
Exponential Separations in the Energy

Complexity of Leader Election∗

Yi-Jun Chang
University of Michigan

cyijun@umich.edu

Tsvi Kopelowitz
University of Michigan

kopelot@gmail.com

Seth Pettie
University of Michigan

pettie@umich.edu

Ruosong Wang
Tsinghua University

wrs13@mails.tsinghua.edu.cn

Wei Zhan
Tsinghua University
jollwish@gmail.com

Abstract

Energy is often the most constrained resource for battery-powered wireless devices and the
lion’s share of energy is often spent on transceiver usage (sending/receiving packets), not on
computation. In this paper we study the energy complexity of Leader Election and Approximate
Counting in several models of wireless radio networks. It turns out that energy complexity is very
sensitive to whether the devices can generate random bits and their ability to detect collisions.
We consider four collision-detection models: Strong-CD (in which transmitters and listeners
detect collisions), Sender-CD and Receiver-CD (in which only transmitters or only listeners detect
collisions), and No-CD (in which no one detects collisions.)

The take-away message of our results is quite surprising. For randomized Leader Election al-
gorithms, there is an exponential gap between the energy complexity of Sender-CD and Receiver-
CD:

Randomized: No-CD = Sender-CD � Receiver-CD = Strong-CD

and for deterministic Leader Election algorithms, there is another exponential gap in energy
complexity, but in the reverse direction:

Deterministic: No-CD = Receiver-CD � Sender-CD = Strong-CD

In particular, the randomized energy complexity of Leader Election is Θ(log∗ n) in Sender-CD but
Θ(log(log∗ n)) in Receiver-CD, where n is the (unknown) number of devices. Its deterministic
complexity is Θ(logN) in Receiver-CD but Θ(log logN) in Sender-CD, where N is the (known)
size of the devices’ ID space.

There is a tradeoff between time and energy. We give a new upper bound on the time-energy
tradeoff curve for randomized Leader Election and Approximate Counting. A critical component
of this algorithm is a new deterministic Leader Election algorithm for dense instances, when
n = Θ(N), with inverse-Ackermann-type (O(α(N))) energy complexity.

∗Supported by NSF grants CNS-1318294, CCF-1514383, and CCF-1637546.

ar
X

iv
:1

60
9.

08
48

6v
2

 [
cs

.D
C

]
 3

 N
ov

 2
01

6

1 Introduction

In many networks of wireless devices the scarcest resource is energy, and the lion’s share of energy
is often spent on radio transceiver usage [41, 4, 37, 43]—sending and receiving packets—not on
computation per se. In this paper we investigate the energy complexity of fundamental problems
in wireless networks: Leader Election, Approximate Counting, and taking a Census.

In all the models we consider time to be partitioned into discrete slots; all devices have access
to a single shared channel and can choose, in each time slot, to either transmit a message m from
some space M, listen to the channel, or remain idle. Transmitting and listening each cost one unit
of energy; we measure the energy usage of an algorithm on n devices by the worst case energy
usage of any device. For the sake of simplicity we assume computation is free and the message size
is unbounded. If exactly one device transmits, all listeners hear the message m, and if zero devices
transmit, all listeners hear a special message λS indicating silence. We consider four models that
differ in how collisions can be detected.

Strong-CD. Each sender and listener receives one of three signals: λS (silence, if zero devices
transmit), λN (noise, if ≥ 2 devices transmit), or a message m ∈M (if one device transmits).

Sender-CD. (Often called “No-CD” [25]) Each sender and listener receives one of two signals: λS
(zero or ≥ 2 devices transmit), or a message m ∈M (if one device transmits). Observe that
the Sender-CD model has no explicit collision detection, but still allows for sneaky collision
detection: if a sender hears λS , it can infer that there was at least one other sender.

Receiver-CD. Senders receive no signal. Each listener receives one of three signals: λS (silence,
if zero devices transmit), λN (noise, if ≥ 2 devices transmit), or a message m ∈ M (if one
device transmits).

