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Abstract—Function computation in directed acyclic networks is
considered, where a sink node wants to compute a target furicn
with the inputs generated at multiple source nodes. The netark
links are error-free but capacity-limited, and the intermediate
network nodes perform network coding. The target function &
required to be computed with zero error. The computing rate

computes the target function, i.e., the average numbemafsti
that the target function can be computed for one use of the
network. The maximum achievable computing rate is called
the computing capacity

When computing the identity function, the problem becomes

of a network code is measured by the average number of times the extensively studied network coding [5], [6], and it iokm
that the target function can be computed for one use of the that in general linear network codes are sufficient to aehiev

network. We propose a cut-set bound on the computing rate

using an equivalence relation associated with the inputs othe
target function. Our bound holds for general target functions and
network topologies. We also show that our bound is tight for eme
special cases where the computing capacity can be charadtsd.

I. INTRODUCTION

the multicast capacity [6],[7]. For linear target functsoover

a finite field, a complete characterization of the computing
capacity is not available for networks with one sink node.
Certain necessary and sufficient conditions have beenrmuatai
such that linear network codes are sufficient to calculate a
linear target function[[4],[[8]. But in general, linear neik
codes are not sufficient to achieve the computing capacity of

We consider function computation in a directed acyclitnear target functions [9].

network, where garget functionf is intended to be calculated Networks with a single sink node are discussed in this paper,
at a sink node, and the input symbols of the target functiavhile both the target function and the network code can be
are generated at multiple source nodes. As a special casap-linear. In this scenario, the computing capacity isvkmo
network communication is just the computation of thentity when the network is a multi-edge tre€ [2] or when the target
function] Network function computation naturally arises irfunction is the identity function. For the general casejotas
sensor networks_ [1] and Internet of Things, and may fingbunds on the computing capacity based on cut sets have been
applications in big data processing. studied [2], [3]. But we find that the upper bounds claimed in
Various models and special cases of this problem haf2], [3] are not valid. Specifically, the proof of [2, Theorem
been studied in literature (see the summarizations_in [2]k1] has an errét The condition provided in the beginning
[4]). We are interested in the followingetwork coding model of the second paragraph is not always necessary, which is
for function computation. Specifically, we assume that thBustrated by an example given in this paper. We show that
network links have limited (unit) capacity and are err@er the computing capacity of our example is strictly largemtha
Each source node generates multiple input symbols, and the two upper bounds claimed inl [2].| [3].
network codes perform vector network coding by using the Towards a general upper bound, we define an equivalence
network multiple time8 An intermediate network node canrelation associated with the inputs of the target functiout (
transmit the output of a certain fixed function of the symboldoes not depend on the network topology) and propose a cut-
it receives. Here all the intermediated nodes are consideset bound on the computing capacity using this equivalence
with unbounded computing ability. The target function iselation. Our bound holds for general target functions and
required to be computed correctly for all possible inpute Wjeneral network topologies in the network coding model. We
are interested in theomputing rateof a network code that also show that our bound is tight when the network is a multi-

edge tree or when the target function is the identity fumctio
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1A function f : A — A is identity if f(z) = « for all z € A.

20ne use of a network means the use of each link in the netwomkoat
once.

In the remainder of this paper, Sectioh Il formally introdac
the network computing model. The upper bound of the com-
puting rate is given in Theorent 3, and is proved in Sedfidn IV.
Section[Il] compares with the previous results and dis@isse
the tightness of our upper bound.

3No proof is provided for the upper bound (Lemma 3)[in [3].
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I[I. MAIN RESULTS f is defined as follows. Let € A*** be the matrix formed
In this section, we will first introduce the network comPY symbols generated at the source nodes. The purpose of the
puting model. Then we will define cut sets and discuss sorf@de is to computg®)(z) by transmitting at most symbols
special cases of the function computation problem. Last W& -A on each edge i€. Denote the symbols transmitted on
head to the main theorem about the cut-set bound for functigfigee by g°(z) € B". For a set of edge&’ C & we define

