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Quantum information processing provides remarkable advantages over its classical counterpart. Quantum
optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely
on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source,
are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with
imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol
will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we
investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when
the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a
few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method
also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we
take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly
and may provide some further advantages for certain tasks.
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I. INTRODUCTION

Quantum information science has developed rapidly in the
last few decades. At the theoretical level, various schemes
have been proposed to solve classical intractable problems
or provide certain quantum advantages. Specifically, Shor’s
factorization algorithm [1] indicates that quantum computing
can exponentially enhance the computational power in certain
tasks compared to a classical computer. In addition, quantum
key distribution (QKD) protocols [2,3] enable remote users
to extend secret keys with security guaranteed by the basic
principles of quantum mechanics.

In experiment, quantum optics is favored for realizing quan-
tum information processing tasks due to the weak interaction
between a photon and its environment. Especially in quantum
communication, various tasks, such as long-distance quantum
key distribution [4] and quantum teleportation [5], are realized
with linear optics. On the other hand, linear optics is not enough
to realize universal quantum computation. Roughly speaking,
it requires exponentially large resources to implement a linear
quantum optical computer [6]. Thus, nonlinearity is crucial for
universal quantum computation in linear optics. One possible
way is to use nonlinear optics [7], which still faces the scalable
difficulty for current technology. On the other hand, Knill,
Laflamme, and Milburn (KLM) [8] have shown that efficient
quantum computation is possible using only linear optics
with single-photon sources. The nonlinearity is introduced
by adaptive measurements which can be realized with the
techniques of quantum teleportation [9].

In reality, perfect single-photon sources and detectors are
not available. Instead, other imperfect photon sources, such
as heralded spontaneous parametric down-conversion (SPDC)
sources, are used to simulate single photons. Meanwhile,
single-photon detectors generally have low efficiency. The
imperfection of devices will lead to unexpected events, thus
limiting the quantum advantage. In experiment, entangling
eight photons is the best reported result [10,11].

The imperfections of single-photon sources not only affect
the accuracy but cause loopholes in cryptography protocols.

Specifically, the multiphoton parts will lead to photon-number-
splitting attacks [12], which makes the key rate of the
well-known Bennett-Brassard 1984 (BB84) QKD protocol
[2] very low. The imperfect photon sources seem to limit
the power of optical realization of quantum information
processing. Surprisingly, this is not the case in reality. Even
with imperfect photon sources, such as a weak coherent state,
as an input, secure QKD protocols are still possible by utilizing
the decoy-state method [13–15]. By inputting two or more
coherent states, one can still estimate the information leaked
in eavesdropping and thus make the whole process secure.

In this work, we generalize the idea of a decoy state to
general optical circuits. As an example, we show that it is
possible to simulate a single photon to arbitrary accuracy
efficiently by making efficient use of phase-randomized
coherent states. In addition, we generalize our result to multiple
photons. We show that replacing a few single photons with
coherent states is possible in general quantum information
tasks. For large numbers of photons, we link our work to the
scenario of quantum computation. Our method thus provides a
quantum simulator to general quantum computing processes.
Finally, we discuss that our method works for general photon
sources.

II. FRAMEWORK

In this section, we first review the basic framework of
optical circuits. With a single photon as the input, whose
density matrix is denoted by ρin, a general optical circuit can
be regarded as a quantum channel described in Fig. 1, which
involves a unitary interaction U between the signal photon
and the environment E. After the channel, a measurement M

is performed on the output photon ρout.
Such a general quantum channel can be fitted into many

scenarios such as QKD, where Alice encodes her information
in the input signal state ρin and sends it through a public
quantum channel to Bob. On the output side, Bob performs
photon-number measurement on his received signal ρout,
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FIG. 1. Optical circuits with a single photon as input.

denoted by a positive operator-valued measure (POVM). For
a specific POVM element M , the detection probability is

Q = Tr[Mρout], (1)

where ρout = TrE[U (ρin ⊗ ρE)U †]. Necessary classical post-
processing should be applied to the outcome Q to extract the
final desired quantum information. In the following, we will
focus on this specific POVM element; it is straightforward
to see that our results apply similarly to the other POVM
elements.

Ideally, the information is encoded on a single photon.
However, a more general scenario is that Alice feeds a mixture
of Fock states,

ρ ′
in =

∞∑
k=0

P (k)|k〉〈k|, (2)

where |k〉 represents a Fock state that contains k photons and
P (k) is the photon-number distribution satisfying P (k) ∈ [0,1]
and

∑∞
k=0 P (k) = 1. For a single-photon source, P (k) is a

Kronecker δ function,

P (k) = δk1 =
{

1, k = 1,

0, k �= 1.
(3)

For a phase-randomized coherent-state source, P (k) is a
Poisson distribution [14],

P (k) = μk

k!
e−μ. (4)

When the general photon state defined in Eq. (2) is used,
Bob’s detection probability defined in Eq. (1) is given by

Q =
∞∑

k=0

P (k)P (click|k photons), (5)

where P (click|k photons) denotes the detection probability
with k photons as input, that is,