No-CD. Senders receive no signal. Listeners receive one of two signals: λS (zero or ≥ 2 devices
transmit) or a message m ∈M. To avoid trivial impossibilities, it is promised that there are
at least 2 devices.

In addition we distinguish randomized and deterministic algorithms. In the randomized model
all n devices begin in exactly the same state (n is unknown and unbounded), and can break
symmetry by generating private random bits. In the deterministic model we assume that all n

devices have unique IDs in the range [N]
def
= {0, . . . , N − 1}, where N is common knowledge but

n ≤ N is unknown.
We consider the following fundamental problems.

Leader Election. Exactly one device designates itself the leader and all others designate themselves
follower. The computation ends when the leader sends a message while every follower listens
to the channel.

Approximate Counting. At the end of the computation all devices agree on an ñ such that ñ =
Θ(n).

Census. We only study this problem in the deterministic setting. At the end of the computation
some device announces a list (or census) of the IDs of all devices.

1

Remark 1. It could be argued that real-world devices rarely endow transmitters with more
collision-detection power than receivers, so the Sender-CD model does not merit study. We feel
this thinking gets the order backwards. There is a certain cost for equipping tiny devices with ex-
tra capabilities (such as generating random bits or detect collisions) so how are we to tell whether
adding these capabilities is worth the expense? To answer that question we need to first determine
the complexity of the algorithms that will ultimately run on the device. The goal of this work is
to understand the power of various abstract models, not to cleave closely to existing real-world
technologies, simply because they exist.

New Results. In the randomized model, we show that the energy complexity of Leader Election
and Approximate Counting are Θ(log∗ n) in Sender-CD and No-CD but Θ(log(log∗ n)) in Strong-
CD and Receiver-CD. The lower bounds also apply to the contention resolution problem, and this
establishes that the recent O(log(log∗ n)) contention resolution protocol of Bender et al. [7] is
optimal. Our algorithm naturally offers a time-energy tradeoff. See Table 1 for the energy costs of
our algorithm under different runtime constraints.

Energy Complexity
Time Complexity Strong-CD or Receiver-CD Sender-CD or No-CD with n > 1

O(no(1)) O(log(log∗ n)) O(log∗ n)

O(log2+ε n), 0 < ε ≤ O(1) O(log(ε−1 log log log n)) O(ε−1 log log log n)

O(log2 n) O(log log log n) O(log log n)

Table 1: Time-energy tradeoff of randomized Approximate Counting and Leader Election.

For Leader Election we establish matching bounds in all the deterministic models. In Strong-
CD and Sender-CD, Leader Election requires Ω(log logN) energy (even when n = 2) and can be
solved with O(log logN) energy and O(N) time, for any n ≤ N . However, in No-CD and Receiver-
CD, the complexity of these problems jumps to Θ(logN) [27]. Meanwhile, Census can be solved with
O(log2 logN) energy and O(N) time in the Strong-CD and Sender-CD models, and with Θ(logN)
energy in the Receiver-CD and No-CD models.

Finally, we prove that when the input is dense in the ID space, meaning n = Θ(N), Census can
actually be computed with only O(α(N)) energy and O(N) time, even in No-CD. To our knowledge,
this is the first time inverse-Ackermann-type recursion has appeared in distributed computing.

1.1 Prior Work

Jurdzinski et al. [25] studied the deterministic energy complexity of Leader Election in the Sender-
CD model. They proved that dense instances (n = Θ(N)) can be solved with O(log∗N) energy,
and claimed that the complexity of the sparse problem is between Ω(log logN/ log log logN) and
O(logεN). While the lower bound is correct, the algorithm presented in [25] is not.1 The most
efficient published algorithm uses O(

√
logN) energy, also due to Jurdzinski et al. [28]. The same

authors [26] gave a reduction from randomized Sender-CD Approximate Counting to deterministic
Leader Election over ID space N = O(log n), which, using [28], leads to an O(

√
log logn) energy

algorithm for Approximate Counting. In [27] the authors gave a method for simulating Sender-CD

1T. Jurdzinski. (Personal communication, 2016.)

