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Abstract

In this paper, we introduce a novel approach for reducing the

k-item n-bidder auction with additive valuation to k-item

1-bidder auctions. This approach, called the Best-Guess

reduction, can be applied to address several central ques-

tions in optimal revenue auction theory such as the relative

strength of simple versus complex mechanisms, the power

of randomization, and Bayesian versus dominant-strategy

implementations. First, when the items have independent

valuation distributions, we present a deterministic mecha-

nism called Deterministic Best-Guess that yields at least a

constant fraction of the optimal revenue by any random-

ized mechanism. This also gives the first simple mecha-

nism that achieves constant fraction optimal revenue for such

multi-buyer multi-item auctions. Second, if all the nk val-

uation random variables are independent, the optimal rev-

enue achievable in dominant strategy incentive compatibility

(DSIC) is shown to be at least a constant fraction of that

achievable in Bayesian incentive compatibility (BIC). Third,

when all the nk values are identically distributed accord-

ing to a common one-dimensional distribution F , the opti-

mal revenue is shown to be expressible in the closed form

Θ(k(r+
∫mr

0
(1−F (x)n)dx)) where r = supx≥0 x(1−F (x)n)

and m = �k/n�; this revenue is achievable by a simple mech-

anism called 2nd-Price Bundling. All our results apply to

arbitrary distributions, regular or irregular.

1 Introduction

Consider the multiple items auction problem, in which a
seller wants to sell k items to n bidders who have private
values for these items, drawn from some possibly cor-
related probability distributions. We are interested in
studying incentive compatible mechanisms under which
the bidders are incentivized to report their values truth-
fully. One major question is how to design such mecha-
nisms which can maximize the expected revenue for the
seller.

The single-item case (k = 1) was resolved by My-
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erson’s classic work [25] when the bidders’ values for
the item are independently distributed. The general
multiple-item case (k > 1) is provably harder (e.g.,
[13][14]), and has in recent years been intensively stud-
ied in the literature. In particular, when the inputs are
discrete, much progress has been made on the efficient
computation of the optimal revenue (e.g., [6][7][8][9]).
Another direction is to design simple mechanisms for ap-
proximating optimal revenues in various settings (e.g.,
[10][11][21][27][3]). However, there remain important as-
pects of the multiple-item auction that are not well un-
derstood. For example, regarding the general question
of the relative strength of simple versus complex mech-
anisms as raised by Hartline and Roughgarden [21], it is
still open [3] whether there exists a simple mechanism
that can achieve constant fraction optimal revenue for
multi-item multi-buyer auctions (the single buyer case
was recently solved affirmatively in [3]).

There are other issues meriting attention. Most
of the known results put restrictions on the distribu-
tions (e.g., [4][8][9]). Also, the computational methods
proposed typically find the optimal revenue by solving
some mathematical programming problems, which do
not yield mathematical formulas for the optimal rev-
enue (or its approximation), even for relatively simple
input distributions. To name some further interesting
open questions: Is it possible to express the optimal rev-
enue in terms of the valuation distributions elegantly,
can the optimal revenue be achieved by some simple
mechanism, and is the requirement of dominant strat-
egy incentive compatibility (DSIC) much more stringent
than Bayesian incentive compatibility (BIC)?

In this paper, we introduce a novel approach for
reducing k-item n-bidder auctions with additive val-
uations to k-item 1-bidder auctions. This approach,
called the Best-Guess reduction, can be applied to ad-
dress some of the above central questions in optimal
revenue auction theory regarding the power of random-
ization, and Bayesian versus dominant-strategy. First,
when the items have independent valuation distribu-
tions, we present a deterministic mechanism called De-
terministic Best-Guess that yields at least a constant
fraction of the best randomized mechanism. This also
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gives the first simple mechanism that achieves constant
fraction optimal revenue for multi-buyer multi-item auc-
tions, resolving the question of simple-vs-complex mech-
anisms mentioned previously. Second, if all the nk
valuation random variables are independent, the op-
timal revenue achievable in dominant strategy incen-
tive compatibility (DSIC) is at least a constant fraction
of that achievable in Bayesian incentive compatibility
(BIC). Third, when all the nk values are identically dis-
tributed according to a common one-dimensional dis-
tribution F , the optimal revenue can be expressed in
the closed form Θ(k(r +

∫mr

0
(1 − F (x)n)dx)) where

r = supx≥0 x(1 − F (x)n) and m = �k/n�; this revenue
is achievable by a simple mechanism called 2nd-Price
Bundling. All our results apply to arbitrary distribu-
tions, regular or irregular.

We remark that for k = 1, the Best-Guess reduction
is the same as Ronen’s look-ahead mechanism [27],
and thus can be regarded as an extension of look-
ahead from 1-item to multi-item auctions. As will be
seen, the analysis of Best-Guess turns out to be much
more delicate and complex than the look-ahead 1-item
situation.

Related Work: The reduction of mechanism design
from an n-bidder multi-item auction to 1-bidder multi-
item auction was considered in Alaei [1] with a differ-
ent approach, which did not yield constant factor ap-
proximation in the DSIC model (except under restric-
tions such as ‘budget-balanced cross monotonicity’; see
also [2]). Recently, Hart and Nisan [18] started a line
of research (see [3][16][19][22][29]) for studying simple
mechanisms for 1-bidder k-item auctions with provable
performance bounds for arbitrary distributions; some of
the results (especially from Babaioff et al. [3]) will be
needed in our paper. The question of how much ran-
domization helps in auction mechanism design has been
studied in a variety of models (e.g., [5][12][20]). In some
situations, such as in the 1-bidder case (Babaioff et al.
[3]) and in the n-bidder unit-demand setting (Chawla
et al. [12]), it is known that randomized mechanisms
can yield at most a constant factor over deterministic
mechanisms. The question of how much more revenue
BIC implementation can yield over DSIC has a large lit-
erature (e.g., Gershkov et al. [15], Manelli and Vincent
[24]). For the one-dimensional models (i.e. k = 1),
starting with Myerson’s classical work, strict equiva-
lence between BIC and DSIC has been established in
various contexts. In the current multi-item multi-buyer
auction model, whether BIC yields more revenue over
DSIC is largely unknown. However, [15] contains an ex-
ample in some different multi-dimensional setting where
BIC is strictly better than DSIC.

2 Preliminaries

2.1 Basic Concepts Let F be a multi-dimensional
distribution on [0,∞)nk. Consider the k-item n-buyer
auction problem where the valuation n× k matrix x =
(xj

i ) is drawn from F . Buyer i has xi ≡ (x1
i , x

2
i , · · · , xk

i )
as his valuations of the k items. For convenience, let
x−i denote the valuations of all buyers except buyer i;
that is, x−i = (xi′ | 1 ≤ i′ �= i ≤ n).

A mechanism M specifies an allocation q(x) =
(qji (x)) ∈ [0,∞)nk, where qji (x) denotes the probability

that item j is allocated to buyer i when x = (xj
i )

is reported to M by the buyers. We require that∑n
i=1 q

j
i (x) ≤ 1 for all j, so that the total probability

of allocating item j is at most 1. M also specifies a
payment si(x) ∈ (−∞,∞) for buyer i. A mechanism
is called dominant-strategy individually rational (DSIR)

if for each i and x,
∑k

j=1 x
j
i q

j
i (x) − si(x) ≥ 0, i.e.,

a buyer gets at least as much in (reported) value as
he pays for. A mechanism is called dominant-strategy
incentive compatible (DSIC) if for every i, xi, x−i, x

′
i,∑k

j=1 x
j
i q

j
i (xi, x−i)−si(xi, x−i) ≥

∑k
j=1 x

j
i q

j
i (x

′
i, x−i)−

si(x
′
i, x−i). That is, buyer i does not gain any more

utility by mis-reporting xi as x′i, given that all other
buyers maintain their reported valuations.

We also consider a weaker version of rationality
and incentive compatibility that is widely adopted. A
mechanism is called Bayesian individual rational (BIR)
if each buyer i gets at least as much value as he
pays for in the average sense, when all other buy-
ers report truthfully. More precisely, BIR requires
that for every i and xi, Ex−i(

∑k
j=1 x

j
i q

j
i (xi, x−i) −

si(xi, x−i)) ≥ 0. Similarly, a mechanism is
called Bayesian incentive compatible (BIC) if for ev-

ery i, xi, x
′
i, Ex−i(

∑k
j=1 x

j
i q

j
i (xi, x−i) − si(xi, x−i)) ≥

Ex−i(
∑k

j=1 x
j
i q

j
i (x

′
i, x−i)− si(x

′
i, x−i)).

Let s(x) =
∑n

i=1 si(x) be the total payments
received by the seller. For any mechanism M on F ,
let sM (F) = Ex∼F (s(x)) be the (expected) revenue
received by the seller from all buyers. The optimal
revenue is defined as REV (F) = supM sM (F) when
M ranges over all the DSIR and DSIC mechanisms.
Similarly, in the Bayesian model, the optimal revenue
is defined as REVBayesian(F) = supM sM (F) when
M ranges over all the BIR and BIC mechanisms. A
mechanism is said to be deterministic if all qji (z) ∈
{0, 1}. LetDREV (F) denote the sup of revenue over all
deterministic DSIR-DSIC mechanisms for distribution
F .