P (click|k photons) = Tr[MU (|k〉〈k| ⊗ ρE)U †]. (6)

For easier presentation, we will denote P (click|k photons)
by Yk . When k = 0, Y0 corresponds to the yield with no
photon input, i.e., the dark count. When k = 1, Y1 denotes the
probability with a single photon as input. For a single-photon
source, we have Q = Y1. However, for a phase-randomized
coherent source, we have

Q =
∞∑

k=0

μk

k!
e−μYk. (7)

Ideally, a single-photon source is required for several quan-
tum information processing tasks. The accurate probability
distribution Y1 can be obtained only with a single-photon
source. However, if we intend to learn only the value of Yk ,
we show in this work that such a value can be accurately and
efficiently estimated with several phase-randomized coherent
states as input.

III. SIMULATING A SINGLE PHOTON

In this section, we will focus on simulating the probability
distribution Y1 with a single photon of a general quantum
circuit. For easier presentation, let us first define Aμ = Qeμ,
that is,

Aμ =
∞∑

k=0

μk

k!
Yk. (8)

To estimate Y1, we will make use of the idea of the decoy-state
method originally applied in QKD [16]. That is, Alice chooses
a few probe intensities of phase-randomized coherent states
to get several detections Aμ. By regarding the probability
Yi with i photons for i = 1,2, . . . as an unknown variable,
we thus get several linear equations of Yi in the form of
Eq. (8) with different μ and Aμ. As there is an infinite
number of unknown variables, we need an infinite number
of equations to deterministically decide Y1. However, we can
still approximately estimate Y1 with finite linear equations.
With a greater number of coherent states used, the estimation
becomes more accurate. A similar analysis has been done for
QKD with a few decoy states [17]; however, the obtained
estimation is not optimal.

For heuristic presentation, we will show examples of esti-
mating Y1 with one and two probe intensities. Another example
with three probe intensities can be found in Appendix. A.
Furthermore, we analytically derive an estimator for Y1 with
L general probe intensities plus one vacuum intensity. With
an explicit example, we numerically prove that the estimation
error decays exponentially with the number of probes L. These
results are derived in the asymptotic case, where for each probe
intensity there is an infinite number of samples. To take the
finite-size effect into account, we consider a finite number of
samples M/(L + 1) for each probe intensity. By considering
the total error of our method, including estimation and
statistical errors, we find that it scales inversely proportionally
to a power function of the total number of coherent pulses
M, exp[−O( ln(M))]. Therefore, our method with coherent
probes is efficient.

In the following, we will first discuss the case with one, two,
and three probe intensities and then generalize the result to L

probe intensities. The discussion of one, two, and three probe
intensities can be found in the decoy-state method in QKD
[16], and generalization to L probe intensities is our result.

A. Review: One probe intensity

First, we consider that only one phase-randomized coherent
state ρμ is used. In this case, an estimation of Y1 is given by
the redefined probability Aμ in Eq. (8) divided by its intensity
μ, that is, Y est

1 = Aμ/μ. To see the estimation accuracy, we
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use the relation between Aμ and Y1 via Eq. (8),

Y1 = 1

μ

(
Aμ − Y0 − μ2

2
Y2 − · · ·

)

= Y est
1 − 1

μ

(
Y0 + μ2

2
Y2 + · · ·

)
. (9)

As Yn corresponds to the probability with n photons as input,
we have Yn ∈ [0,1] and hence the bounds of Y1,

Y est
1 − eμ − μ

μ
� Y1 � Y est

1 . (10)

The estimation accuracy is defined by the interval between the
upper and lower bounds,

�0 = eμ − μ

μ
, (11)

which is minimized at μ = 1 with the value of e − 1 > 1.
Thus, at least one of the bounds in Eq. (10) is trivial since
Y1 ∈ [0,1].

It is easy to see that a single use of a coherent state gives a
very loose estimation of Y1. This can be intuitively understood
by the dark-count contribution Y0 in Eq. (9). To overcome
this, we can input an additional coherent state and show in the
following that Y1 can be estimated to much better accuracy.

B. Review: Vacuum + one probe intensities

Now, suppose Alice can add another probe coherent state
ρν . In this scenario, there are two linear equations,

Aμ = Y0 + μY1 + μ2

2
Y2 + · · · ,

(12)

Aν = Y0 + νY1 + ν2

2
Y2 + · · · .

Subtracting one from the other, we have

Aμ − Aν

μ − ν
= Y1 + μ + ν

2
Y2 + · · · . (13)

Therefore, we can estimate Y1 by Y est
1 = Aμ−Aν

μ−ν
and have the

relation

Y1 = Y est
1 − μ + ν

2
Y2 − · · · . (14)

Assuming μ > ν, the bounds of Y1 are given by

Y est
1 − eμ − μ − eν + ν

μ − ν
� Y1 � Y est

1 . (15)

The size of the interval is

�1 = eμ − eν

μ − ν
− 1. (16)

The minimum of �1 is reached for v = 0, and it increases with
μ. For a small μ, we can approximate the interval by

�1 = μ

2
+ O

(
μ2

2!