2

protocols in the No-CD model, and proved that deterministic No-CD Leader Election takes Ω(logN)
energy. Nakano and Olariu [38] showed that n devices in the Sender-CD model can assign themselves
distinct IDs in {1, . . . , n} with O(log log n) energy.

Very recently Bender et al. [7] gave a method for circuit-simulation in the Strong-CD model,
which led to randomized Approximate Counting and Leader Election protocols using O(log(log∗ n))
energy and no(1) time. An earlier algorithm of Kardas et al. [30] solves Leader Election in the
Strong-CD model in O(logε n) time using O(log log log n) energy, in expectation.

Most of the previous work in the radio network model has been concerned with time, not energy.
Willard [44] proved that O(log log n) time is necessary and sufficient for one device to successfully
transmit in the Strong-CD model with constant probability; see [39] for tradeoffs between time and
success probability. In the Sender-CD model this problem requires Θ(log2 n) time to solve, with
probability 1− 1/poly(n) [16, 29, 40]. Greenberg and Winograd [24] proved that if all devices need
to send a message, Θ(n logn(N)) time is necessary and sufficient in the deterministic Strong-CD
model.

The related problems of broadcasting, leader election, and gossiping have been studied exten-
sively in multi-hop radio networks, where the bounds typically depend on both the diameter and
size of the network, whether it is directed, and whether randomization and collision detection are
available. See, e.g., [2, 3, 9, 10, 13, 35, 1, 33, 34, 19, 12]. Schneider and Watterhofer [42] investigated
the use of collision detection in multihop radio networks when solving archetypal problems such as
MIS, (∆ + 1)-coloring, and broadcast. Their results showed that the value of collision detection
depends on the problem being solved.

Cornejo and Kuhn [11] introduced the beeping model, where no messages are sent; the only
signals are {λN , λS}: noise and silence. The complexity of Approximate Counting was studied in [8]
and the state-complexity of Leader Election was studied in [23].

In adversarial settings a jammer can interfere with communication. See [36, 14] for leader elec-
tion protocols resilient to jamming. In a resource-competitive protocol [6] the energy cost of the
devices is some function of the energy cost of the jammer. See [5] for resource-competitive contention
resolution, and [22, 32] for resource-competitive point-to-point communication and broadcast pro-
tocols.

1.2 Organization and Technical Overview

To establish the two sharp exponential separations we need 8 distinct upper and lower bounds.
The O(logN) upper bound on deterministic No-CD Leader Election is trivial and the matching
lower bound in Receiver-CD is from [27]. The O(log(log∗ n)) upper bound from [7] on random-
ized Leader Election/Approximate Counting works only in Strong-CD. This paper contains match-
ing upper and lower bounds of Θ(log logN) in the deterministic Sender-CD/Strong-CD models,
and matching Θ(log∗ n) bounds in the randomized No-CD/Sender-CD models. We adapt the ran-
domized O(log(log∗ n)) upper bound [7] from Strong-CD to Receiver-CD, and provide a matching
Ω(log(log∗ n)) lower bound in Strong-CD. In addition, we give a simpler proof of the Ω(logN) lower
bound in deterministic Receiver-CD.

In Section 2 we begin with a surprisingly simple proof that protocols solving any non-trivial
problem in the deterministic Strong-CD model require Ω(log logN) energy if the devices are adaptive
and Ω(logN) if they are non-adaptive. It turns out that Receiver-CD algorithms are essentially
forced to be non-adaptive, so this yields Ω(logN) lower bounds for deterministic Leader Election in

3

Receiver-CD. The Ω(log logN) lower bound combines a decision-tree representation of the algorithm
with the encoding argument that Katona and Szemerédi [31] used to solve the biclique covering
problem of Erdős, Rényi, and Sós [15].