One well-known DSIR and DSIC mechanism is the
Vickrey 2nd-price mechanism [30] applied to each item.
That is, for each item j, the seller awards the item to the
highest bidder (with any specified tie-breaking rule) on
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this item but at the 2nd highest bid price. LetX = (Xj
i )

be the random variable matrix distributed according
to F . Let Xj[2nd] be the 2nd largest of Xj

i , 1 ≤
i ≤ n, and X [2nd] =

∑k
j=1 X

j[2nd]. Then the revenue

of this Vickrey 2nd-price mechanism is Ex∼F (X [2nd]),
hence REV (F) ≥ Ex∼F (X [2nd]). Let B(X−i) denote
(Y 1, Y 2, · · · , Y k), where Y j = max{Xj

i′ |i′ �= i}. That
is, B(X−i) is the maximum bid among all buyers except
buyer i. (Remark : We sometimes write lower case x for
the random variable X when there is no confusion, or
write XF to emphasize its relationship with F .)

2.2 β-Exclusive Mechanisms and the β-
Bundling In this subsection we restrict ourselves to
1-buyer k-item auctions. In this case DSIR=BIR and
DSIC=BIC, and we can simply call them IR, IC. For
1-bidder k-item auctions, we introduce a concept called
β-exclusive mechanisms which will be central to our
reduction method. Let L be any distribution1 over
[0,∞)k, and β = (β1, β2, · · · , βk) a vector from [0,∞)k.

Definition 2.1. Given L and β, a mechanism M is
called β-exclusive if qjM (z) = 0 whenever zj ≤ βj ; that
is, an item j with bid equal to or below the threshold βj

will not be allocated to the bidder. Let REV X(L, β) be
supM (Ez∼L(sM (z))) over all β-exclusive IR-IC mecha-
nisms M, and we refer to REV X(L, β) as the optimal
β-exclusive revenue for L. (Superscript X stands for
“exclusive”.)

As an example, the familiar concept of Myerson’s
reserve price for each item may be viewed as a special
case of β-exclusion. Also, any mechanism M can be
easily converted into a 0-exclusive mechanism with the
same revenue by setting qj(z) to 0 whenever zj = 0.

We introduce the following β-exclusive mechanism,
called β-Bundling. This mechanism will be useful
in providing a deterministic implementation of our
reduction in Theorem 3. (We remark that bundling
is a widely studied mechanism with many interesting
variants, see e.g. [17] [23] [26] [28].)

First consider, for any β ∈ [0,∞)k and w ≥ 0,
the mechanism Mβ,w with allocation q and payment s,
defined as follows:

If
∑

j,zj>βj

(zj − βj)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

≥ w, let s(z) = w +
∑

j,zj>βj βj ;

qj(z)

{
= 1 if zj > βj ,

= 0 otherwise.

< w, let s(z) = 0;

qj(z) = 0 for all j.

1Throughout this paper, we use L to denote the value dis-

tribution for 1-bidder auction, and F the value distribution for

n-bidder auction.

Use Mβ,w(L) to denote its revenue Ez∼L(s(z)). (The
parameter w may be regarded as an additional sur-
charge that the mechanism imposes on any bundle.)

Definition 2.2. For any β ∈ [0,∞)k, let R(β) =
{(β,w)|w ≥ 0} ∪ {(β, 0)|β ≥ β}. Given distribu-
tion L, the β-Bundling for L is defined to be the
mechanism Mβ,w, where (β,w) is chosen2 to maximize

Mβ,w(L) over all (β,w) ∈ R(β). That is, (β,w) =
argmax(β,w)∈R(β) Mβ,w(L). We use Bund(L, β) to de-
note the revenue of the β-Bundling mechanism for L.
Lemma 2.1. The β-Bundling for L is a deterministic
IR-IC mechanism.

Proof. Immediate from the definition. �

It will be shown in Section 6 (Theorem 6.1) that,
when L = L1 ×L2 × · · · ×Lk, this bundling mechanism
yields a constant fraction of REV X(L, β), the best
revenue achievable by any β-exclusive mechanism.

We remark that for β = 0, β-Bundling reduces to
taking the better of selling separately or grand bundling,
and Theorem 6.1 in this case reduces to a result by
Babaioff et al [3]. (See Section 6 for details.)

3 Main Results

We start by considering the 1-bidder k-item auction.
Let L be any distribution over [0,∞)k, and β a vec-
tor from [0,∞)k. To provide a good benchmark for
REV X(L, β), we define below an adjusted revenue for
any general IR-IC mechanism M (not necessarily β-
exclusive), where the portion of M’s revenue from allo-
cating low-value items (relative to β) is effectively dis-
counted.

Definition 3.1. Let L and β be given. For any IR-
IC mechanism M with allocation qM and payment sM ,
define its β-adjusted revenue for L as Ex∼L(sM (x, β)),
where sM (x, β) = sM (x) − ∑

j, xj≤βj q
j
M (x)xj . Let

REV A(L, β) be supMEx∼L(sM (x, β)) over all IR-IC
mechanisms M , and we refer to REV A(L, β) as the
optimal β-adjusted revenue for L. (Superscript A
stands for “adjusted”.)

Note that, if M is a β-exclusive mechanism, then its
β-adjusted revenue is equivalent to its normal revenue.
Our first theorem compares the optimal β-exclusive rev-
enue REV X(L, β) with the optimal β-adjusted revenue
REV A(L, β); this result will play a crucial role in our
n-bidder to 1-bidder reduction.

2In case the sup is not achieved at any finite point, we then

simply pick a point (β,w) with revenue arbitrarily close to the

sup.
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THEOREM 1. [β-Exclusion Theorem] For any L = L1×
L2 × · · · ×Lk and β ∈ [0,∞)k, we have REV X(L, β) ≥
1
8REV A(L, β).

We now propose a reduction called Best-Guess for
the n-bidder k-item auction F . Under this reduction,
only the top bidder for each item may get the item. The
seller performs n separate 1-buyer auctions as follows:
In the auction for bidder i, the seller uses a β-exclusive
mechanism to enforce the top-bid constraint, where
β = B(x−i), i.e., β

j = max{xj
i′ | i′ �= i}.

Best-Guess Reduction for distribution F
Given the n × k bid matrix x = (xj

i ) distributed
according to F , the seller conducts with each bidder
i a 1-bidder k-item auction with xi = (xj

i |1 ≤ j ≤
k) as the bid; the seller uses an IR-IC revenue-
optimal B(x−i)-exclusive mechanism with respect to
the distribution xi ∼ Xi|x−i.

It is clear that the Best-Guess Reduction is indeed
a valid mechanism (i.e., with each item getting total
allocation ≤ 1) that is DSIR and DSIC. We will use
BGR(F) to denote its expected total revenue. In
actually implementing Best-Guess, we may employ a
B(x−i)-exclusive mechanism that is α-approximate for
each buyer i (rather than a truly optimal mechanism),
that is, one that yields at least 1/α of the the optimal
B(x−i)-exclusive mechanism’s revenue. We refer to
this modified version of Best-Guess as α-approximate
Best-Guess. The resulting mechanism (by choosing
any α-approximate mechanism for each buyer i) is
clearly DSIR-DSIC; we call it a BGRα-mechanism
and denote3 its revenue by BGRα(F). In particular,
when α = 1, we have BGR1(F) = BGR(F), the
revenue of the Best-Guess Reduction itself.

Note that BGR(F) may not always yield good
revenue; for example, BGR(F) = 0 when all valuations
xj
i are equal to a constant c. However, by simply taking

the better of BGR(F) and Ex∼F (X [2nd]) (which is the
revenue of the 2nd-price Vickrey mechanism), one can
show that a constant fraction of REV (F) is guaranteed
when the items are independent.

THEOREM 2. The Best-Guess Reduction is a
DSIR-DSIC mechanism. Furthermore, for any
F = F1 × · · · × Fk, we have BG(F) ≡
max{BGR(F), Ex∼F (X [2nd])} ≥ 1

9REV (F).

3Here we are slightly abusing the notation for the sake of

brevity. When the notation BGRα(F) is used, the specific α-

approximate mechanism used for each buyer will be clear from

context.

Theorem 2 says that, when REV (F) is much larger
(say 9 times more) than what the Vickrey 2nd-price can
produce, Best-Guess Reduction can extract the revenue
more effectively. Also note that BG(F) is realizable by
the mechanism formally defined as follows:

Mechanism BG:

If BGR(F)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≥ Ex∼F (X [2nd]) then use the

Best-Guess Reduction;

< Ex∼F (X [2nd]) then use the Vickrey

2nd-price mechanism.

The following Corollary generalizes Theorem 2 to the
α-approximate version of Best-Guess.

Corollary. The revenue BGRα(F) of any BGRα-
mechanism satisfies
max{BGRα(F), E(X

[2nd]
F )} ≥ 1

8α+1REV (F).

Theorem 2 corresponds to the α = 1 case of

the Corollary. The revenue max{BGRα(F), E(X
[2nd]
F )}

can be realized, as before, by a mechanism which
identifies with the better (for distribution F) between
a given BGRα-mechanism and the Vickrey 2nd-price
mechanism.

Deterministic Best-Guess Reduction (DBGR)
for distribution F
Given the n × k bid matrix x = (xj

i ), the seller
conducts with each bidder i a 1-bidder k-item auction
with xi = (xj

i |1 ≤ j ≤ k) as the bid; the seller uses
the β-Bundling mechanism for distribution L, where
β = B(x−i) and L is defined by Xi|x−i.

THEOREM 3. DBGR is a deterministic DSIR-DSIC
mechanism. Furthermore, if F = F1 × · · · × Fk, then
DBGR is a BGRα-mechanism for F where α = 8.5.

From Theorem 3 and Corollary to Theorem 2, we

have max{DBGR(F), E(X
[2nd]
F )} ≥ 1

69REV (F). In
other words, the following deterministic mechanism can
realize revenue 1

69REV (F):

Mechanism DBG: If DBGR(F)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
≥ Ex∼F (X [2nd]) then use the Deterministic

Best-Guess Reduction;

< Ex∼F (X [2nd]) then use a deterministic

Vickrey 2nd-price mechanism.