)
. (17)

The intuition behind the choices of the intensities comes
from the motivation to estimate the background contribution
Y0. After that, the estimation error of Y1 suffers only from

contributions of more than two photon numbers, that is,
O(μ2/2!). Therefore, in the following, we will always consider
the vacuum probe intensity.

C. Vacuum + L probe intensities

We leave the result with the vacuum + two probe intensities
to Appendix A and consider a general case where Alice inputs
an L + 1 phase-randomized coherent state ρμ0 (vacuum),
ρμ1 , . . . ,ρμL

. Suppose μ0 = 0 and μ1 < μ2 < · · · < μL; an
estimation of Y1 is given in Appendix B [Eq. (B11)] by

Y est
1 = μ1μ2 · · ·μL

L∑
j=1

μ−2
j

(
Aμj

− A0
)

∏
1�n�L;n�=j (μn − μj )

, (18)

where Aμj
is the gain of the coherent-state input with intensity

μj . The bounds of the Y1 estimation are

Y est
Y − �L � Y1 � Y est

1 ,
(19)

Y est
1 � Y1 � Y est

1 + �L

for L to be odd and even, respectively, where the interval
between the upper and lower bounds is given according to
Eq. (B16) by

�L = (−1)L+1

⎛
⎝μ1μ2 · · · μL

L∑
j=1

μ−2
j (eμj − 1)∏

1�n�L;n�=j (μn − μj )
−1

⎞
⎠

= μ1 · · · μL

(L + 1)!
+ O

[
μ1 · · ·μL

∑
μl

(L + 2)!

]
. (20)

When the intensities μj are small, we can see that the
estimation interval exponentially decreases with L. Thus, a
single photon can be efficiently simulated with a coherent
source as the input.

According to Eqs. (B17) and (B19), the estimation Y est
1 and

the interval �L can be represented as a linear combination of
Aμj

as

Y est
1 =

	L/2
∑
j=1

λ2j−1Aμ2j−1 −
�L/2�∑
j=1

λ2jAμ2j
+ λ0A0,

�L = (−1)L+1

⎛
⎝	L/2
∑

j=1

λ2j−1e
μ2j−1 −

�L/2�∑
j=1

λ2j e
μ2j + λ0 − 1

⎞
⎠,

(21)

where the coefficients λj are positive and given by

λ0 =
L∑

j=1

(−1)jλj ,

(22)

λj = (−1)j+1

μj

∏
1�n�L;n�=j

μn

(μn − μj )
, 1 � j � L.

We refer to Appendix B for the derivation of the results and
focus on the performance.

D. Total error of estimation

In the estimation of Y1 given in Eq. (18), we assume
Aμj

to be accurate. In practice, we have to input several
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copies of the same coherent state with intensity μj , and
Aμj

can be estimated from the measurement. In this case,
besides the estimation error �L, we have to consider the
statistical error of estimating each Aμj

. In the last part, we
proved that the estimation with a few probes intensities can
efficiently simulate the result with a single-photon state in the
asymptotical scenario. In the following, we will show that such
a method is also efficient when focusing on finite data size.

To show the method is as efficient as the with one with
a single photon, we consider independent and identically
distributed (i.i.d.) sampling for simplicity. In QKD, such
finite-size effects without assumptions have been analyzed
for the vacuum plus weak-decoy-state formalism [18–20]. In
Ref. [20], it was shown that the difference is only a factor when
the sample size is large. Thus, we leave the analysis without
additional assumptions to future work.

Under the i.i.d. assumption, the statistical error �s(A) of
Aμ can be approximated by

�s(A) � 1√
m

=
√

L + 1

M
, (23)

where m is the number of samples for each μj and M =
m(L + 1) is the total number of samples. Here, we consider
the same statistical error estimation for all Aμ for simplicity.
A tighter bound that involves Aμ can be further applied when
the value of Aμ is known.

The sampling-induced error of Y est
1 is given by

�s

(
Y est

1

) = �s(A)

√√√√ L∑
j=0

λ2
j . (24)

The total error in experiment is thus

�t � �s + �L. (25)

In the following, we will give an example to show the scale
of total error �t compared to a fixed total sample size M .
With a perfect single-photon source, the total error scales as
O(1/

√
M). With a phase-randomized coherent state, we show

that by inputting appropriate quiz states, the total error also
scales as a power function of M .