In Section 3 we prove the Ω(log∗ n) and Ω(log(log∗ n)) lower bounds on randomized Approximate
Counting/Leader Election. These lower bounds begin by embedding any algorithm into an infinite
universal decision-DAG (basically a decision tree with some reconvergent paths). In this model two
algorithms only differ in their transition probabilities and halting criteria. The proof is information-
theoretic. We consider the only two methods for devices in Strong-CD/Receiver-CD to learn new
information (i) via direct communication (in which one device transmits and some subset of devices
listen) and (ii) via inference (in which transmitting/listening devices detect a collision or silence,
which informs their future decisions). The information-theoretic capacity of method (i) is essentially
unbounded whereas method (ii) is bounded by 1-bit per unit energy in Strong-CD and usually less
in Receiver-CD. We show that any algorithm with a reasonable time bound can be forced to learn
an approximation of n via the information-theoretically well-behaved method (ii).

In Sections 4 and 5 we present all deterministic upper bounds: an O(log logN)-energy protocol
for Leader Election, an O(log2 logN)-energy protocol for Census, and an O(α(N)) energy protocol
for dense Leader Election/Census, when n = Θ(N). The first two protocols combine van Emde Boas-
like recursion with a technique that lets a group of devices function as one device and thereby share
energy costs.

In Section 6 we present upper bounds on randomized Leader Election/Approximate Counting.
When time is not too constrained (suppose the budget is no(1)), the Sender-CD and Receiver-CD
protocols have energy complexity O(log∗ n) and O(log(log∗ n)). Our protocols naturally adapt to
any time bound that is Ω(log2 n), where the energy complexity gradually increases as we approach
this lower limit. See Table 1. These protocols are randomized (and do not assume distinct IDs);
nonetheless, they use the deterministic α(N) dense Leader Election/Census algorithm of Section 5.

2 Deterministic Lower Bounds

In this section we prove deterministic lower bounds on the Successful Communication problem, which
is no harder than Leader Election. The goal is to have some time slot where exactly one device sends
a message while at least one device listens. Once successful communication occurs the algorithm is
terminated on all devices. We focus on the special case when n = 2, both devices know n = 2, but
not the ID of the other device. Since Strong-CD and Sender-CD models are the same when n = 2,
our lower bound applies to both.

We first address the case of non-adaptive algorithms, where the actions of a device are solely
a function of its ID, not the signals it receives by transmitting/listening to the channel. We then
extend the proof technique to the more general adaptive case.

Theorem 2.1. The energy cost of a non-adaptive Leader Election algorithm is Ω(logN), even when
n = 2.

Proof. Let τ = τ(N) be the running time of a non-adaptive algorithm for Successful Communication.
This algorithm can be encoded by a table in the set {T, L, I}τ×N ; see Figure 1a. The (j, i)-th entry
of the table is the action (transmit, listen, or idle) made by the device with ID i at time j. The
energy cost of device i, denoted Ei, is the number of T or L entries in the ith column. The two
active devices must successfully communicate in some time slot. If their IDs are α and β, there

4

T

L

I

T L

1 N

1

τ

· · ·

. . .
. . .

...

α β
IDs

Time

(a)

T

LI

...

1

τ

...Time





success noise

silence

I

T

...

T L

Tα Tβ

(b)

Figure 1: (a) The non-adaptive action table. Any two columns must have a corre-
sponded pair of T and L. (b) Two binary decision trees Tα and Tβ in the adaptive case.
There is a corresponded pair of T and L in the two trees with the same left-right path
from the roots.

must be a row in the table where the entries of the αth and the βth columns contain one T and
one L.

We now prove that maxiEi ≥ logN . The proof is inspired by Katona and Szemerédi’s [31]
lower bound of the biclique covering problem. Encode the ith column as a binary string of length τ
by replacing T with 0, L with 1, and I with either 0 or 1. There are clearly 2τ−Ei possible encodings
for column i. Since every pair of columns must have a row where they contain T and L, no binary
string is an eligible encoding of two distinct columns. Since there are 2τ possible encodings, we
have:

N∑

i=1

2τ−Ei ≤ 2τ , which implies that

N∑

i=1

1

2Ei
≤ 1.