Corollary. DREV (F) ≥ 1
69REV (F) if F = F1 ×

· · · × Fk.
Turning next to a different question, we show that,

if all the nk value distributions are independent (though
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not necessarily identical), then the optimal revenues are
equivalent, up to constant factor, for the Bayesian and
the dominant strategy settings.

THEOREM 4. If F = ⊗i,jF
j
i , then REVBayesian(F) ≤

9REV (F).

If all the nk value distributions are independent
and identical, we can obtain a formula in closed-
form. We propose a new mechanism, called Second-
Price Bundling (SPB), as a heuristic for approximating
DBGR. Let a parameter w ≥ 0 be first chosen.

Second-Price Bundling (SPB) with parameter w

The SPB mechanism picks for each item a maximum
bidder (breaking ties using the uniform random rule);
let Ji be the set of items for which bidder i is the
selected maximum bidder. For each i, the seller makes
a take-or-leave offer for all the items in Ji (as one
bundle) to bidder i, at the price w +

∑
j∈Ji

xj[2nd].

In this scheme, the parameter w serves as a sur-
charge on top of the second price to enhance the revenue.
SPB can be regarded as a simplified version of DBGR,
in which the Bundling mechanisms applied to different
bidders have a common, fixed surcharge w. For any F ,
let SPB(F) be the maximum revenue that can be gener-
ated by any mechanism in the SPB family (that is, over
all possible choices of parameter w). In the 1-bidder
case, bundling is known [22] to yield at least a constant
fraction of the optimal revenue for iid items. Theorem
5 shows that, for n bidders, SPB similarly achieves a
constant fraction of the optimal revenue when all the nk
valuation random variables are iid according to a com-
mon one-dimensional distribution F . We denote such a
valuation distribution F by Fn⊗k.

THEOREM 5. Let F = Fn⊗k, r = supx≥0 x(1 − F (x))
and m = �k/n�.
(a) REV (F) = Θ(k(r +

∫mr

0
(1− F (x)n)dx));

(b) SPB is an IR-IC mechanism for any chosen param-
eter value w, and SPB(F) = Θ(REV (F)).

We remark that the constants in the Θ notations
in Theorems 5 are universal constants, i.e., independent
of n, k, and F . We will prove Theorems 1-5 in Sections
4-9. In addition to the above main results, Theorems
5.3, 6.1, 7.1 and 9.1 may also be of some independent
interest. The Appendix contains the proofs of some
auxiliary lemmas left out of the main text.

It is an important and challenging question how
much the constant factors in our theorems may be
further improved. In particular, we strongly conjecture
that the factor 1/8 in Theorem 1 can be replaced by a
larger constant c much closer (but not equal) to 1.

4 Theorem 1: Effect of β-Exclusion

In this section we prove Theorem 1. First some
notations. Let L = L1 × · · · ×Lk be a distribution over
[0,∞)k, and β = (β1, β2, · · · , βk) ∈ [0,∞)k. Let Y j

be the random variables corresponding to Lj . Define
ξj = Pr{Y j > βj}. For any real number α, let
Y j
α be the random variable obtained as follows: with

probability ξj , generate Y j |(Y j > βj); otherwise let
Y j
α = α.

Definition 4.1. For any u = (u1, · · · , uk), let Yu =
Y 1
u1 × · · · × Y k

uk . Define L+
β = Yβ , and L−β = Yγ where

γ = (0, · · · , 0).

Lemma 4.1. For any u ∈ [0, β1] × · · · × [0, βk],
REV A(Yu, β) ≤ REV X(Yu, u).

Proof. Let M be any IR-IC mechanism with allocation
q and payment s. We construct mechanism M ′ with
allocation q′ and payment s′ defined by: for any z in
the support of Yu and any j, let

q′j(z) =

{
qj(z) if zj > uj

0 otherwise,

s′(z) = s(z)−
∑

j, zj=uj

uj · qj(z).

It is easy to verify that M ′ is u-exclusive, IR-IC,
and Ez∼Yu(s

′(z)) = Ez∼Yu(s(z, β)). This proves
REV A(Yu, β) ≤ REV X(Yu, u), and hence Lemma 4.1.
�

Lemma 4.2. REV A(L, β) ≤ REV (L−β ).

Proof. Clearly, with γ = (0, · · · , 0) we have

REV (L−β ) = REV A(Yγ , β).

We will prove Lemma 4.2 in two steps:
Step 1. Prove that there exists u ∈ [0, β1]×· · ·× [0, βk]
such that REV A(L, β) ≤ REV A(Yu, β);
Step 2. Prove that REV A(Yu, β) ≤ REV A(Yγ , β).

For Step 1, we let G(0) = L, and construct a se-
quence u1, u2 · · · inductively by choosing uj to maxi-
mize the value of REV A(G(j+1), β) where G(j) stands
for Y 1

u1 × · · · × Y j−1
uj−1 × Y j × · · · × Y k. We claim that,

for each j,

REV A(G(j), β) ≤ REV A(G(j+1), β).(4.1)

If ξj = 1 then for any choice of uj , Y j
uj = Y j ,

and hence Eq. 1 is true. We can thus assume
ξj < 1. Observe that Y j can be obtained as follows:
Generate a random number c distributed according
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to the distribution Y j |(Y j ≤ βj) and then output a
random number according to Y j

c . This immediately
implies

REV A(G(j), β) = Ec(REV A(Y 1
u1 × · · · × Y j−1

uj−1×
Y j
c × Y j+1 × · · · × Y k)).(4.2)

Eq. 1 now follows from Eq. 2. This finishes Step 1.
For Step 2, take an IR-IC mechanism M (with

allocation q and payment s) achieving Ez∼Yu(s(z, β)) =
REV A(Yu, β). By Lemma 4.1, we can take M to be u-
exclusive.

Consider a new mechanism M ′ with allocation q′

and payment s′ satisfying q′(z′) = q(z) and s′(z′) =
s(z), where z is defined by zj = max{z′j , uj}. It is
straightforward to verify that M ′ is IR, IC and sat-
isfies Ez′∼Yγ (s

′(z′, β)) = Ez∼Yu(s(z, β)). This proves
REV A(Yu, β) ≤ REV A(Yγ , β), and finishes Step 2.
The proof of Lemma 4.2 is now complete. �

Lemma 4.3. REV A(L+
β , β) ≤ REV X(L, β).

Proof. Take an IR-IC mechanism M with alloca-
tion q and payment s achieving Ez∼L+

β
(s(z, β)) =

REV A(L+
β , β). By Lemma 4.1 and the fact L+

β = Yβ ,
we can take M to be β-exclusive, and satisfying

Ez∼L+
β
(s(z)) = REV A(L+

β , β).(4.3)

Now consider mechanism M ′ with allocation q′ and
payment s′ defined by: q′(z′) = q(z) and s(z′) = s(z)
where zj = max{z′j , βj}. It is easy to check that
M ′ is β-exclusive, IR-IC, and satisfies Ez∼L(s′(z)) =
Ez∼L+

β
(s(z)), and hence by Eq. 3

Ez∼L(s′(z)) = REV A(L+
β , β).

This proves Lemma 4.3. �

It follows from Lemmas 4.2 and 4.3 that, to estab-
lish Theorem 1, it suffices to prove

REV (L−β ) ≤ 8REV A(L+
β , β),(4.4)

to which we will devote the rest of this section.
Let M , with allocation q and payment s, be an IR-

IC mechanism achieving optimal revenue for distribu-
tion L−β . It is well known (see [18]) that, without loss
of generality we can assume M to have the NPT (no-
positive-transfer) property, i.e., s(z) ≥ 0 for all z. Fur-
thermore, we can without loss of generality assume that
M is γ-exclusive where γ = (0, · · · , 0), i.e., qj(z) = 0
whenever zj = 0. (Otherwise, we can simply set qj(z)
to 0 whenever zj = 0.) We will construct a new mech-
anism M ′ which, for distribution L+

β , has β-adjusted
revenue on a par with Ez∼L−β (s(z)).

Let D be the support of L−β , that is, D =

(z1, z2, · · · , zk) where zj ∈ (βj ,∞) ∪ {0}. The multi-
set {(q(z), s(z)) | z ∈ D} can be considered as a menu
for M, so that the bidder with valuation z can choose
an entry (q∗, s∗) from this set to maximize the utility
q∗z − s∗.

To construct M ′, we modify this menu by deleting
some entries and then lowering the payment for all
remaining entries. Let a > 1 and 0 < b < 1 be two
parameters satisfying b > 1

a . A value z ∈ D is said to
be profitable if

s(z) ≥ a(βq(z))(4.5)

where as usual βq(z) =
∑k

j=1 β
jqj(z). Let D0 ⊆ D be

the set of all profitable values. We construct for M ′ the
following menu:

M′ = {(q(z), bs(z))| z ∈ D0}(4.6)

where we denote the closure of a set S ⊆ Rk+1 by
S. Note that γ ∈ D0, and hence M ′ has an entry
(q(γ), bs(γ)) = (0, 0) to ensure the IR property.

By definition of menu, the allocation q′ and pay-
ment s′ for M ′ are determined as follows: For any bid
z′ ∈ [0,∞)k, let q′(z′) = u and s′(z′) = v where (u, v) is
chosen from entries in M′ to maximize uz′−v. Clearly,
M ′ is IR and IC. We will show thatM ′ yields the desired
β-adjusted revenue.

For each z ∈ D, let ψ(z) = z′ where z′j =
max{zj , βj}. For such z, and its corresponding z′ =
ψ(z) in the support of L+

β , we show in the next
Lemma that the effective payment s′(z′, β) is at least
a fraction of the payment from the natural candidate
entry (q(z), bs(z)) in M′. (We remark that the lowering
of the payment in M′ plays a crucial role in ensuring
this property.) Let us define

c = 1− 1

1 + a(1− b)
.(4.7)

Clearly, 0 < c < 1.