computation. §%(2) = (¢°(x)]e € E)
A. Function-Computing Network Codes

Let G = (V,€&) be a directed acyclic graph (DAG) with
a finite vertex set¥ and an edge sef, where multi-edges
between a certain pair of nodes are allowedetworkoverG
is denoted a8/ = (G, S, p), whereS C V is called thesource he - { AF — B, if ueS;
nodesand p € V\S is called thesink nodep. Let s = |S]|, "\ Ieee saitcey) B® — B",  otherwise.
and without loss of generality (WLOG), lét= {1,2,...,s}. ) . , )
For an edge: — (u,v), we callu the tail of ¢ (denoted by Functionsh e € & dgt(_armme the ;ymbols transmltted on the
tail(¢)) andw the head of: (denoted byhead(c)). Moreover, edges. Specifically, i¢ is an outgoing edge of th&h source
for each nodeu € V, let &(u) = {e € € : head(e) = u} node, then
and&,(u) = {e € & : tail(e) = u) be the set of incoming 9°(x) = h*(z:);
edges and the set of outgoing edgesupfrespectively. Fix
an order of the vertex sét that is consistent with the partial
order induced by the directed gragh This order naturally ¢¢(x) = h* (g&(u)(x)) )
induces an order of the edge s&t where edges > ¢’ if
either tail(e) > tail(e’) or tail(e) = tail(e’) and head(e) > The (n, k) network code also contains a decoding function
head(e’). WLOG, we assume thaf;(j) = 0 for all source

where g¢* (x) comes beforgy®2(x) whenevere; < e;. The
(n, k) network code contains the encoding function for each
edgee, define:

if e is an outgoing edge of € V' \ (S U {p}), then

nodesj € S, and&,(p) = 0. We will illustrate in Section TI-C p: H B" — O".
how to apply our results on a network with(j) # 0 for e'€&i(p)
certainj € S. Define

The network defined above is used to compute a function, _ Ei(p)
where multiple inputs are generated at the source nodes and V(@) = (g (x)) '

the output of the function is demanded by the sink nodﬁ.

. L ) Ny the network codecomputesf, i.e., 1 (z) = f*)(z) for all
The computation units with unbounded computing ability are _ A% we then caII% log 5 | A| anachievablecomputing

allocated at all the network nodes. However, the computirpgte where we multipht by ] |A] in order to normalize
capability of the network will be bounded by the network™ Py, by logs

transmission capability. Denote b§ a finite alphabet. We g}ehg%rggum%;ﬁeu?r: ti;g:;[c{tur:‘cr:g)tr\:\/soyl\(”jt\? Vsi'tf:]e:ggtélgfu
assume that each edge can transmit a symb#Blialiably for P ) puting capactty P

each use. to a target functiory is defined as

Denote byA and O two finite alphabets. Lef : A° — O
be thetarget function which is the function to be computed
via the network and whosgéh input is generated at thih
source node. We may use the network to compute the functfon
multiple times. Suppose that thith source node consecutively For two nodesu and v in V, denote the relatiom. — v
generates: symbols in.A denoted byzxi;, x2;,...,zk;, and if there exists a directed path fromto v in G. If there is
the symbols generated by all the source nodes can be givemadlirected path from: to v, we sayu is separatedfrom v.

a matrixz = (x;; )kxs. We denote by:; the jth column ofz, Given a set of edge§’ C &, I¢ is defined to be the set of
and denote by’ the ith row of z. In other words,z; is the source nodes which are separated from the sink notfleC
vector of the symbols generated at tjté source node, andis deleted from&. SetC is called acut setif I # (), and
z® is the input vector of théth computation of the function the family of all cut sets in network/ is denoted as\(\).
f. Define forz € A*xs Additionally, we define the seK as

FB (@) = (f@), f@®), ..., f() " Ko ={ieSPu,teV,i—v,(vt) eC}.

For convenience, we denote by the submatrix ofr formed |; is reasonable to assume that— p for all u € V. Then
by the columns indexed by C 5, and denote by the sub- gne can easily see thdt. is the set of source nodes from
matrix of  formed by the rows indexed by C {1,2,...,k}.  \which there exists a path to the sink node throdghDefine
We equated!** with A° in this paper. Jo = Ko\ Io.

For two positive integers: and k, a (n,k) (function- The problem also becomes simple whes 1.
computing) network code over netwafKk with target function

k k . .
C(Na f) = sup {; 1Og\B| |A|‘; log‘3| |./4| IS aChlevabl% .