The convexity of f(x) = 1/2x implies
∑

iEi ≥ N logN . So the energy cost of the algorithm is
Ω(logN), even on average.

Theorem 2.2. The energy cost of a deterministic Leader Election is Ω(log logN) in the Strong-CD
and Sender-CD models, even when n = 2.

Proof. Suppose we have an algorithm for Successful Communication running in τ time. Fixing
n = 2, we represent the behavior of the algorithm on the device with ID i as a binary decision tree
Ti. Each node in Ti is labeled with an action in {T, L, I}. An I (idle) node has one left child and no
right child; a T (transmit) node has two children, a left one indicating collision-free transmisssion
and a right one indicating a collision. An L node has two children, a left one indicating silence and
a right one indicating the transmission of some message (and the termination of the algorithm).

The left-right ordering of children is meaningless but essential to making the following arguments
work. Suppose that we run the algorithm on devices with IDs α and β, and halt the algorithm at
the first time t in which successful communication occurs. We claim the paths taken through Tα
and Tβ are encoded by the same sequence of t − 1 left/right turns. At any time slot before t the
possible actions performed by {α, β} are {I, I}, {I, T}, {I, L}, {L,L}, {T, T}. In all cases, both α
and β branch to the left, except for {T, T}, in which case they both branch right. At time t the
actions are {T, L} and it is only here that they branch in opposite directions. See Figure 1b.

5

To encode Ti as a bit-string we extend it to a full binary tree of depth τ : add a dummy right
child to every I-node, and repeatedly add two dummy children to any leaf at depth less than τ .
The right child of an L-node is considered a dummy. The number of nodes in Ti is now 2τ − 1.
We encode Ti as a bit-string of length 2τ − 1 by listing the nodes in any fixed order (say preorder),
mapping each T -node to 0, L-node to 1, and each I-node or dummy node to either 0 or 1. Since
any α, β must engage in successful communication, there must be a position in the full binary tree
that is a T -node in Tα and an L-node in Tβ or vice versa. Hence no bit-string is an eligible encoding
of two distinct Tα, Tβ. If device i spends energy Ei, then the number of T or L nodes in Ti is at

most 2Ei − 1 and therefore Ti has 2(2τ−1)−(2Ei−1) possible encodings. Thus,

N∑

i=1

2(2τ−1)−(2Ei−1) ≤ 22τ−1 which implies that

N∑

i=1

1

22Ei−1
≤ 1.

The convexity of f(x) = 1/22x−1 implies
∑

iEi ≥ N log(logN + 1), so the energy cost of the
algorithm is Ω(log logN), even on average.

Notice that in the decision trees above, only transmitting nodes are able to branch before
the algorithm halts with a successful communication. In the No-CD model, however, transmitters
receives no feedback. In this case, no branching is possible before the first successful communication
and the problem reduces to the non-adaptive case. Therefore we also obtain an Ω(logN) lower
bound for Leader Election in the No-CD model, which matches the trivial upper bound, and an
earlier lower bound of [27]. The lower bound also applies to the stronger Receiver-CD model since
when n = 2, the Receiver-CD model is the same as No-CD.

Corollary 2.3. The energy cost of Leader Election is Θ(logN) in the No-CD and Receiver-CD
models, even when n = 2.

3 Randomized Lower Bounds

In this section we prove energy lower bounds of randomized algorithms for Approximate Counting.
Our lower bounds hold even in the scenario where the devices in a failed execution may consume
unbounded energy and never halt.

Theorem 3.1. The energy cost of a polynomial time Approximate Counting algorithm with failure
probability 1/n is Ω(log∗ n) in the Sender-CD model.

Theorem 3.2. The energy cost of a polynomial time Approximate Counting algorithm with failure
probability 1/n is Ω(log(log∗ n)) in the Strong-CD model.