E. Example

As different probe intensities will lead to different estima-
tion errors �L, we take only an example with probe intensities
μj = j/L for j = 0,1, . . . ,L. There may exist better choices
of the probe intensities that cause a smaller total error. In
our example, the coefficients λj , defined in Eq. (22), can be
calculated by

λj = (−1)j+1

j/L

∏
1�n�L;n�=j

n/L

(n/L − j/L)

= L(−1)j+1

j

∏
1�n�L;n�=j

n

(n − j )
(26)

= L

j

(
L

j

)
,
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L (Number of coherent states)

Δ L
 (

E
rr
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)

FIG. 2. Error �L for specific usage of coherent intensities, μj =
j/L for j = 0,1, . . . ,L. L runs only from 1 to 10 for computational
accuracy limit. Blue dots are the �L value, and the green line is the
exponential fit.

and λ0 can be calculated by

λ0 =
L∑

j=1

(−1)j
L

j

(
L

j

)
. (27)

In this case, the estimation error �L can be numerically
calculated as shown in Fig. 2. A linear fitting between ln �L

and L thus gives the relation ln �L = −2.772L + 3.718. It is
straightforward to see that with increasing L, the interval �L

exponentially approaches zero.
The sampling error is

�s

(
Y est

1

) = �s(A)f (L), (28)

0 5 10 15 20 25 30
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10
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10
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 f
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FIG. 3. Error factor f for different L. Blue dots are the �L value,
and the green line is the exponential fit.
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FIG. 4. Optimized total error for different numbers of samples.
The blue dots are the total error for L(M) coherent probe intensities.
The green dots are the total error for a single-photon source, that is,
1/

√
M .

where f (L) is a constant factor

f (L) =

√√√√√
⎡
⎣ L∑

j=1

(−1)j
L

j

(
L

j

)⎤
⎦

2

+
L∑

j=1

[
L

j

(
L

j

)]2

. (29)

As shown in Fig. 3, the error factor f is roughly exponential
to the number of coherent states L. A linear fitting thus gives
the relation ln f = 0.67L + 0.189.

Thus, the total error can be approximately modeled by

�t =
√

L + 1

M
e0.67L+0.189 + e−2.772L+3.718. (30)

For a given total number of samples M , we can optimize
over L to minimize the total error �t . We solve this problem
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FIG. 5. Optimal number of nonzero probe intensities L for
different numbers of samples M .

numerically. As shown in Fig. 4, the total error �t is still
inversely proportional to a power function of the number of
samples M . That is, we have �t ≈ 6.6128/M0.3931, which fits
the data we present in Fig. 4.

In addition, the optimized number of probe intensities is
shown in Fig. 5. Roughly speaking, L is linearly proportional
to ln M , which explains why �t is still a power function
of M .

IV. PARAMETER ESTIMATION:
MULTIPLE INPUT MODES

Now, we consider a general optical circuit with n distin-
guishable photons as inputs. The quantum circuits can be well
described by a quantum channel with n optical modes, as
shown in Fig. 6. The input state ρin consists of n single photons
which correspond to each of the input modes. After a unitary
interaction between the input particles and the environment
described by ρE , measurements are performed on each of
the output modes. For each of the measurements Mi , with
i = 1,2, . . . ,n, the detection probability is given by

Qi = Tr �=i,E[Miρout] = Tr �=i,E[MiU (ρin ⊗ ρE)U †], (31)

where the trace is over the environment E and all the input
modes except the ith one.

In the previous section, we showed that each single-mode
photon can be simulated efficiently with multiple usages of
coherent pulses. Here, we generalize the result to the n-input-
mode case. We define a coincidence detection by

Q = Tr[Mρout] = Tr[MU (ρin ⊗ ρE)U †], (32)

where the measurement is M = M1 ⊗ M2 ⊗ · · · ⊗ Mn. When
the input state is a mixture of photon-number states,

ρin =
∞∑

k1,k2,...,kn=0

P (k1,k2, . . . ,kn)|k1k2 · · · kn〉〈k1k2 · · · kn|,

(33)

the coincidence detection can be expressed by

Q =
∞∑

k1,k2,...,kn=0

P (k1,k2, . . . ,kn)Yk1k2···kn
, (34)

FIG. 6. Schematic for the a general quantum channel with n

optical input modes.
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YUAN, ZHANG, LÜTKENHAUS, AND MA PHYSICAL REVIEW A 94, 062305 (2016)

where Yk1k2...kn
is the coincidence detection probability for the

case that the ith mode has ki photons,

Yk1k2···kn
= Tr[MU (|k1k2 · · · kn〉〈k1k2 · · · kn| ⊗ ρE)U †]. (35)

In the following, we show that with coherent state as the
input, we can also estimate the coincidence detection for
the single-photon input Y11...1 to an arbitrary accuracy. For
simplicity, we consider the same probe intensities for different
input modes. The derivation of different probe intensities for
different input modes follows similarly.

A. Two modes with vacuum + one probe intensities

First, we consider only two input optical modes and two
probe intensities. From Sec. III B, we find that one of the two
probe intensities should be a vacuum state and the other should
be a weak state ρμ in the optimal case. Like in Eq. (7), we have

Q =
∞∑

k1=0

μ
k1
1

k1!
e−μ1

∞∑
k2=0

μ
k2
2

k2!
e−μ2Yk1k2 , (36)

where μ1 (μ2) and k1 (k2) are the coherent-state intensity and
the photon number for the first (second) mode, respectively.
Like in Eq. (8), we define Aμ1μ2 = Qeμ1eμ2 ,

Aμ1μ2 =
∞∑

k1,k2=0

μ
k1
1 μ

k2
2

k1!k2!
Yk1k2 . (37)

When each mode is input with a coherent state with zero
and μ intensity, we have four equalities based on Alice’s four
possible input cases:

A00 = Y00,

Aμ0 =
∞∑

k1=0

μk
1

k1!
Yk10 = Y00 + μY10 + μ2

2
Y20 + · · · ,

A0μ =
∞∑

k2=0

μk
2

k2!
Y0k2 = Y00 + μY01 + μ2

2
Y02 + · · · , (38)

Aμμ =
∞∑

k1,k2=0

μk
1μ

k′

k1!k2!
Yk1k2

= Y00 + μY10 + μY01 + μ2Y11 + · · · .