Lemma 4.4. Let z ∈ D0 be a profitable value, then
s′(z′, β) ≥ (b− 1

a )cs(z) where z′ = ψ(z).

Proof. Suppose the lemma is false. Then there must
exist in M′ an entry (q(u), b s(u)) with u ∈ D0 such
that:

s′(z′, β) < (b− 1

a
)cs(z),(4.8)

where s′(z′, β) = bs(u)−∑
j, z′j=βj qj(u)βj , and

q(z)z′ − bs(z) ≤ q(u)z′ − bs(u).(4.9)
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We derive a contradiction.
Note that as u ∈ D0, we have

∑
j q

j(u)βj ≤ 1
as(u).

Thus

s′(z′, β) ≥ (b− 1

a
)s(u).(4.10)

It follows from Eqs. 8, 10 that

s(u) < cs(z).(4.11)

Note that as M is IR and IC,

z(q(z)− q(u)) ≥ s(z)− s(u).(4.12)

From Eq. 9,

0 ≥ q(z)z′ − q(u)z′ − bs(z) + bs(u)

≥ q(z)z − q(u)z −
∑
j

βjqj(u)− bs(z) + bs(u).

By Eq. 12 and the fact u ∈ D0, we have then

0 ≥ s(z)− s(u)− 1

a
s(u)− bs(z) + bs(u)

= (1− b+
1

a
)(cs(z)− s(u)),

contradicting Eq. 11. This proves Lemma 4.4. �

We now use Lemma 4.4 to finish the proof of Eq.
4 and hence the theorem. First we give some intuition.
Note that Ez∼L−β (s(z)) can be approximated well (i.e.,

at least 50%) by simply taking contributions from the
profitable values z, or from the un-profitable values z.
In the latter case it is easy to see that selling each item
separately achieves good revenue. In the former case,
Lemma 4.4 provides a link between Ez∼L+

β
(s′(z, β)) and

Ez∼L−β (s(z)). We now proceed with the proof.

It is not hard to show that s′(z′, β) ≥ 0 (cf. Eq. 10)
for all z′ in the support of L+

β . Using Lemma 4.4, we
then obtain

Ez′∼L+
β
(s′(z′, β)) = Ez∼L−β (s

′(ψ(z), β))

(4.13)

≥ Ez∼L−β (Iz∈D0
s′(ψ(z), β))

≥ Ez∼L−β (Iz∈D0(b−
1

a
)c s(z))

= (b− 1

a
)c(Ez∼L−β (s(z))−

Ez∼L−β (Iz∈D−D0s(z))).

Since s(z) < a
∑

j β
jqj(z) for z ∈ D −D0, we have

Ez∼L−β (Iz∈D−D0s(z)) < aEz∼L−β (
∑
j

βjqj(z))

= a
k∑

j=1

βjEz∼L−β (Izj>0q
j(z))

≤ a
k∑

j=1

βjPry∼Lj{y > βj}

= a
k∑

j=1

βjξj .(4.14)

It follows from Eqs. 13 and 14 that

Ez∼L+
β
(s′(z, β)) ≥ (b− 1

a
)c (Ez∼L−β (s(z))− a

k∑
j=1

βjξj).

This proves

REV A(L+
β , β) ≥ (b− 1

a
)c (REV (L−β )− a

k∑
j=1

βjξj).

Hence

REV (L−β ) ≤
1

(b− 1
a )c

REV A(L+
β , β) + a

k∑
j=1

βjξj .

Taking a = 4, b = 3
4 and c = 1

2 , we obtain

REV (L−β ) ≤ 4REV A(L+
β , β) + 4

k∑
j=1

βjξj .

But the term
∑k

j=1 β
jξj is bounded by REV A(L+

β , β),

as pricing items at βj will yield β-adjusted revenue βξ.
This then completes the proof of Eq. 4, and hence the
β-Exclusion Theorem. �

Remarks: In the above derivation, we have set
the values of parameters a, b, c to optimize the resulted
bound.

5 Proof of Theorem 2

5.1 An Upper Bound for Revenue To prove The-
orem 2, we will compare BG(F) with the revenue
achieved by using a relaxed version of the Best-Guess
Reduction (BGR). Suppose in the description of BGR,
one were to drop the requirement of B(x−i)-exclusive
mechanisms, but use any general mechanism with op-
timal B(x−i)-adjusted revenue (while everything else
is kept the same). The resulting revenue, denoted by
BGA(F), is defined formally as follows:

BGA(F) ≡
n∑

i=1

Ex−i(REV A(Xi|x−i , B(x−i))).
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Theorem 5.1 shows that the quantity BGA(F)
provides a useful upper bound to REV (F) for arbitrary
distribution F . In the next subsection we will show that
this bound is tight when the items are independent.

Theorem 5.1. Best-Guess Reduction and Mechanism
BG are both DSIR-DSIC mechanisms. Furthermore, for
any distribution F ,

BG(F) ≤ REV (F) ≤ BGA(F) + E(X
[2nd]
F ).

The rest of this subsection will be devoted to proving
Theorem 5.1. It is obvious that both BGR and
Mechanism BG are DSIR-DSIC mechanisms for solving
the auction problem, and hence BG(F) ≤ REV (F).
It remains to prove the upper bound REV (F) ≤
BGA(F)+E(X

[2nd]
F ). Consider any mechanism M with

allocation qji and payment si. We will prove that its
revenue satisfies

n∑
i=1

Ex∼F (si(x))

(5.15)

≤
n∑

i=1

Ex−i(REV A(Xi|x−i , B(x−i))) + E(X
[2nd]
F ),

which is sufficient to establish the desired upper bound
in Theorem 5.1. For each x and buyer i, let β = B(x−i)
and define

si(x, β) = si(x)−
∑

j,xj
i≤βj

qji (x)x
j
i .(5.16)

Then, noting that xj
i ≤ βj implies xj

i ≤ xj[2nd], we
obtain

n∑
i=1

si(x) ≤
n∑

i=1

si(x,B(x−i)) +

n∑
i=1

k∑
j=1

qji (x)x
j[2nd]

=

n∑
i=1

si(x,B(x−i)) +

k∑
j=1

xj[2nd]
n∑

i=1

qji (x)

≤
n∑

i=1

si(x,B(x−i)) +

k∑
j=1

xj[2nd]

=

n∑
i=1

si(x,B(x−i)) + x[2nd].

This implies

n∑
i=1

Ex∼F (si(x)) ≤
n∑

i=1

Ex∼F (si(x,B(x−i))) + E(X
[2nd]
F ).

(5.17)

Fix i, x−i, and consider the induced IR-IC mechanism
M’ (for 1-bidder k-item auction) which, for bid xi ∈
[0,∞)k, allocates qji (xi, x−i) for item j and gets pay-
ment si(xi, x−i). By Eq. 16 and the definition of
REV A, we have

Exi(si(x,B(x−i))) ≤ REV A(Xi|x−i , B(x−i)).(5.18)

Inequality 15 follows immediately from Eqs. 17 and 18.
This completes the proof of Theorem 5.1. �

5.2 Optimality of Best-Guess When the items
have independent valuation distributions, i.e. F =
F1 ×F2 × · · · × Fk, we show that the upper and lower
bounds in Theorem 5.1 differ by at most a constant
factor.

Theorem 5.2. Let F = F1 × · · · × Fk, where Fj

is item j’s valuation distribution over [0,∞)n. Then
BGA(F) ≤ 8BGR(F).

Proof. Observe that by definition of the Best-Guess
Reduction, we have

BGR(F) =
n∑

i=1

Ex−i(REV X(Xi|x−i , B(x−i))).

(5.19)

To prove Theorem 5.2, we need to express BGA(F) in
similar form and compare it with Eq. 19. By definition,

BGA(F) =
n∑

i=1

Ex−i
(REV A(Xi|x−i , B(x−i))).

Applying Theorem 1 with L = Xi|x−i, β = B(x−i),
and using Eq. 19, we obtain

BGA(F) ≤ 8

n∑
i=1

Ex−i(REV X(Xi|x−i , B(x−i)))

= 8BGR(F),

and Theorem 5.2 is proved. �

By Theorems 5.1 and 5.2, we obtain

REV (F) ≤ 8BGR(F) + E(X
[2nd]
F )

≤ 9max{BGR(F), E(X
[2nd]
F )}

= 9BG(F).(5.20)

This completes the proof of Theorem 2. �
The Corollary to Theorem 2 can be proved in a

similar way. We modify Theorem 5.2 to read (and easily
verifiable)

BGA(F) ≤ 8αBGRα(F),
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and Eq. 20 then becomes

REV (F) ≤ 8αBGRα(F) + E(X
[2nd]
F )

≤ (8α+ 1)max{BGRα(F), E(X
[2nd]
F )},

proving the Corollary.

Theorem 5.3. Let SREV (F) be the revenue obtained
by selling each item separately and optimally. If F =
F1 × · · · × Fk, then

SREV (F) >
c

log2(k + 1)
REV (F)

for some universal constant c > 0.

Proof of Theorem 5.3 is done by using the Best-Guess
Reduction and applying the c

log2(k+1) -approximation

result from [22] for the 1-bidder SREV , and will be
omitted here.

Theorem 5.3 strengthens results in [27] where such a
bound was derived for the case k = 1, in [18] for the case
k = 2, and in [3] for the situation when all nk valuation
distributions are independent. Our result only requires
that the items have independent distributions.

6 Deterministic Best-Guess Reduction

Before proving Theorem 3, we first establish some
useful facts about 1-buyer k-item auctions. For any
distribution L over (−∞,∞) and c ∈ (−∞,∞), let
L−c denote the distribution obtained from L by shifting
the origin from 0 to c. That is, Prz∼L−c{z > y} =
Prz∼L{z > y + c} for all y.

