space, a set C ′ ⊆ C of allowed
centers, and an integer k. The goal is to open (at most) k centers in
C ′ such that the maximum distance between any vertex in C and
its nearest center among the k opened centers is minimized. This
problem is a generalization of the ordinary k-center problem (in
which C ′ = C), and is a special case of the k-supplier problem (in
which C ′ may not be a subset of C) [10]. There is a simple greedy
2-approximation algorithm for this problem, which is presented
in Algorithm 2. It analysis is standard and is similar to that of the
traditional k-center problem (see [10]), and thus is omitted here.

Let OPT(J) denote the objective value of the optimal solution
to J. We show that OPT(J) ≤ d2. Recall that D∗ ⊆ H is the
set of hubs opened in the optimal solution to the SpHCP
instance I. By the definition of d1, d2 and vmax, we have
maxv∈D\{vmax}minh∈D∗ d(v, h) = d2. Therefore, by opening D∗ as
the set of centers in J, we achieve an objective value of d2, which
implies that OPT(J) ≤ d2. Hence, by applying the 2-approximation
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algorithm (Algorithm 2) to implement line 4 of Algorithm 1, we
obtain a solution H∗ of J with objective value at most 2OPT(J) ≤
2d2, that is,

max
v∈D\{vmax}

min
h∈H∗

d(v, h) ≤ 2d2. (3)

Since we assume that d1 > 0, we have f (vmax) ≠ vmax and thus
f (vmax) ∈ D\ {vmax} (recall that f (vmax) is the hub assigned to vmax
in the optimal solution of I). By inequality (3), there exists h ∈ H∗
such that d(f (vmax), h) ≤ 2d2, which implies that

d(vmax, h) ≤ d(vmax, f (vmax))+ d(f (vmax), h) ≤ d1 + 2d2. (4)

Line 5 returns a solution that opens H∗ as the set of p hubs. For
each v ∈ D, let f ′(v) := argminh∈H∗d(v, h); i.e., f ′(v) is the hub in
H∗ assigned to v in the solution returned by the algorithm. Let d′1
and d′2 be the largest value and second-largest value in the multi-
set {d(v, f ′(v)) | v ∈ D}. Combining inequalities (3) and (4), we
have

d′1 ≤ d1 + 2d2 and d′2 ≤ 2d2. (5)

Let v1, v2 ∈ D be the nodes achieving the maximum path
length in our solution, i.e., l(v1, v2) = ALG. It suffices to show that
ALG ≤ 3.5 · OPT. If f ′(v1) = f ′(v2), then ALG = d(v1, f ′(v1)) +
d(v2, f ′(v2)) ≤ d′1 + d′2. If f

′(v1) ≠ f ′(v2), then ALG = d(v1,
f ′(v1))+d(f ′(v1), c)+ f (f ′(v2), c)+d(v2, f ′(v2)) ≤ d′1+2d0+d′2,
where we use d(h, c) ≤ d0 for all h ∈ H by our choice of H . Using
inequality (5), we always have

ALG ≤ 2d0 + d′1 + d′2 ≤ 2d0 + (d1 + 2d2)+ 2d2
= 2d0 + d1 + 4d2. (6)

By inequalities (6), (1) and (2), we obtain

ALG ≤ 2d0 + d1 + 4d2
≤ 2(d0 + d1)+ 3d2 (using d2 ≤ d1)
≤ 2OPT+ 1.5 · OPT
= 3.5 · OPT,

which indicates that Algorithm 1 is a 3.5-approximation algorithm
for SpHCP. Hence we have the theorem. �

4. Concluding remarks

In this work, we have studied the star p-hub center problem
from an approximation viewpoint. An interesting open problem is
that of bridging the gap between the lower bound 1.25−ϵ and the
upper bound 3.5 on the approximability of SpHCP. We conjecture
that a better approximation ratiomay be achievable by considering
the two-level assignment integrally, or by a proper rounding of
some linear programming relaxations of SpHCP. It is also of interest
to explore whether SpHCP can be solved efficiently in some special
metric spaces.
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