With the attempt to estimate Y11, we can linearly combine
Y00, Y10, Y01, and Y11 by

Y est
11 = Aμμ − A0μ − Aμ0 + A00

=
∞∑

k1,k2=0

μk1μk2

k1!k′
2!

Yk1k
′
2
−

∞∑
k1=0

μk1

k1!
Yk10 −

∞∑
k2=0

μk2

k2!
Y0k2 + Y00

=
∞∑

k1,k2=1

μk1μk2

k1!k′
2!

Yk1k
′
2
. (39)

As the Y are always in [0,1], we can bound Y11 by

Y est
11 − �1,2 � Y11 � Y est

11 , (40)

with the size of the interval �1,2

�1,2 = 1

μ2

∞∑
n,m=1

μnμm

n!m!
− 1 = (eμ − 1)2

μ2
− 1. (41)

Here, the first subscript denotes the number of nonzero probe
intensities, and the second subscript denotes the number of
input modes. For a small μ, we have

�1,2 = μ + O(μ2). (42)

B. n modes with vacuum + one probe intensities

Next, we generalize the result to the case of n input
modes each with two possible (vacuum 0 and weak μ) probe
intensities. Denoting the nonzero coherent-state intensity for
the ith mode by μi , the measurement result is given by, similar
to Eq. (36),

Q =
∞∑

k1,k2,...,kn=0

μ
k1
1 μ

k2
2 · · · μkn

n

k1!k2! · · · kn!
e−(μ1+μ2+···+μn)Yk1k2···kn

. (43)

Like in Eq. (37), we define Aμμ···μ = Qe(μ1+μ2+···+μn), and we
have

Aμ1μ2···μn
=

∞∑
k1,k2,...,kn=0

μ
k1
1 μ

k2
2 · · · μkn

n

k1!k2! · · · kn!
Yk1k2...kn

. (44)

For easier presentation, we first introduce an operation on
the coincidence probability Y . For Yk1k2···kn

, we define it as

Yk1k2···kn
=

n⊗
i=1

Yki
, (45)

where the operation
⊗n

i=1 denotes subscript combination. The
notation Yki

does not make sense unless the operation
⊗n

i=1 is
applied. With this notation, we can rewrite Aμ1μ2...μn

by

Aμ1μ2···μn
=

n⊗
i=1

Aμi
, (46)

where

Aμi
=

∞∑
ki=0

μ
ki

i

ki!
Yki

. (47)

Notice that
⊗n

i=1 can still be regarded as a product operation
where the multiplication of Y is replaced by the subscript
combination. Thus,

n⊗
i=1

Aμi
=

∞∑
k1,k2,...,kn=0

μ
k1
1 μ

k2
2 · · ·μkn

n

k1!k2! · · · kn!

n⊗
i=1

Yki

= Aμ1μ2···μn
. (48)

With the same spirit, we can derive

n⊗
i=1

(
Aμi

− A0
) =

n⊗
i=1

⎛
⎝ ∞∑

ki=0

μ
ki

i

ki!
Yki

− Yki=0

⎞
⎠

(49)

=
∞∑

k1,k2,...,kn=1

μk1μk2 · · ·μkn

k1!k2! · · · kn!
Yk1k2···kn

,
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which is a generalization to Eq. (39). Here, we let all μi equal
the same intensity μ. Like for Eq. (39), it is not hard to see
that an estimation of Y11···1 is given by

Y est
11···1 =

n⊗
i=1

(
Aμi

− A0
)
. (50)

Now, the size of the interval for estimating Y11···1 is given by

�1,n = 1

μn

∞∑
k1,...,kn=1

μk1 · · ·μkn

k1! · · · kn!
− 1

= (eμ − 1)n

μn
− 1 (51)

= n

2
μ + O(μ2),

which is consistent with Eqs. (41) and (42).

C. n modes with vacuum + L probe intensities

Now, we show an estimation of Y11···1 in the case that each
mode is input with vacuum +L probe intensities. For each
mode, the estimation can be given according to Eq. (21).
Following a similar method as in the last two sections, we
can similarly define the n-mode estimation Y est

11···1 of Y11···1
according to

Y est
11···1 =

⊗ ⎛
⎝	L/2
∑

j=1

λ2j−1Aμ2j−1 −
�L/2�∑
j=1

λ2jAμ2j
+ λ0A0

⎞
⎠,

(52)

where λj is defined in Eq. (22). Here, the product
⊗

denotes
a multiplication of A that is defined in Eq. (46). Then the
estimation interval is

�L,n =
∣∣∣∣∣∣
⎛
⎝μ1μ2 · · · μL

L∑
j=1

μ−2
j (eμj − 1)∏

1�n�L;n�=j (μn − μj )

⎞
⎠

n

− 1

∣∣∣∣∣∣
=

∣∣∣∣
{

(−1)L+1 μ1 · · ·μL

(L + 1)!
+O

[
μ1 · · · μL

∑
μl

(L + 2)!