Definition 6.1. For any distribution L = L1×· · ·×Lk

over [0,∞)k and β ∈ [0,∞)k, let L − β denote the
distribution (L1 − β1)× · · · × (Lk − βk).

Recall that L+
β is a distribution, with support

[β1,∞)× · · · × [βk,∞), derived from L as in Definition
4.1. Note that L+

β − β is a distribution over [0,∞)k.
The next lemma relates the optimal revenue achiev-
able by β-exclusive mechanisms to that achievable by
general mechanisms (without the β-exclusive restric-
tion). Let ξ(L) = (ξ1(L), · · · , ξk(L)) where ξj(L) =
Przj∼Lj{zj > βj}.
Lemma 6.1. For any L = L1 × · · · × Lk and β,
REV X(L, β) ≤ ξ(L)β +REV (L+

β − β).

Proof. Given in the Appendix. �

We will use a recent result from Babaioff et al. [3].
Let SREV (L) and BREV (L) be the optimal revenue
by selling separately and Grand Bundling, respectively.

Lemma 6.2. ([3]) For any L = L1 × · · · × Lk,

REV (L) ≤ 7.5 max{SREV (L), BREV (L)}.

We now turn to the proof of Theorem 3. It is obvious
that DBGR is a deterministic DSIR-DSIC mechanism.
We will show that DBGR is a BGRα-mechanism for
α = 8.5; that is, β-Bundling is an α-approximation to
the ideal optimal β-exclusive mechanism.

Theorem 6.1. For any L = L1 × · · · × Lk and β,

Bund(L, β) ≥ 1

8.5
REV X(L, β).

Proof. By Lemma 6.1,

REV X(L, β) ≤
k∑

j=1

βjξj(L) +REV (L+
β − β).(6.21)

It is easily seen that

k∑
j=1

βjξj(L) = Mβ,0(L) ≤ Bund(L, β).(6.22)

For the other term in Eq. 21, by Lemma 6.2, there
exists w ∈ [0,∞) such that

REV (L+
β − β) ≤ 7.5 max{SREV (L+

β − β),

w · Prz∼L+
β
{

k∑
j=1

(zj − βj) ≥ w}}.(6.23)

Similar to Eq. 22, for any ε > 0, there exists β ≥ β such
that

SREV (L+
β − β)− ε ≤ Mβ,0(L) ≤ Bund(L, β).

Thus, taking the limit ε → 0, we obtain

(6.24) SREV (L+
β − β) ≤ Bund(L, β).

Also, it is clear that

Prz∼L+
β
{

k∑
j=1

(zj − βj) ≥ w}

=Prz∼L
∑

j,zj>βj

(zj − βj) ≥ w},

which implies that

w · Prz∼L+
β
(

k∑
j=1

(zj − βj) ≥ w) ≤ Bund(L, β).(6.25)
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With help of Eqs. 24 and 25, we obtain from Eq. 23

REV (L+
β − β) ≤ 7.5Bund(L, β).(6.26)

It follows from Eqs. 21, 22 and 26 that

REV X(L, β) ≤ 8.5Bund(L, β).

This proves Theorem 6.1. �

Theorem 3 follows immediately from the Corollary
to Theorem 2 (with α = 8.5) and Theorem 6.1.

7 A General Implementation of Best-Guess
Reduction

The DBG Mechanism studied in Section 6 is one spe-
cial way of implementing the Best-Guess Reduction. In
this section we show that any 1-buyer k-item mechanism
M with approximation ratio 1

α for the revenue can be
transformed into an 1-buyer k-item β-exclusive mech-
anism M ′ yielding at least 1

α+1 of REV X(L, β); then,
combined with Corollary to Theorem 2, it gives an n-
buyer k-item mechanism with approximation ratio 1

8α+9
. Viewed in this light, the DBG Mechanism can be re-
garded as the special case where M is the mechanism
studied in [3].

Definition 7.1. Given β and M , a 1-buyer k-item
mechanism with allocation q and payment s, we define
a mechanism Φβ(M) as follows. First, convert M into
an 0-exclusive IR-IC mechanism simply by setting qj(z)
to 0 whenever zj = 0; then
(i) let Φβ,1(M) be the 1-buyer k-item mechanism M ′

with allocation q′ and payment s′ defined by: for any
z′ ∈ [0,∞)k, let z ∈ [0,∞)k where zj = max{z′j−βj , 0}
for 1 ≤ j ≤ k, and let q′(z′) = q(z), s′(z′) = s(z)+βq(z);
(ii) let Φβ,2(M) be the 1-buyer k-item mechanism M ′

with allocation q′ and payment s′ defined by: for any
z′ ∈ [0,∞)k and 1 ≤ j ≤ k, let q′j(z′) = 1 if z′j > βj

and 0 otherwise; let s(z′) =
∑

j, z′j>βj βj .
Define Φβ(M) = Φβ,1(M) if for input distribution L,
mechanism Φβ,1(M) yields more (expected) revenue
than Φβ,2(M); otherwise let Φβ(M) = Φβ,2(M).

For α ≥ 1, we say that a mechanism M is an α-
approximate mechanism for L if M(L) ≥ 1

αREV (L).
Theorem 7.1. Let α ≥ 1 and L = L1×· · ·×Lk. If M is
an IR-IC α-approximate mechanism for L+

β − β, then
the mechanism M ′ = Φβ(M) is an IR-IC β-exclusive
mechanism. Furthermore, M ′(L) ≥ 1

α+1REV X(L, β).

Proof. It is straightforward to verify that, for i = 1 and
2, Φβ,i(M) is IR, IC, and β-exclusive. It immediately
follows that Φβ(M) is also. The proof of the last part of

the theorem generalizes the proof of Theorem 6.1. By
Lemma 6.1,

REV X(L, β) ≤ ξ(L)β +REV (L+
β − β).(7.27)

Let M1 = Φβ,1(M) and M2 = Φβ,2(M). Then by
definition of M2 and M ′,

ξ(L)β = M2(L) ≤ M ′(L).(7.28)

To bound the other term in Eq. 27, note that as M is
α-approximate for L+

β − β we have

REV (L+
β − β) ≤ αM(L+

β − β).(7.29)

Let M have allocation q and payment s, and M1 have
allocation q′ and payment s′. Then by definition of
M1 = Φβ,1(M) and M ′, we have from Eq. 29

REV (L+
β − β) ≤ αEz∼L+

β−β(s(z))

(7.30)

≤ αEz∼L+
β−β(s(z) + βq(z)))

= αEz∼L+
β−β(s

′(z + β))

= αEz′∼L+
β
(s′(z′)) = αEz′∼L(s′(z′))

= αM1(L) ≤ αM ′(L).
It follows from Eqs. 27, 28 and 30 that

REV X(L, β) ≤ (α+ 1)M ′(L).
This proves Theorem 7.1. �

8 Bayesian vs. Dominant Strategy Revenue

We prove Theorem 4 in this section. We first establish
an analogous result to Theorem 5.1 For the Bayesian
setting of incentive compatibility, under the assumption
of valuation independence among the bidders. Recall
that SREV (F) is the revenue obtained by selling each
item separately and optimally.

Theorem 8.1. Let F = F1 × · · · × Fn, where each Fi

is bidder i’s valuation distribution over [0,∞)k. Then

REVBayesian(F) ≤ BGA(F) + SREV (F).

Proof. Consider an optimal BIR-BIC mechanism M for
F with allocation qji (x), payment si(x) from buyer i and
hence total payment s(x) =

∑n
i=1 si(x). Our goal is to

show that

Ex∼F (s(x)) ≤ BGA(F) + SREV (F).(8.31)

For each 1 ≤ i ≤ n, consider the following 1-
buyer k-item mechanism Mi for buyer i. For any
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valuation xi ∈ [0,∞)k, let the allocation of Mi be
q̄ji (xi) = Ex−i

(qji (xi, x−i)), and its payment be s̄i(xi) =
Ex−i(si(xi, x−i)), where x−i is distributed according to
F−i, the product of Fi′ for all i′ �= i. We first note an
important property of Mi.

Property P1. Mi is IR and IC: for any xi, x
′
i ∈ [0,∞)k,

xiq̄i(xi)− s̄i(xi) ≥ 0

xiq̄i(x
′
i)− s̄i(x

′
i) ≤ xiq̄i(xi)− s̄i(xi)

where xiq̄i(xi) stands for
∑k

j=1 x
j
i q̄

j
i (xi).

This property follows directly from the fact that M
is BIR and BIC.

We are now ready to analyze the performance of M
in comparison with BGA(F), where by definition

(8.32) BGA(F) =

n∑
i=1

Ex−i(REV A(Xi, B(x−i)).

(Recall B(x−i) = (B1(x−i), · · · , Bk(x−i)), where
Bj(x−i) is the value of the maximum of {xj

i′ |i′ �= i}.)
Given any valuation (xj

i ), we define for each i,

Ii(x) = {j|xj
i ≤ Bj(x−i)}, and

ti(xi, x−i) = s̄i(xi)−
∑

j∈Ii(x)
q̄ji (xi)x

j
i .

Then

Ex∼F (s(x)) =
n∑

i=1

Ex∼F (s̄i(xi))(8.33)

=
n∑

i=1

Ex∼F (ti(xi, x−i))

+ Ex∼F (
n∑

i=1

∑
j∈Ii(x)

q̄ji (xi)x
j
i ).

Lemma 8.1.
∑n

i=1 Ex∼F (ti(xi, x−i)) ≤ BGA(F).

Proof. By Property P1 and definition of REV A, we
have for each i, x−i,

Exi∼Fi
(ti(xi, x−i)) ≤ REV A(Xi, B(x−i)).