Since No-CD is strictly weaker than Sender-CD, the Ω(log∗ n) lower bound also applies to No-CD.
Similarly, the Ω(log(log∗ n)) lower bound applies to Receiver-CD.

3.1 Randomized Decision Trees

The process of a device s interacting with the network at time slot t has two phases. During the
first phase (action performing phase), s decides on its action, and if this action is to transmit, then
s chooses a message m ∈M and transmits m. During the second phase (message receiving phase),

6

if s chose to listen or transmit during the first phase, then s hears the signal (depending on the
model) which depends on the transmissions occurring at this time slot. The phases partition the
timeline into layers. We write layer t to denote the time right before the first phase of time slot
t, and layer t + 0.5 to denote the time right before the second phase of time slot t. The choice of
the message space M is irrelevant to our lower bound proof. The cardinality of M may be finite
or infinite.

For a device s, the state of s at layer t includes the ordered list of actions taken by s and
signals received from the channel until layer t. Layer 1 consists of only the initial state, which is
the common state of all devices before the execution of an algorithm.

Our lower bounds are proved using a single decision tree T of unbounded branching factor (if
|M| is unbounded). A special directed acyclic graph (DAG) G is defined to capture the behaviour
of any randomized algorithm, and then the decision tree T is constructed by “short-cutting” some
paths in G.

The DAG G. The set of all nodes in G represent all possible states of a device during the execution
of any algorithm. Similarly, the set of all arcs represent all legal transitions between states during
the execution of any algorithm. Therefore each arc connects only nodes in adjacent layers, and the
root of G is the initial state.

Let t ∈ Z+. A transition from a state u in layer t to a state v in layer t + 0.5 corresponds to
one of the possible |M| + 2 actions that can be performed in the first phase of time slot t. The
transitions from a state u in layer t+ 0.5 to a state v in layer t+ 1 are more involved. Based on the
action performed in the first phase of time slot t that leads to the state u, there are three cases:

• If the action is idle, then u has one outgoing arc corresponding to doing nothing.

• If the action is listen, then u has |M|+ 2 outgoing arcs in the Strong-CD model (or |M|+ 1
in the Sender-CD model), corresponding to all possible messages that can be heard.

• If the action is transmit, then u has two outgoing arcs. The first (second) outgoing arc
corresponds to the message transmission succeeding (failing). If a failure took place, then no
other device knows which message was sent by the device, and so the content of this message
is irrelevant. Thus, all states u in layer t + 0.5 that correspond to the action transmit and
share the same parent have the same child node in layer t + 1 corresponding to a failure in
transmitting the message. Notice that the arcs corresponding to failed transmissions are what
make G a DAG and not a tree.

Embedding an algorithm. Any algorithm can be embedded into G. An algorithm A is embed-
ded into G as follows. First of all, appropriate states, depending on A, are designated as terminal
states. Without loss of generality, we require that any terminal state must be in layer t for some
t ∈ Z+. Each terminal state is associated with a specific output for the problem at hand. A device
entering a terminal state u terminates with the output associated with the state u. Any randomized
algorithm is completely described by designating the terminal states together with their outputs,
and specifying the transition probabilities from states in layer t to states in layer t + 0.5 for all
t ∈ Z+. We require that the transition probabilities of all transitions from a given state in layer t
sum up to 1.

7

The randomized decision tree T . The tree T is derived from G as follows. The set of nodes
of T is the set of nodes in G that are in layer t such that t ∈ Z+. For any two states u in layer
t ∈ Z+ and v in layer t+ 1 that are linked by a directed path, there is a transition from u to v in
T . It is straightforward to see that T is a rooted tree. See Figure 2 for an illustration of both G
and T in the Strong-CD model withM = {m1, . . . ,mk}.2 For a state u in layer t ∈ Z+, and for an
action x ∈ {idle, listen, transmit}, we write pu x to denote the probability that a device belonging
to u chooses to do the action x in the first phase of time slot t.