]
+1

}n

−1

∣∣∣∣
= nμ1 · · · μL

(L + 1)!
+ O

[
nμ1 · · ·μL

∑
μl

(L + 2)!

]
. (53)

Compared to the estimation error of a single photon given
in Eq. (20), we can see that an extra factor n is added when
simulating n photons. As the estimation error for a single
photon decays exponentially to L, the estimation for n photons
is still efficient.

In practice, to get Y est
11···1, one has to get Aμ1μ2···μn

. Suppose,
for each mode, there are L probe intensities used; then there
are Ln different values Aμ1μ2···μn

to be measured. For a small
number of n, we can see that the estimation is efficient
and accurate. However, the total number of probes scales
exponentially with n. Therefore, simulating a large number
of single photons with a phase-randomized coherent state is
not efficient.

V. TOTAL ERROR OF ESTIMATION

In Secs. III D and III E, we showed the total error of the
estimation when considering a finite sample size. In general,
the total error with n input modes consists of the estimation
error �L,n and the statistical error �s,n,

�t,n ≈ �s,n + �L,n. (54)

The estimation error �L,n is given in Eq. (53). When �L is
small enough and n is not large, we can approximate �L,n by

�L,n = n�L,1. (55)

The statistical error �s,n consists of a statistical fluctuation
when estimating Aμ1μ2···μn

for different probe intensities
{μ1μ2 · · ·μn}. Like for the case with one input mode, we
consider the same statistical error for all Aμ1μ2···μn

using

�s,n

(
Aμ1μ2···μn

) =� 1√
m

=
√

(L + 1)n

M
, (56)

where M denotes the total number of samples. Note that the
estimation Y est

11···1 given in Eq. (52) can be reformulated by

Y est
11···1 =

L∑
j1,j2,...,jn=0

λj1,j2,...,jn
Aμj1 μj2 ···μjn

, (57)

where λj1,j2,...,jn
= λj1λj2 · · · λjn

. In this case, the sample error
of Y est

11···1 can be given by

�s,n

(
Y est

11···1
) = �s,n

(
Aμj1 μj2 ···μjn

)
f (L,n), (58)

where

f (L,n) =
√√√√ L∑

j1,j2,...,jn=0

λ2
j1,j2,...,jn

=
√√√√ L∑

j1,j2,...,jn=0

λ2
j1
λ2

j2
· · · λ2

jn

(59)

=
√√√√ L∑

j1=0

λ2
j1

L∑
j2=0

λ2
j2

· · ·
L∑

jn=0

λ2
jn

= f (L,1)n.

Suppose the probe intensities for each mode are μj = j/L

for j = 0,1, . . . ,L; then we have that

�t,n =
√

(L + 1)n

M
f (L,1)n + n�L,1. (60)

Note that we have ln �L,1 = −2.772L + 3.718 and
ln f (L,1) = 0.67L + 0.189; then

�t,n =
√

(L + 1)n

M
en(0.67L+0.189) + ne−2.772L+3.718. (61)

We further optimize over L to get a minimum total error of
estimation, as shown in Fig. 7. The optimal number of probe
intensities for different input modes is shown in Fig. 8.
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FIG. 7. Optimized total error for different numbers of samples
and different input modes.

VI. DISCUSSION

In this work, we propose a way to simulate a single photon
with imperfect photon sources. We show that for a single
photon, we can efficiently simulate it with a coherent state. In
addition, we generalize our result to multiple photon scenarios.

Our result indicates that a small number of single photons
can be well simulated by practical photon sources. In practice,
this is useful for several information tasks. For instance,
in quantum key distribution and quantum random number
generation [21,22], we can use phase-randomized coherent
states as a source and at the same time guarantee the security.

In multipartite measurement-device-independent QKD [23],
our results can be applied to increase the key rate. In
computation tasks, such as boson sampling, we can simulate
the circuit by inputting an imperfect photon source. In the
measurement-device-independent entanglement witness for
multipartite quantum states [24–26], our method can also make
use of an imperfect photon source instead of a single photon to
witness multipartite entanglement. In general, our method can
also be regarded as a simulator for general quantum computing
circuits.