The lemma now follows from Eq. 32. �

Lemma 8.2.

Ex∼F (
n∑

i=1

∑
j∈Ii(x)

qji (xi)x
j
i ) ≤ SREV (F).

Proof. Define Qj
i (x) = 1 if j ∈ Ii(x) and 0 otherwise.

Let

Ψ(F) = Ex∼F (
n∑

i=1

∑
j∈Ii(x)

qji (xi)x
j
i ).

Then

Ψ(F) =
n∑

i=1

k∑
j=1

Ex(x
j
iQ

j
i (x)q

j
i (xi))

=
k∑

j=1

n∑
i=1

Ex−iExi(x
j
iQ

j
i (x)Ez−i(q

j
i (xi, z−i)))

=

k∑
j=1

n∑
i=1

Ex−iExiEz−i(Q
j
i (xi, x−i)x

j
i q

j
i (xi, z−i)).

Relabel xi as zi, and we have

Ψ(F) =

k∑
j=1

n∑
i=1

Ex−iEz(Q
j
i (zi, x−i)z

j
i q

j
i (z))

=
k∑

j=1

Ez(Tj(z)),(8.34)

where

Tj(z) =
n∑

i=1

Ex−i
(Qj

i (zi, x−i)z
j
i q

j
i (z)).

For convenience, we define Xj[max] = max{Xj
i |1 ≤ i ≤

n}.
For any j, z, we have

Tj(z) =
n∑

i=1

qji (z)z
j
iEx−i(Q

j
i (zi, x−i))

=
n∑

i=1

qji (z)z
j
iPrx−i{max{xj

i′ | i′ �= i} ≥ zji }

≤
n∑

i=1

qji (z)z
j
iPrx{Xj[max] ≥ zji }

≤
n∑

i=1

qji (z)REV (Xj[max])

≤ REV (Xj[max]),(8.35)

where we have used the fact that REV (Xj[max]) =
supy≥0 y(Pr{Xj[max] ≥ y}) is the optimal Myerson rev-

enue for a single item with value distribution Xj[max] =
max{Xj

i | 1 ≤ i ≤ n}. Thus, from Eqs. 34 and 35,

Ψ(F) ≤
k∑

j=1

REV (Xj[max]) ≤ SREV (F).

This proves Lemma 8.2. �
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From Eq. 33 and Lemmas 8.1, 8.2, we immediately
obtain Eq. 31. This completes the proof of Theorem
8.1. �

We can now prove Theorem 4. Let F = ⊗i,jF
j
i .

By Theorem 5.2, we have BGA(F) ≤ 8BGR(F) ≤
8REV (F). It then follows from Theorem 8.1 that

REVBayesian(F) ≤ BGA(F) + SREV (F) ≤ 9REV (F),

which completes the proof of Theorem 4.

9 Optimal Revenue in I.D.D. Case

We will prove Theorem 5 in this section. We first give
some notations and lemmas.

Definition 9.1. For any distribution F on [0,∞) and
integer � ≥ 1, define rF = supx≥0 x(1− F (x)),

A�(F ) = rF +

∫ �rF

0

(1− F (x))dx and

C�(F ) =

∫ �rF

0

xdF (x).

Property P2. rF +C�(F ) ≤ A�(F ) ≤ 2rF +C�(F ) for
any � ≥ 1.

The proof of Property P2 is given in the Appendix.
By using Property 2, a previous theorem from Li and
Yao [22] can be restated as follows.

Lemma 9.1. [22] For any distribution L over [0,∞)
and integer �, REV (L⊗k) = Θ(k Ak(L)).

In the rest of this section, for any distribution F
on [0,∞), we reserve the symbols F̂ to denote the
distribution defined by F̂ (x) = (F (x))n, and m to
denote �k/n�. We can restate Theorem 5(a) as follows:

For F = Fn⊗k, REV (F) = Θ(k Am(F̂ )).(9.36)

In this section, for convenience we allow the value
distributions to have support on (−∞,∞)k instead of
[0,∞)k. All the terms such as mechanisms, IR, IC,
REV, etc. are defined exactly as previously.

Let L = L1 × · · ·×Lk, where Lj = L for a common
distribution L over (−∞,∞). Let Y be a random
variable distributed according to L. Let p = Pr{Y >
0}, and let Z be the conditional distribution Y | (Y > 0).

Lemma 9.2.

REV (L) ≤
k∑

�=0

(
k

�

)
p�(1− p)k−�REV (Z⊗�).

Proof. Obviously, we can assume p > 0. For any
I ⊆ {1, 2, · · · , k}, z ∈ [0,∞)k, let I = {1, · · · , k} − I,

zI = (yi|i ∈ I) and zI = (yi|i �∈ I). Let M be any IR-IC
mechanism for L, with allocation q and payment s. We
show that

Ez∼L(s(z)) ≤
k∑

�=0

(
k

�

)
p�(1− p)k−�REV (Z⊗�).(9.37)

Fix any I ⊆ {1, 2, · · · , k}, zI ∈ (−∞, 0]|I|. We construct
a mechanism M ′ for valuation zI ∈ (0,∞)|I|, with
allocation q′ and payment s′ defined as follows. Let

q′j(zI) = qj(zI , zI) for j ∈ I,

s′(zI) = s(zI , zI)−
∑
j∈I

zjqj(zI , zI).

Note that s′(zI) ≥ s(zI , zI). It is straightforward to
check that M ′ is IR and IC. By definition of REV , we
have

EzI (s′(zI)) ≤ REV (Z⊗|I|).

For a random z ∈ L, let I denote the random variable
corresponding to the set {j| zj > 0}. Then

Ez∼L(s(z)) = EIEzIEzI (s(z))

≤ EIEzI (EzI (s′(z)))

≤ EIREV (Z⊗|I|)

=
k∑

�=1

(
k

�

)
p�(1− p)k−�REV (Z⊗�).

This proves Eq. 37 and hence Lemma 9.2. �

We will prove the upper and lower bounds of
Theorem 5 in the next two subsections, respectively.

9.1 Revenue Upper bound In this subsection we
prove the upper bound in Theorem 5, i.e., showing that
for distributions of the form F = Fn⊗k,

REV (F) ≤ O(k Am(F̂ )).(9.38)

To directly use the upper bound technique developed
in Section 5 for the current purpose is possible, but
it involves lengthy calculations. Instead, we will use
a variant of Theorem 5.1. Let F be any distribution
over [0,∞)nk for the n-buyer k-item auction. First, as
a counterpart of BGA(F), we define below FXβ(F),
which is a version of adjusted revenue but with a fixed
adjustment β for all bidders (rather than using B(x−i)-
adjusted revenue for bidder i, as in Definition 5.1).
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Definition 9.2. For any fixed β ∈ [0,∞)k, let
FXβ(F) =

∑n
i=1 Ex−i

(REV ((Xi − β)|x−i)).

Theorem 9.1. For any n-bidder k-item valuation dis-
tribution F , REV (F) ≤ FXβ(F) + ‖β‖, where ‖β‖ =∑

j β
j.

Proof. . The proof follows from the same outline as the
proof of Theorem 5.1 (but simpler), and will be omitted.
�

We next consider some simple properties of the
distributions F̂ (x) and HF (x) where HF (x) ≡ 1−F (x).
Let x0 ∈ [0,∞) be the unique real number satisfying
HF (x0−) ≥ 1

n ≥ HF (x0). Writing HF̂ (x) as b(HF (x)),
where b(z) = 1− (1− z)n. Clearly, b(z) is an increasing
function of z, and one can easily verify that b(1/n) ≥
1/e. Thus, HF̂ (x0−) ≥ b(1/n) ≥ 1/e. This shows

rF̂ ≥ x0HF̂ (x0−) ≥ x0

e
.(9.39)

Without loss of generality, one can assume HF (x0) �= 0.
Otherwise, REV (F) ≤ kx0 and hence Eq. 38 is already
satisfied due to Eq. 39. Let F0 denote the distribution
F conditioned on x > x0:

F0(x) =

{
1− HF (x)

HF (x0)
for x ≥ x0,

0 for x < x0.

Let β = (β1, · · · , βk), where βj = x0 for all j. By
definition,

FXβ(F) =

n∑
i=1

REV (Xi − β).(9.40)

Let i ∈ {1, · · · , n} be fixed, and let p = HF (x0) ≤ 1/n.
Lemma 9.2 implies that

REV (Xi − β) ≤
k∑

�=0

(
k

�

)
p�(1− p)k−�REV ((F0 − x0)

⊗�)

≤
k∑

�=0

(
k

�

)
p�(1− p)k−�REV (F⊗�

0 )

where we have used the elementary fact REV ((F0 −
x0)

⊗�) ≤ REV (F⊗�
0 ). By Lemma 9.1, we have

REV (F⊗�
0 ) ≤ c �A�(F0) for some constant c > 0. This

leads to

REV (Xi − βi) ≤ c

k∑
�=0

(
k

�

)
p�(1− p)k−��A�(F0).

(9.41)

Eqs. 40 and 41 give an upper bound to FXβ(F)
in terms of A�(F0). To derive Eq. 38, we only need to
relate A�(F0) to Am(F̂ ).

Property P3. Let h = �kp� and dn,k(F ) =∑k
�=1

(
k
�

)
p�(1 − p)k−��A�(F0). There exists a constant

c′ > 0 such that for all n, k, F , we have dn,k(F ) ≤
c′kpAh(F0).

Property P4. For h = �kp�, we have Ah(F0) ≤
c′′
pnAm(F̂ ) where c′′ = e+ e ln(2e).