Cut Sets and Special Cases



Proposition 1. For a network A/ with a single source node N’ (where the super source node performs the operations of
and any target functiorf : A — O, all the source nodes i), we have

C(N’f): min ¢’ C(Naf)SC(vaf)
cea) log 4 | FIAl ) . .
The proof is completed by applying Propositidn 1 .4f and
where f[A] is the image off on O. AN ={C e AWN):Ic = S}. ]
Proof: We first show that the right hand side in the above "€ a@bove upper bound only uses the image of function
equation could be achieved. Let f- We propose an (_enhanced upper bound by mvest_lgatlng
an equivalence relation on the input vectors fofWe will

M = min |C|. compare this equivalence relation with similar definitions
CeAN) proposed in([2],[[3] in the next section.
Fix integersk and n such thatk/nlogz |Al < C(N, f),

Definition 1 (Equivalence Class)For any functionf : A*
which implies (Eq ) y f + AS —

O, any two disjoint index setd,J C S, and anya,b €
FLAIF < B, o ) @, 1
Alll c e A1, we saya = b|;,; if for every z,y € A, we

By the max-flow min-cut theorem of directed acyclic graphfiavef(z) = f(y) whenever; = a,y; = b,z; = y; = cand
there m_ust exisf\/ edge-disjoint paths from the source nodgs\uw) — ys\(1u.)- TWo vectors: andb satisfyinga (:i) b1y
_to the sink node, and each o_f them can transmlt_ one symbol said to be 1, J, c)-equivalent. Whew = () in the above
in B. We can apply the following network computing code t@efinition, we use the convention thais an empty matrix.
compute f(¥): The source node first computg$®) (), and
then encodeg (*)(z) into a unique sequenagin B using Note that the equivalence as defined above does not depend
a one-to-one mappinm, whose existence is guaranteed b?n the structure of the network. However, it will soon be
@)_ The network then fOfWﬂrdﬁ from the source node to theC|ear that with a network, the division of equivalence obmss
sink node byn uses of theM paths. The sink node decodedaturally leads to an upper bound of the network function-
by m~1(y). computing capacity based on cut sets.

We then prove the converse. Suppose that we have /a) For everyf, I, J andc € A, let W,(c}f denote the total

code withk/nlogs |A| > C(N, f), which implies number of equivalence classes induced (QWJ. Given a

|FLA]E > |B|"M. (2) hetwork\ and a cutsef’, letWe, ; = max ¢ qiuc| WI(?JCJ.
Our main result is stated as following. The proof of the
Fix a cut setC with |C| = M. It can be shown that theorem is presented in Section] IV).
U(x) =¥ (g% (2)), Theorem 3. If MV is a network andf is a target function, then
for certain_ functiony© (_seg Lemmals in SectiV). BY1(2) C(N,f) < min €| — min-cut\V, ).
and the pigeonhole principle, there must exist’ € A4k*s ceAN) log 4 We,r
such that I1l. DiscussiON OFUPPERBOUND
k k
I )(x) # £ )(x/)’ In this section, we first give an example to illustrate the
9% (z) = g% ("), upper bound. We compare our result with the existing ones,

d dbyadi i bout the tight f the bound.
where the second equality implieg(z) = (z’). Thus and proceed by a discussion abolt the tightness ot the botn

this network code cannot compute botff)(z) and f*)(z') A An Illustration of the Bound

correctly. The proof is completed. [ ] , ) )
First we give an example to illustrate our result. Con-

C. Upper Bounds sider the networkN; in Fig. 1 with the object function
1,172,173) = 2122 + T3, whereA=B=0 = {O, 1}

et us first compare the upper bounds in Theofém 3 and
positiof 2. LetCy = {eg, e7}. Here we have

In this paper, we are interested in the general upper boum{
onC(N, f). The first upper bound is induced by Proposifidbn lgro

Proposition 2. For a network\ with target functionf, .« |Col =2, I, = {3}, Jo, = {1,2}; and
" lel « For any given inputs of nodek and 2, different inputs
CN,f) < min _— i
W, ) cerlNY 1o=s log) 4 | fIA7]] fro(rg node3 generate dlffere2nt outputs of. Therefore
Wiy e,.s = 2 foranyc € A% and hencdVe, = 2.