Recently, Valente and Lezama realized our result by ex-
perimentally reconstructing the tomography of single-photon
temporal states [27]. In both our theoretical scheme and the
experimental demonstration, we take the phase-randomized
coherent states as an example. It is not hard to see that other
practical photon sources with a different mixing of Fock states
can also be used in our method. Different photon sources
will have similar estimations and errors and may provide
some further advantages for certain tasks. Theoretical and
experimental investigations of simulating single photons with
other practical photon sources are interesting future works.
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APPENDIX A: VACUUM + TWO PROBE INTENSITIES

In this case, Alice inputs three phase-randomized coherent
states. From the previous calculation, we know that the interval
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FIG. 8. Optimized number of nonzero probe intensities for different numbers of input modes. Top left, two modes; top right, three modes;
bottom left, four modes; and bottom right, five modes.
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is minimized when one of the intensities is zero. By assuming
that and using two other nonzero intensities, μ,ν, we have
three linear relations:

A0 = Y0,

Aμ = Y0 + μY1 + μ2

2
Y2 + μ3

3!
Y3 + · · · , (A1)

Aν = Y0 + νY1 + ν2

2
Y2 + ν3

3!
Y3 + · · · .

First, eliminating Y0 and defining Bμ = (Aμ − Y0)/μ and
Bν = (Aν − Y0)/ν, we get

μBμ = μY1 + μ2

2
Y2 + μ3

3!
Y3 + · · · ,

(A2)

νBν = νY1 + ν2

2
Y2 + ν2

3!
Y3 + · · · .

Then, we can eliminate Y2,

ν−1Bν − μ−1Bμ = μ − ν

μν
Y1 +

(
ν

3!
Y3 + ν2

4!
Y4 + · · ·

)

−
(

μ

3!
Y3 + μ2

4!
Y4 + · · ·

)
, (A3)

and we can estimate Y1 by

Y est
1 = μν

ν−1Bν − μ−1Bμ

μ − ν
(A4)

and

Y1 = Y est
1 + μν

μ − ν

(
μ − ν

3!
Y3 + μ2 − ν2

4!
Y4 + · · ·

)
. (A5)

The estimation interval is given by the difference between the
maximal and minimal values of μν

μ−ν
(μ−ν

3! Y3 + μ2−ν2

4! Y4 + · · · ),
that is,

�2 = μν

μ − ν

(
eμ − 1 − μ

μ2
− eν − 1 − ν

ν2

)
. (A6)

For small μ and ν, we can approximate �2 by

�2 = μν

3!
+ O

[
μν(μ + ν)

4!

]
. (A7)

APPENDIX B: DERIVING Y est
1 AND �L FOR VACUUM

PLUS L PROBE INTENSITIES

Suppose μ0 = 0 and μ1 < μ2 < · · · < μL; similar to
Eq. (A1), the set of linear equations can be expressed
according to

⎛
⎜⎜⎜⎜⎝

A0

Aμ1

Aμ2

...
AμL

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1 μ1

μ2
1

2!
μ3

1
3! · · ·

1 μ2
μ2

2
2!

μ3
2

3! · · ·
...

1 μL
μ2

L

2!
μ3

L

3! · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

Y0

Y1

Y2
...

⎞
⎟⎟⎠. (B1)

We can eliminate the vacuum term by defining Bμl
= Aμl

−A0

μl

for 1 � l � L. Then the linear equations becomes

⎛
⎜⎜⎝

Bμ1

Bμ2

...
BμL

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 μ1 μ2
1 · · ·

1 μ2 μ2
2 · · ·

...
1 μL μ2

L · · ·

⎞
⎟⎟⎟⎠

⎛
⎜⎝

Y1

Y2/2!
...

⎞
⎟⎠. (B2)

Define A = (Bμ1 ,Bμ2 , . . . ,BμL
)T, Y = (Y1,Y2/2!, . . . ,

YL/L!, . . . )T, and

V =

⎛
⎜⎜⎜⎝

1 μ1 μ2
1 · · ·

1 μ2 μ2
2 · · ·

...
1 μL μ2

L · · ·

⎞
⎟⎟⎟⎠. (B3)

Then, we can rewrite the linear equations as

A = VY, (B4)

Define V ′ to be the first L columns of V ,

V′ =

⎛
⎜⎜⎜⎝

1 μ1 μ2
1 . . . μL−1

1

1 μ2 μ2
2 . . . μL−1

2
...

1 μL μ2
L . . . μL−1

L

⎞
⎟⎟⎟⎠. (B5)

Then we can see that V′ is a Vandermonde matrix. Denote the
inverse of V′ by M, whose element Mi,j is given by [28]

Mi,j = (−1)i−1 ∑
1�k1<k2<···<kL−i�L;k1,k2,...,kL−i �=j μk1μk2 · · · μkL−i∏

1�l�L;l �=j (μl − μj )
, 1 � i < L,

(B6)
Mn,j = 1∏

1�l�L;l �=j (μj − μl)
.

Then we can multiply M for both sides of Eq. (B4) and get

MA = MVY. (B7)

That is,

M

⎛
⎜⎜⎝

Bμ1

Bμ2

...
BμL

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎜⎝

1 μ1 μ2
1 · · ·

1 μ2 μ2
2 · · ·

...
1 μL μ2

L · · ·

⎞
⎟⎟⎟⎠

⎛
⎜⎝

Y1

Y2/2!
...