The proofs of Properties P3 and P4 are given in the
Appendix. Using Properties P3 and P4, we obtain from
Eqs. 40 and 41 that

FXβ(F) ≤ cn

k∑
�=0

(
k

�

)
p�(1− p)k−��A�(F0)

= cn dn,k(F )

≤ cc′nkpAh(F0)

≤ cc′c′′kAm(F̂ ).(9.42)

By Theorem 9.1, REV (F) ≤ FXβ(F) + ‖β‖. As

‖β‖ = kx0 ≤ k e rF̂ ≤ k eAm(F̂ ) by Eq. 39, this
together with Eq. 47 implies Eq. 42, completing the
upper abound proof of Theorem 5. �

9.2 Optimality of Second-Price Bundling In
this subsection, we prove that SPB is IR-IC and

(9.43) SPB(F) ≥ Ω(k Am(F̂ )) where m = �k/n�.
Clearly SPB is IR, as it makes only take-or-leave offers.
We show that SPB is also IC. Let (xj

i ) be the true
valuation. If player i reports his valuation truthfully,
his utility u1 is equal to

∑
j∈V (x

j
i − zj) − w where

zj = max{xj
i′ | i′ �= i} and V = {j|xj

i > zj}. If player i
reports an untruthful valuation y = (yj | 1 ≤ j ≤ k) for
the k items, then his utility u2 will be

∑
j∈W (xj

i−zj)−w

for some W ⊆ {j|yj ≥ zj}. Since xj
i − zj ≤ 0 for all

j �∈ V , we conclude that u2 ≤ u1, and player i gains
no advantage by reporting false valuation. This proves
SPB (with any parameter w) is IC.

We next show that for some properly chosen w (de-
pendent on F only), SPB can achieve an expected rev-
enue of at least Ω(kAm(F̂ )). We will choose the param-
eter w as follows.
Case 1. E(VF ) ≥ 1

5 max{rF̂ , Cm(F̂ )
80 }. In this case,

by simply setting w = 0, the SPB has exactly the
same effect as selling each item separately with Vick-
rey’s 2nd-price payment, yielding a revenue kE(VF ) ≥
Ω(kAm(F̂ )).

Case 2. E(VF ) < 1
5 max{rF̂ , Cm(F̂ )

80 }. In this case,
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pick some u such that uHF̂ (u) ≥ 4
5rF̂ . Define q0 =

Pr{WF − VF ≥ u
2 }, and define w0 = u/2 if mq0 ≤ 1

and w0 = �q0m�u/2 if mq0 > 1. Choose the parameter
w to be

w =

{
1
4mCm(F̂ ) if Cm(F̂ ) ≥ 80 rF̂ ,

w0 if Cm(F̂ ) < 80 rF̂ .
(9.44)

Lemma 9.3. In Case 2, with the parameter w as defined
in Eq. 44, SPB can achieve expected revenue at least
Ω(kAm(F̂ )).

The proof of Lemma 9.3 is given in the Appendix. Thus
Eq. 43 is valid for all F (either Case 1 or Case 2). This
completes the proof of Theorem 5. �
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Appendix

Note 1: Proof of Lemma 6.1

Let M be any IR-IC β-exclusive mechanism with
allocation q and payment s. To establish the lemma,
we prove

Ez∼L(s(z)) ≤ ξ(L)β +REV (L+
β − β),(A1)

where ξj(L) = Przj∼Lj (zj > βj), and ξ(L) =
(ξ1(L), · · · , ξk(L)).
Fact 1. Ez∼L(s(z)) ≤ ξ(L)β + Ez∼L(s(z)− q(z)β).

Proof. Simply note that Ez∼L(s(z)) = Ez∼L(q(z)β) +
Ez∼L(s(z)− q(z)β) = ξ(L)β + Ez∼L(s(z)− q(z)β). �

We construct a mechanism M ′ with allocation q′

and payment s′, so that it has a good expected revenue
s′(z′)− q′(z′)β for z′ ∼ L+

β .

For any z ∈ [0,∞)k, define ψ(z) = z′ where z′j =
max{zj , βj}. Clearly, ψ(z) ∈ [β1,∞)×· · ·× [βk,∞). We
now define q′, s′. For any z′ ∈ [β1,∞) × · · · × [βk,∞),
let z = argmaxz{s(z) − q(z)β| z ∈ ψ−1(z′)}. Let
q′(z′) = q(z) and s′(z′) = s(z).

Fact 2. M ′ is IR-IC and Ez∼L(s(z) − q(z)β) ≤
Ez′∼L+

β
(s′(z′)− q′(z′)β).

Proof. For any z′ in the support of L+
β , i.e., z′ ∈

[β1,∞)×· · ·×[βk,∞), let I(z′) = {j| z′j > βj}. As M is
β-exclusive, we must have for any z ∈ ψ−1(z′), qj(z) = 0
if j �∈ I(z′). This has several implications. First, for any
z ∈ ψ−1(z′), q(z)z′ − s(z) = q(z)z − s(z) ≥ 0, since M
is IR. This means q′(z)z′ − s′(z′) ≥ 0, i.e., M ′ is IR.

We now prove M ′ is IC. Define the function
u(y, z) = yq(z) − s(z), the utility under M obtained
when the valuation is y but reporting z. We claim
that for any y, z ∈ ψ−1(z′), u(y, z) = u(y, y). To
prove this claim, take M’s IC condition y(q(z)−q(y)) ≤
s(z)− s(y) ≤ z(q(z)− q(y)). This leads to s(z)− s(y) =∑

j∈I(z′) z
′j(qj(z)−qj(y)), implying u(z, z) = u(y, y). It

is then straightforward to verify that u(y, z) = u(y, y).
In particular, take y = z′, and let z = argmaxz{s(z)−
q(z)β| z ∈ ψ−1(z′)} as chosen in the construction of M ′.
We have u(z′, z) = u(z′, z′). This means that the utility
under M ′ for valuation z′ remains the same as under M.
Thus, no advantage is gained by false reporting. This
proves that M ′ is IC.

Finally, note that z ∈ ψ−1(z′) implies s(z)−q(z)β ≤
s′(z′) − q′(z′)β. It follows that Ez∼L(s(z) − q(z)β) ≤
Ez′∼L+

β
(s′(z′) − q′(z′)β). This completes the proof of

Fact 2. �

Fact 3. Ez′∼L+
β
(s′(z′)− q′(z′)β) ≤ REV (L+

β − β).

Proof. Define mechanism M ′′ for distribution L+
β − β

with allocation q′′ and payment s′′ by

q′′(z) = q′(z + β), s′′(z) = s′(z + β)− βq′(z + β),

for all z ∈ [0,∞)k. It is straightforward to verify that
M ′′ is IR and IC. It follows that

Ez∼L+
β
(s′(z)− βq′(z)) = Ez∼L+

β−β(s
′(z + β)− βq′(z + β))

= Ez∼L+
β−β(s

′′(z))

≤ REV (L+
β − β).

�
Facts 1-3 imply immediately Eq. A1. This proves

Lemma 6.1. �

Note 2: Proof of Property P2

It is easy to see that

C�(F ) = −
∫ �rF

0

xd(1− F (x))

= −x(1− F (x))|�rF0 +

∫ �rF

0

(1− F (x))dx

= −�rF (1− F (�rF )) +A�(F )− rF .
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Using the fact 1 − F (�rF ) ≤ rF
�rF

= 1
� , we thus obtain

0 ≤ A�(F )− (rF + C�(F )) ≤ rF , and it follows that

rF + C�(F ) ≤ A�(F ) ≤ 2rF + C�(F ).

This proves Property P2. �
Note 3: Proof of Property P3

By definition, A�(F0) = r0+
∫ �r

0
(1−F0(x))dx, where

r0 = rF0 = supx≥0 x(1− F0(x)). For � ≥ h,

A�(F0)−Ah(F0) =

∫ �r

hr

(1− F0(x))dx

≤
∫ �r

hr

r0
x
dx = r0 ln

�

h
.(A2)

Note that it implies, for all � ≤ 2eh,

A�(F0) ≤ Ah(F0) + r0 ln(2e).(A3)

Using Eqs. A2, A3, we have

dn,k(F ) ≤
k∑

�=1

(
k

�

)
p�(1− p)k−� · �(Ah(F0) + r0 ln(2e))

+ r0
∑

�>2eh

(
k

�

)
p�(1− p)k−� · � ln �

h
.

Simplifying, we have

dn,k(F ) ≤ kp(Ah(F0) + r0 ln(2e)) + r0ξ,(A4)

where

ξ =
∑

�>2eh

(
k

�

)
p�(1− p)k−� · � ln �

h
.

To estimate ξ, we use Stirling’s approximation to obtain

ξ ≤
∑

�>2eh

k�

�!
· p� · � ln �

h

≤
∑

�>2eh

(
kep

�
)� · � ln �

h

≤ ekp
∑

�>2eh

ln �

2�−1
≤ β3kp,(A5)

where β3 is the constant
∑

�≥1
e ln �
2�−1 . Property P3

follows from Eqs. A4, A5. �

Note 4: Proof of Property P4

We first derive a simple relation between HF̂ and
H, where H stands for HF .

Fact 4. If nH(x) ≤ 1, then nH(x) ≥ HF̂ (x) ≥
nH(x)/e.