…

Receive 𝑚1 … 𝑚𝑘 Receive 𝜆𝑆 Receive 𝜆𝑁

ListenIdle

…

Transmit 𝑚1 … 𝑚𝑘

…

Receive 𝜆𝑁Receive 𝑚1 … 𝑚𝑘

Layer 𝑡

Layer 𝑡 + 0.5

Layer 𝑡 + 1

Layer 𝑡

Layer 𝑡 + 1 …

Receive 𝑚1 … 𝑚𝑘 Receive 𝜆𝑆
…

Receive 𝜆𝑁Receive 𝑚1 … 𝑚𝑘

Listen at time slot 𝑡 Transmit at time slot 𝑡Idle at time slot 𝑡

Receive 𝜆𝑁

Figure 2: Upper: a portion of G. Lower: the corresponding portion in T .

Time and energy complexity. An execution of an algorithm for a device is completely described
by a directed path (u1, u2, . . . , uk) in T such that ut is in time slot t for each 1 ≤ t ≤ k, and uk is
the only terminal state. The runtime of the device is k. The amount of energy the device spends is
the number of transitions corresponding to listen or transmit in (u1, u2, . . . , uk). The time (energy)
of an execution of an algorithm is the maximum time (energy) spent by any device.

3.2 Lower Bound in the Sender-CD Model

Let A be any T (n) time algorithm for Approximate Counting in the Sender-CD model with failure
probability at most 1/n. We assume that T (n) ≥ n throughout the section.3 An energy lower
bound of A is shown by carefully selecting a sequence of network sizes {ni} with checkpoints {di}
such that di < ni ≤ T (ni) < di+1.

There are two main components in the lower bound proof. The first component is to demonstrate
that, with probability 1 − 1/poly(ni), no message is successfully transmitted before time di when

2Notice that in the Strong-CD model, a device transmitting a message mi to the channel at a time slot must not
hear λS in the same time slot. If the transmission is successful, it hears the message mi; otherwise it hears λN .

3The following simple fix increases the runtime of any Approximate Counting algorithm to T (n) ≥ n without
affecting the energy cost. Suppose that the estimate ñ all devices agree on is within a multiplicative factor c ≥ 1 of
n. After a device decides its estimate ñ, let it remains idle for c · ñ additional time slots before it terminates.

8

running A on ni devices (that is, every transmission ends in a collision). This limits the amount
of information that could be learned from a device, as the only thing a device can learn at a given
time slot is whether there are zero or at least two devices trying to transmit some message to the
channel. The second component is to prove that, for j > i, in order for a device to have enough
information to distinguish between ni and nj within T (ni) < di+1 time slots, that device must use
at least one unit of energy within time interval [di, di+1 − 1]. Intuitively, this is because a device
only gains information from either listen or transmit.

Truncated decision tree. The no-communication tree Tno-comm is defined as the subtree of T
induced by the set of all states u such that no transition in the path from the root to u corresponds
to receiving a message inM. In other words, Tno-comm contains exactly the states whose execution
history contains no successful communication. Notice that in Sender-CD each state in Tno-comm

has exactly three children, and the three children correspond to the following three pairs of action
performed and message received: (transmit, λS), (listen, λS), and (idle,N/A). For each state u at
layer t of the tree Tno-comm, we define the probability estimate pu inductively as follows. If u is the
root, pu = 1; otherwise pu = pv · pv x, where v is the parent of u, and x is the action performed
at time slot t − 1 that leads to the state u. Intuitively, if no message is successfully sent in an
execution of A, the proportion of devices entering u is concentrated around pu, given that pu is
high enough. See Figure 3 for an illustration of no-communication tree Tno-comm and probability
estimates in the Sender-CD model.