) L By Theoreni B, we have
Proof: Build a network\/” by joining all the source nodes

of A/ into a single “super” source node. Since a code for - |Col
CN., f) <min-cul MV, f) < ———— = 2.
network A/ can be naturally converted to a code for network N, ) < Wi, f) < log| 4| We, r



1 2 3 a(zc)bhw wherec’ = ¢, (). In particular, a = b[; implies
. o, o . 02|, forall JC S\ Iandee A,
el €6 ()
Proof: Assume thatw = b|;, ;v wherel C S,J C S\
I,J CJ,abe Al ce AVl andd = ¢, (7). We want to
O 20 c
v er p prove thata (E) blr.J.

It suffices to show thatf(z) = f(y) for all =,y € A*®

Fig. 1. NetworkA; has three source nodek,2 and3, and one sink node satisfyingz; = a,y; = b, x5 =y5 = ¢, T\ (1UT) = YS\(1UJ)-
that tes th l functi ) X2, T3) = + x3, wh = . = ¢ =

Q":agcimé’iefo, le}.”"” inear functigfix, w2, x3) = x125 + 23, Where e know that:c-J/ = (x1)i,0) = ¢,y = ¢ by def|n|t|o[1

of the functioni;. Thereforex; = a,y; = b2y =yy =c¢

andz g\ (7ugy) = Ys\(1u), Which implies f(z) = f(y). The

While Propositior, R induces that proof is finished. u
. C| Lemma 2. Llet/ cI'c SandJ =1I'\1I. Forall c € Al
CM,f) < cenddl g Tog /T4 a = bl; |m/pI|es o' =V|p wherea} = a, b =band
—  min [C] %) = Vi) = €
CEeAN):Ic=S (©
=4, Proof: We havea = b|; impliesa = b|; ; by Lemmall,
where the first equality follows fronf[.4°] = {0,1}, and the @nda’ =1V'|;- is equivalent tow = b|;,; by definition. =
second equality follows from Lemma 3. Fix network A" and functionf. Then, i) for any
min IC] = | {es, 5, eq,¢7} | = 4. C € A(N), we haveR¢ s > Wc ¢; i) for any C,C’ € A(N)
CEAN):Te=S Y with ¢’ ¢ C and I¢r = I, we haveWe: ¢ > We ¢
Therefqr.e, Theorem| 3 gives a strictly better upper bound tha  proof: Let I = I, J = Jo and.J’ = Jer. Apparently,
Propositior 2. Jor C Jo. By Lemmald, fore € Al’¢l, we have
The upper bound in Theorelm 3 is actually tight in this case. ) ©
We claim that there exists(@, 2) network code that computes WI,J/,f > WI,J,f’

f in Aj. Consider an input matrixx = (z;j)2x3. Node ¢
sendsxy; to nodev and sendsey; to nodep for i = 1,2,3

respectively, i.e., for = 1,2,3 Rrj> WI(C; ;-

€; __ ) €;4+3 __ .
9" =, g7 =2 Then Ry > max,c 4 W, = e
Node v then computesf(z') = 211212 + 213 and sends it Fix ¢* € Al/¢! such thatWI(f,y)f =We, s Then,Wer >

wherec’ = ¢, (. In particular,

. H 1 " *
to nodep V|a2eOE;ee7. Node p rec_elvesf(:z: ) from e ar_ld WI(,CJ’),f > WI(,CJ,)f = We,; wherec” = &) [ ]
computesf(z®) = w1722 + w23 USing the symbols received Pefine
from edgesey, e5 andeg. |C|
min-cuk (N, f) =

mm ——.
CeAN) 10g|A\ RCJ‘

Upper bounds on the computing capacity have been studi%d Lemmal3, we have min-cUV, ) > min-cut (N, f). It
in [2], [3] based on a special case of the equivalence clggSciaimed in [2, Theorem I1.1] that min-cat\, f) is an
defined in DefinitionJL. However, we will demonstrate thatﬁpper bound O}C(/\/, £). We find, however, min-cut\V, f)
the bounds ther_em do not hold for the example we studied 1ot universally an upper bound for the computing capacity
the last subsection. _ Consider the example in Fill 1. For cut €&t = {e, e, 7},