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
∑

1�j�L M1,jμ
L
j · · ·

0 1 0 · · · 0
∑

1�j�L M2,jμ
L
j · · ·

...
0 0 0 · · · 1

∑
1�j�L ML,jμ

L
j · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

Y1

Y2/2!
...

⎞
⎟⎠. (B8)
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By considering the first row, we have

∑
1�j�L

M1,jBμj
= Y1 +

∑
k>L

Yk

k!

∑
1�j�L

M1,jμ
k
j , (B9)

where M1,j is given by Eq. (B6),

M1,j =
∏

1�l�L;l �=j

μl

μl − μj

. (B10)

Therefore, the estimation of Y1 is given by

Y est
1 =

∑
1�j�L

M1,jBμj

=
∑

1�j�L

Aμj
− A0

μj

∏
1�l�L;l �=j

μl

μl − μj

(B11)

= μ1μ2 · · · μL

L∑
j=1

μ−2
j

(
Aμj

− A0
)

∏
1�l�L;l �=j (μl − μj )

.

Defining the remaining term by R =∑
k>L

Yk

k!

∑
1�j�L M1,jμ

k
j , the estimation interval is given by

the interval of the maximal and minimal possible values of R,

�L = max
Yk,∀ k>L

R − min
Yk,∀ k>L

R. (B12)

Denoting αk
j = M1,jμ

k
j , that is,

αk
j = μk

j

∏
1�l�L;l �=j

μl

μl − μj

, (B13)

we can easily verify that (1) αk
j is positive when j is odd and (2)

|αk
j | < |αk

j ′ | when j < j ′. Therefore, the term
∑

1�j�k M1,jμ
k
j

can be expressed as

∑
1�j�L

M1,jμ
k
j =

∑
1�j�L

(−1)j−1
∣∣αk

j

∣∣. (B14)

When L is even, the sum can be grouped into (|αk
1 | −

|αk
2 |) + (|αk

3 | − |αk
4 |) + · · · + (|αk

L−1| − |αk
L|), and we can see

that
∑

1�j�L M1,jμ
k
j is negative. When L is odd, the sum

can be grouped into |αk
1 | + (−|αk

2 | + |αk
3 |) + (−|αk

4 | + |αk
5 |) +

· · · + (−|αk
L−1| + |αk

L|), and we can see that
∑

1�j�L M1,jμ
k
j

is positive. Therefore, the signs of
∑

1�j�L M1,jμ
k
j are the

same for a fixed L, i.e., (−1)L+1. Consequently, the maximum
(minimum) value of R can be obtained when all Yk are equal
to the same value (either 0 or 1). We denote those two values
as RYk=0,∀ k>L and RYk=1,∀ k>L, respectively.

Defining R′ = (−1)L+1R, the estimation interval is given
by

�L = R′
Yk=1,∀ k>L − R′

Yk=0,∀ k>L. (B15)

Note that R′
Yk=0,∀ k>L = 0. To calculate R′

Yk=1,∀ k>L, we know
that R contains only the Yk,∀ k > L terms, and therefore,
the values of Yj ,∀ j = 0,1, . . . ,L cannot affect the value of
R. To simplify the calculation of Aμj

,∀ j = 0,1, . . . ,L, we
can consider the case where Y0 = Y1 = · · · = 1 and hence
Aμj

= eμj . In this case, according to Eq. (B9), we have

�L = R′
Yk=1,∀ k>L

= (−1)L+1
∑
k>L

1

k!

∑
1�j�L

M1,jμ
k
j

= (−1)L+1
(
Y est

1 − Y1
)

= (−1)L+1

⎛
⎝μ1μ2 · · ·μL

L∑
j=1

μ−2
j (eμj − 1)∏

1�n�L;n�=j (μn − μj )
−1

⎞
⎠.

(B16)

The estimation Y est
1 in Eq. (B11) can be represented as a

linear combination of Aμj
as

Y est
1 =

	L/2
∑
j=1

μ1μ2 · · · μLμ−2
2j+1

(
Aμ2j+1 − A0

)
∏

1�n�L;n�=j (μn − μ2j+1)

−
�L/2�∑
j=1

−μ1μ2 · · · μLμ−2
2j

(
Aμ2j

− A0
)

∏
1�n�L;n�=j (μn − μ2j )

=
	L/2
∑
j=1

λ2j−1
(
Aμ2j−1 − A0

) −
�L/2�∑
j=1

λ2j

(
Aμ2j

− A0
)

=
	L/2
∑
j=1

λ2j−1Aμ2j−1 −
�L/2�∑
j=1

λ2jAμ2j
+ λ0A0, (B17)

where the coefficients λj are positive and given by

λ0 =
L∑

j=1

(−1)jλj ,

λj = (−1)j+1

μj

∏
1�n�L;n�=j

μn

(μn − μj )
, 1 � j � L. (B18)

Similarly, the estimation error �L is given by

�L = (−1)L+1

⎛
⎝	L/2
∑

j=1

λ2j−1e
μ2j−1 −

�L/2�∑
j=1

λ2j e
μ2j + λ0 − 1

⎞
⎠.

(B19)
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