Proof. Assume nH(x) ≤ 1, we show nH(x) ≥ HF̂ (x) ≥
1
enH(x). It is easy to check that 1−z ≤ e−z ≤ 1−z/e for

all z ∈ [0, 1]. It follows that (1 −H(x))n ≤ e−nH(x) ≤
1 − nH(x)/e, implying HF̂ (x) = 1 − (1 − H(x))n ≥
nH(x)/e. Furthermore, it is easy to verify that (1 −
z)n − 1 + nz is non-negative over z ∈ [0, 1] by taking
derivatives. This immediately leads to nH(x) ≥ HF̂ (x)
by letting z = H(x). �

Let H0(x) stand for HF0(x) = 1 − F0(x), and r0
stand for rF0 . By definition, H0(x) =

1
pH(x) for x ≥ x0,

where p = H(x0). It follows from pn ≤ 1 and Fact 4
that, for x ≥ x0, HF̂ (x) ≤ H0(x) ≤ e

pnHF̂ (x); and these
inequalities are easily checked to be true actually for all
x. This immediately implies

rF̂ ≤ r0 ≤ e

pn
rF̂ .(A6)

If kp ≤ 1, then h = 1, and

Ah(F0) ≤ 2r0 ≤ 2e

pn
rF̂ ≤ 2e

pn
Am(F̂ ),

satisfying Property P5. We can thus assume kp > 1. In
this case from A6

hr0 ≤ 2kp
e

pn
rF̂ ≤ 2emrF̂ .(A7)

Hence, from A6-A7 we have

∫ hr0

0

H0(x)dx ≤ e

pn

∫ 2emrF̂

0

HF̂ (x)dx

=
e

pn
(

∫ mrF̂

0

HF̂ (x)dx+

∫ 2emrF̂

mrF̂

HF̂ (x)dx)

≤ e

pn
(

∫ mrF̂

0

HF̂ (x)dx+

∫ 2emrF̂

mrF̂

rF̂
x
dx)

≤ e

pn
(ln(2e))Am(F̂ ).(A8)

From Eqs. A6 and A8, we obtain

Ah(F0) = r0 +

∫ hr0

0

H0(x)dx

≤ e

pn
rF̂ +

e

pn
(ln(2e))Am(F̂ )

≤ c′′

pn
Am(F̂ ),

This proves Property P4. �
Note 5: Proof of Lemma 9.3

We first cite two earlier results from references [18]
and [22].
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Fact 5. [22] Let m > 1 be any integer, and G
be a distribution on [0,∞) satisfying Cm(G) > 10rG.
Let Z1, · · · , Zm be m iid distributions of G. Then
Pr{∑m

i=1 Zi ≥ 1
2mCm(G)} ≥ 3

4 .

Fact 6. [18] Let Z1, · · · , Zm be m iid distributions
of a one-dimensional distribution on [0,∞), and t > 0
be any real number. Define w = t if qm ≤ 1, and
w = t�qm� if qm > 1, where q = Pr{Zi ≥ t}. Then
w · Pr{∑m

i=1 Zi ≥ w} ≥ 1
4mqt.

We also need the following estimate on a certain
type of probability arising in our analysis.

Fact 7. Let n, k > 1 and m = �k/n�. Let bn,k =∑
�≥m

(
k
�

)
1
n� (1 − 1

n )
k−�. Then bn,k ≥ k

en if k ≤ n, and

bn,k ≥ 1
14 if k > n.

Proof. We consider two cases.
Case 1: k

n ≤ 1. Then m = �k/n� = 1, and bn,k ≥
k
n (1 − 1

n )
k−1 ≥ k

n (1 − 1
n )

n−1. But (1 − 1
n )

n−1 ≥ 1
e for

all n ≥ 2, hence bn,k ≥ k
en .

Case 2: k
n > 1. It is well known in statistics that

the median lies to the left of the mean for binomial
distributions. Hence

b′n,k ≥ 1/2(A9)

where

b′n,k =
∑

�≥	k/n


(
k

�

)
1

n�
(1− 1

n
)k−�.(A10)

We will show that

b′n,k ≤ 7bn,k,(A11)

which together with Eq. A9 implies bn,k ≥ 1
14 , hence

proving Fact 7. We can assume k/n to be non-integral;
otherwise bn,k = b′n,k. Note that from Eq. A10

b′n,k − bn,k =

(
k

m− 1

)
1

nm−1
(1− 1

n
)k−m+1,

and

bn,k ≥
(
k

m

)
1

nm
(1− 1

n
)k−m.

Thus, to prove Eq. A11 it suffices to show(
k

m− 1

)
1

nm−1
(1− 1

n
)k−m+1

≤ 6

(
k

m

)
1

nm
(1− 1

n
)k−m.

This is equivalent to proving

(n− 1)m ≤ 6(k −m+ 1), or

(n+ 5)m ≤ 6(k + 1).(A12)

But Eq. A12 is easy to prove: using the inequality
n+ 5k/n ≤ 5k + 1 for n < k, we have

(n+ 5)m = (n+ 5)�k/n� ≤ (n+ 5)(
k

n
+ 1)

= n+
5k

n
+ k + 5 ≤ 6(k + 1).

This proves Eq. A11, hence the proof of Fact 7 is
complete. �

We now proceed to prove Lemma 9.3. The proof
is accomplished through a series of Facts. Recall that
m = � k

n�, and it is assumed that

E(VF ) <
1

5
max{rF̂ ,

Cm(F̂ )

80
}.(A13)

Let J = (J1, J2 . . . , Jn) ∈ J . When Ti = Ji, player
i accepts the seller’s offer if and only if XJi[max] ≥
XJi[2nd] + w. Let P Ji

w be the acceptance probability.

Note that P Ji
w ≤ P

J ′i
w if Ji ⊆ J ′i , since Ji can be

embedded as the first |Ji| items of J ′i without decreasing
the acceptance probability. Also, P Ji

w can be written as
Pw(|Ji|), as it depends only on w and the cardinality of
Ji.

Fact 8. For any 1 ≤ i ≤ n, Ex∼F (si(x)) ≥ Pr{|Ti| ≥
m}Pw(m) · w.
Proof. Immediate from the definitions and monotonic-
ity of Pw(m). �

Fact 9. For any 1 ≤ i ≤ n,

Pr{|Ti| ≥ m} ≥
{

k
en if k ≤ n,
1
14 if k > n.

Proof. Note that Pr{|Ti| ≥ m} =
∑

m′≥m

(
k
m′
)

1
nm′ (1−

1
n )

k−m′ . Fact 9 follows from Fact 7. �

Let Y1, Y2 . . . , Yn be iid each distributed as F .
Define WF = maxi Yi and VF = 2nd max of all Yi. Call
(WF , VF ) a canonical pair. Let |Ji| = m. One can
write XJi[max] =

∑m
j=1 Wj and XJi[2nd] =

∑m
j=1 Vj ,

where (W1, V1), . . . , (Wm, Vm) are m iid canonical pairs
of random variables. Then Pw(m) can be written as the
probability of the event

m∑
j=1

Wj ≥
m∑
j=1

Vj + w.(A14)
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Recall that we have chosen the parameter w as
defined in Eq. 49 of the main text.

Fact 10. Let Dm(F̂ ) = max{rF̂ , 1
80Cm(F̂ )}. Then

wPm(w) ≥ 1
20mDm(F̂ ).

Proof. We consider two separate cases.

Case A. Cm(F̂ ) ≥ 80 rF̂ .

We have w = 1
4mCm(F̂ ). As Cm(F̂ ) ≤ mrF̂

obviously, we have m > 1. From Fact 5, we have

a = Pr{W1 +W2 + · · ·+Wm ≥ 2w} ≥ 3

4
.

Also, by Markov’s Inequality and Eq. A13,

b = Pr{V1 + V2 + · · ·+ Vm ≥ w}
≤ Pr{V1 + V2 + · · ·+ Vm ≥ 2mE(VF )} ≤ 1

2
.

Thus,

Pm(w) = Pr{
m∑
i=1

Wi ≥
m∑
i=1

Vi + w} ≥ a− b ≥ 1

4
,

and

wPm(w) ≥ 1

16
mCm(F̂ ) >

m

20
Dm(F̂ ),

as required.

Case B. Cm(F̂ ) < 80rF̂ .

We first derive some useful information (Eq. A17
below). In Case B, we have from Eq. A13

E(VF ) <
1

5
rF̂ ,(A15)

and u, q0, w satisfying the conditions

uHF̂ (u) ≥
4

5
rF̂ ,(A16)

q0 = Pr{WF − VF ≥ u

2
},

w =

{
u/2, if mq0 ≤ 1 ;

�mq0�u/2, if mq0 > 1.

It follows from Eqs A15, A16 and Markov’s Inequality
that

Pr{VF ≤ u

2
} ≤ E(VF )

u/2
<

1
5rF̂

2
5

rF̂
HF̂ (u)

=
1

2
HF̂ (u).

This implies

q0 ≥ Pr{WF > u} − Pr{VF ≤ u

2
} ≥ 1

2
HF̂ (u).(A17)

We are now ready to analyze wPm(w) for Case B. Apply
Fact 6 with Zj = Wj − Vj and t = u

2 , we have

wPm(w) = w · Pr{
m∑
j=1

(Wj − Vj) ≥ w} ≥ uq0m

8
.

(A18)

From Eqs. A16-A18,

wPm(w) ≥ mu

8
· HF̂ (u)

2
≥ m

16

4

5
rF̂ =

m

20
rF̂ .

The assumption of Case B implies rF̂ = Dm(F̂ ), thus

we obtain wPm(w) ≥ 1
20mDm(F̂ ). This completes the

proof of Fact 10. �

Now, Facts 8-10 together imply that for k ≤ n
(hence for m = 1),

Ex∼F (si(x)) ≥ k

20en
Dm(F̂ ).

Similarly, for k > n,

Ex∼F (si(x)) ≥ 1

280
mDm(F̂ ) ≥ 1

280

k

n
Dm(F̂ ).

This implies that, by choosing w either way as in Eq.
44 (of the main text), we have

Ex∼F (s(x)) =
n∑

i=1

Ex∼F (si(x)) ≥ ckDm(F̂ ) ≥ Ω(kAm(F̂ ))

where c = 1
280 . Hence the proof of Lemma 9.3 is

complete. �
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