In Definition[], whenJ = 0, we will saya = b|;, oraandb e havel, = {1,3}. On the other hand, it can be proved
arel-equivalent. That is = b|; if for everyz,y € A with {5t Re, s = 4 since i) f is an affine function ofz, given
rr = a,yr =bandxzs\; = ys\;, We havef(z) = f(y). FOr that 2, andz; are fixed, and ii) it takeg bits to represent
target functionf and/ C S, denote byR; ; the total number ihis affine function over the binary field. Hence
of equivalence classes induced #y|;. For a cutC € A(N),

B. Comparison with Previous Works

let R,y = Ri,,5. FOrJ C S, letiy : J — {1,...,|J|} min-cut (N7, f) < _ Gl _3 <2=C(M,f).

be the one-to-one mapping preserving the orderJori.e., log 4 Reyp 2

i;(i) <iy(j)ifand only ifi < j. Then we have the following  £qr 4 network\ as defined in SectidiIlA, we say a subset
lemma: of nodesU C V is acutif [UNS|>0andp ¢ U. For a cut

Lemma 1. Let I, J be disjoint subsets o and.J’ C J. Then U, denote byg(U) the cut set determined by, i.e.,
for a,b € Al andc € AlYI, we have that (Cz)b|u, implies E(U) = {e €& :tail(e) € V,head(e) € V\ U}.



Let
AN N)={E(U):Uisacutin\N}.
Define
min-cuk (A, f) = min &
Ccer*(N) logw Re ¢

Since A*(N) C A(N), min-cuk (N, f) > min-cul (N, f).

It is implied by [3, Lemma 3] that min-cutV, f) is an
upper bound orC(N, f). However, min-cyt (N, f) is also

Then consider the followingn, k) code, where we claim
that %’j(:cp(u)) can be computed by all nodes given the
initial input 2 € A***. This claim is proved inductively with
the outline of the code.

Each source node € S computesy®(z;). Note that there
are only R,y ; < |B|™€ (] possible outputs of/*. So we
can encode each output into a distinct stringssfc>("!, and
send then|&,(i)| entries of the string im uses of the edges
in (7). Thus the claim holds for all source nodes

not universally an upper bound for the computing capacity. FOr an intermediate node, let m = [prec(u)| and denote

Consider the example in Figl 1. For the dit = {1,3,v},
the corresponding cut sé€{U;) = Cy = {eq4, €6, e7}. Hence,

- Gl 3 _,_
min-cuk (N7, f) < log g Rory 2 <2=C(Ny, f).

prec(u) = {v1,...,vn}. Assume that the claim holds for
all v € prec(u). Node u first recoversy}(zp(,) for all
v € prec(u) using the symbols received froé(u). This is
possible by the induction hypothesis afiglv) C & (u) for
all v € prec(u). Then nodeu fixes s € A**IP(WI such that

Though in general the upper boundslih [2], [3] are not validy, (5ir. (P(s,)) = V0, (Tp(,)) holds for alll < j < m, i.e.

for various special cases discussed in [2], e.g., multeddee
networks, these bounds still hold.

C. Tightness

i

Sipu (P(v)) ()

Such ans can be found by enumerating the matrices in
ARXIP(w)]

= Tp(o) [P, V1 <G <m, 1 <i < k.

The upper bound in Theordm 3 is tight when the network is By (@), we can encode each output ¢f into a distinct
a multi-edge tree. We may alternatively prove the same tresging of gnI€=(w)!_ In this (n, k) code, nodes encodesy*(s)

using [2, Theorem II1.3], together with the facts that

. €]
min

min-cu = -
W) cen~(W) log 4 We s

and that for a multi-edge tree networl/c,; = Rc y for
C e A*(N).

Theorem 4. If G is a multi-edge tree, for network/ =
(G, S, p) and any target functiory,

C(N, f) = min-cutl N, f).

Proof: Fix a pair of (n,k) such thatZlog s |A| <
min-cuV, f). It suffices to show that there exists &m, k)
code computingf on /. We have

ng < |B|"‘C‘
for all C' € A(N). For nodeu, define
P(u) ={v € Slv — u},
prec(u) = {v € V|(v,u) € £}.
For allu € G, &,(u) is a cut set, and

I,y = P(u),  Je ) =0,
Rgo(u),f < |B|nlfo(u)|_

®)

4
We assign each a function
Yot AP 5 112 Ry )
such that
Yu(®) = Yu(y) & T = ylp(w)-

For anys € AP the valuey,(s) determines the equiva-
lence classs lies in. Forz € ARXIP(WI ] et

WZ(x) = (VU(x1)7'7u(‘r2)a o a’yu(‘rk))—r'

and sends the|&,(u)| entries of the string im uses of the
edges in&,(u).
We claim thaty (s) = 7% (zp,)). As G is a tree, we have

P(u) = Ui<j<m P(v))

whereP(v)NP(v') = 0 if v # v'. Then define a sequence of
strings{a;}7", ,a; € AP as follows:
ap = 8", ap = xlf(u)v

Sipgn Py ! > J;
1<)

(@3)ip 0y (P(or)) = {

Consider stringsa;—; and a;, for all 1 < j < m. In
Lemmal2, let

1
L)

a’ = aj—1,

b/ = aj, .

a= (al')im)(P(vj)) = (8)ip ) (P(v;)

b= (b/)ip(u>(P(vj)) = (IZ)P(vz),

¢ =()ip( (P\P(;)) = (0)ipe (P@)\P(0)))s

(6)

we havea’ = V'|p(y), i.€. a;_1 = aj|p(y forall 1 < j <m.
The equivalence then extends to

ot — 0
apg =S :am—xp(u)|p(u)

for all 1 < i < k. Therefores’ = x;(u)|p(u) always holds,
and we have

Y () = 7u(@p(),

finishing the induction.
The sink node can computg (z), identifying f*)(z). m
The upper bound in Theordnh 3 is not tight for certain cases.
Consider the networlds in Fig.[2(a) provided in[[2]. Note



3 1 3 2 Then the F-extension af' is defined as

F(C)=CUD(C).

€1 €3 €1 €3
1 2 1 9 Lemma 4. For every cut seC, F/(C) is a global cut set, i.e.
€2 €4 €2 €4 VC € AN), Iricy = S.
D P Proof: Clearly, Ic C Ir(c), then it suffices to show that
for all i ¢ I, we havei € (). This is true, since, (i) C
(a) Network N2 (b) Network N3 F(C) andi € I¢ ;) imply i € Ipc). [

Fig. 2.  Networks\> and N have three binary sourcegl, 2,3} and | emma 5. Consider a(n, k) network code ilV' = (G, S, p).

one sinkp that computes the arithmetic sum of the source messagese wh . - C -
A = B = {0,1}. In NV}, the number of edges from nodeto nodei’ is For any global cut se’, ¢(x) is a function ofg™(x), i.e.,

infinity, i = 1, 2. P(x) = (g% (z)) for certain functiom)©.

Proof: For a global cut seC of N. Let G¢ be the

that in V2, source noded and 2 have incoming edges. Tosubgraph ofG formed by the (largest) connected component

match our model described in Sectibn 1I-A, we can modi fG incIuQingp after removingC from 5_‘ Let Sc be the set
N to N3 shown in Fig.[2(b), where the number of edge! f nodes inG¢ thqt do not have incoming edges. SinGe:
from nodei to nodes’ is infinity, : = 1,2. Every network is also a DAG,S¢ is not empty. For each node € Sc, we

code inA3 naturally induces a network code ix; and vise have i)u is not a source nod_e_, w since othe_rW|se’J wou_ld
versa. Hence. we have not be a global cut set, and ii) all the incoming edges: af

G are inC since otherwisé&~ can be larger. For each node

C(Na, f) =C(N3, f). u in Go but not in Sg, the incoming edges of are either
) ) in G¢ or in C, since otherwise the cut sét would not be
We then evaluate min-cQvz, f). Note that global. If we can show that for any edgein G¢, ¢¢(z) is
] a function of g (), theny(z) = ¢(&(p)) is a function of
c
1Og\A| WCJ‘ < o0 g (SC)

Suppose tha&¢ has K nodes. Fix an order on the set of
holds only if |C| < oo, and we can thus consider only thenodes inG¢ that is consistent with the partial order induced
finite cut sets. For a finite cut set, we denote byC’ = by G¢, and number these nodes as < ... < ux, where
C Nn{er,...,eq}. We have|C'| < |C| and Jor C Jeo, and ux = p. Denote by&,(u|G¢) the set of outgoing edges of
we claimIc» = Ic. Note that/cr C Ic. Suppose that therew in G. We claim thatg® (“:1G<) (z) is a function ofg (z)
existsi € Ic \ Icv, then there exists a path frofrto p which  for s = 1,..., K, which implies that for any edge in G¢,

is disjoint with C”, but shares a subsé of edges withC. ¢¢(x) is a function ofg“(z). We prove this inductively. First
Then D C &,(i) and hencgD| = 1. We simply replace the g (411Gc) () is a function ofg® (z) sinceu; € Sc and hence
edge inD by an arbitrary edge ig,(:) \ C and form a new all the incoming edges af, in G are inC. Assume that the
path fromi to p. This is always possible, sin@@ N &,(:) is  claim holds for the first nodes inG¢, k > 1. Forug,1, we
finite while &,(7) is not. The newly formed path is disjointhave two cases: Ifi, ;1 € Sc, the claim holds since all the

with C, and then we have¢ I, a contradiction. incoming edges ofux4+1 In G are inC. If ug11 ¢ Sc, we

According to Lemmal3, we havé’c s > W r and hence know that&;(uxy1) C UF_ &, (u;|Ge) U C. By the induction

€] < __1€I__ Therefore we can consider only cutiypothesis, we have tha (ui+1|Gc¢) is a function ofg® ().
log‘A‘ WC/,f - log‘A‘ Wc,f . Th f . | t d .
setsC’ C {ey, e, e3,e4+. We then have min-c\3, f) = 1, € prootis compieted. o
where the minimum is obtained by the cut $es, ¢, }. While ~ In the following proof of Theorenil3, it will be handy to
for network A3, it has been proved ifi[2] that(A,, f) = extend the equivalence relation for a block of function itspu
logs 4 < 1. Hence min-cut\y, f) = 1 > C(N3, f). For disjoint setsl,J € S andc € AVl we saya,b €
A< are (I,.J,c)-equivalent if for anyz,y € AF** with
IV. PROOF OFMAIN THEOREM rr=a,yr =bxy=y; = (CT]; L ’CT)T and:z:s\fkuJ =
. . . — I

To prove Theoreni]3, we first give the definition of F¥s\rus. W€ havef(’-“)(x) = f®(y). Then for the setd XU,

extension and two lemmas. the number of equivalence classes induced by the equivalenc

k
ion i (c)

Definition 2. [F-Extension] Given a network/ and a cut set relation is (WI,J,f)

C e A(N), defineD(C) C € as Proof of Theorerl3:Suppose that we have(a, k) code

with
D(C) = | &(i).

inc

S long‘ |A| > min-CUT(N, f) (7)



We show that this code cannot compyfter) correctly for all
r € AF**. Denote

. 1C|
C*=arg min ——— 8
gCGA(N) 1ogM| We s (8)
and ©
¢’ = arg ceri\l%)é*\ ch* e f 9
By (@)-(9), we have
k |C*|
—logs Al > = ;
08lA Wie ge s
which leads to
. P\ k
B < (WD) (10)

Note thatg®" (z) only depends ork,... By (I0) and the
pigeonhole principle, there exist b € A**Ilc+| such that i)
a and b are not(Ig-, Jo-,c*)-equivalent and ii)g® (z) =
g (y) for any z,y € A*** with

Tl =, Yloe = b,
Tjee = Ygou = (T T )T (12)

TS\ K+ = YS\Kex -

Fix z,y € A*** satisfying [I1) andf*®)(z) # f*)(y). The
existence of suclx andy is due to i). SinceC* and D(C*)
are disjoint (see Definitionl 2) and for any¢ Ic«, z; = y;,
together with ii), we have

9" (@) = g" O (y).

Thus, applying Lemmal5 we hawg(x) = (y). Therefore,
the code cannot computes bofth) (z) and f*) (y) correctly.
The proof is completed. ]
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