Layer 𝑡

Layer 𝑡 + 1 …

Receive 𝜆𝑆

…

Receive 𝜆𝑆Receive 𝑚1 … 𝑚𝑘

Listen at time slot 𝑡 Transmit at time slot 𝑡Idle at time slot 𝑡

Layer 𝑡

Layer 𝑡 + 1

𝑝𝑥 = 𝑝𝑣 ∙ 𝑝𝑣↝idle

Receive 𝑚1 … 𝑚𝑘

𝑣

𝑥 𝑦 𝑧

(Idle, N/A) (Listen, 𝜆𝑆) (Transmit, 𝜆𝑆)

𝑝𝑦 = 𝑝𝑣 ∙ 𝑝𝑣↝listen 𝑝𝑧 = 𝑝𝑣 ∙ 𝑝𝑣↝transmit

𝑣

𝑦 𝑧𝑥

Figure 3: Upper: a portion of the tree T . Lower: the corresponding portion in the
no-communication tree Tno-comm.

Checkpoints di and network sizes ni. Given the runtime constraint T (n), we define an infinite
sequence of checkpoints as follows: d1 is a large enough constant to be determined; for all i > 1,

di = T

(
222

2
di−1

)
.

9

Lemma 3.3. For each index i, there exists a network size ni with 22di < ni < 222
2di

such that for
each state u ∈ Tno-comm at layer at most di, either pu ≤ ni−10 or pu ≥ ni−1/10.

Proof. Define m1 = 22di + 1; for 1 < k ≤ 3di , define mk = mk−1
100 + 1. It is straightforward to see

that 22di < m1 < m2 < . . . < m3di < 222
2di

, as long as di is at least a large enough constant. For
each state u ∈ Tno-comm at layer at most di, there exists at most one mk with mk

−10 < pu < mk
−1/10.

Recall that Tno-comm has branching factor 3, and hence the number of states up to layer di is less
than 3di . By the pigeonhole principle, among the 3di distinct integers m1,m2, . . ., there exists
one integer ni such that, for each state u ∈ Tno-comm at layer at most di, either pu ≤ ni

−10 or
pu ≥ ni−1/10.

For each index i, ni is chosen to meet the statement of Lemma 3.3, and the first checkpoint d1 is
chosen to be a large enough number such that ni and ni+1 are not within a constant approximation.
We define Ti as the subtree of Tno-comm that consists of all states u up to layer di such that
pu ≥ ni

−1/10. Notice that Ti ⊆ Ti+1 for all i. For an execution of A on ni devices, we write Pi to
denote the event where for each state u in layer 1 ≤ t ≤ di of the decision tree T , the number of
devices entering u is within ni · pu ± t · ni0.6 if u is in layer t of Ti, and is 0 if u /∈ Ti.

Lemma 3.4. Let t ≤ di, and let v be a state in layer t − 1 of Ti such that the number of devices
entering v is within ni · pv ± (t − 1) · ni0.6, and let x be an action in {transmit, listen, idle}. With
probability 1−O(ni

−9), the number of devices that are in state v at time t− 1 and perform action
x at time t − 1 is (i) within ni · pv · pv x ± t · ni0.6 when pv · pv x ≥ ni

−1/10, or is (ii) zero when
pv · pv x ≤ ni−10.

Proof. Define m as the number of devices that are in state v at time t−1 and do action x at time t.
According to our choice of ni, for each state u ∈ Tno-comm at layer at most di, either pu ≤ ni−10 or
pu ≥ ni−1/10. Since pv · pv x = pu for some u ∈ Tno-comm at layer at most di, we have the following
two cases:

• Case 1: ni
−10 ≥ pv · pv x. We have pv x ≤ ni

−10/pv ≤ ni
−9.9, and we have E[m] ≤(

ni · pv + (t− 1) · ni0.6
)
· pv x ≤ ni−9 + (t− 1) · ni0.6 · pv x ≤ ni−9 + (t− 1) · ni−9.3 < 2ni

−9

(recall that t ≤ di < log log ni). By Markov’s inequality, m = 0 with probability ≥ 1− 2ni
−9.

• Case 2: pv · pv x ≥ ni
−1/10. The value of E[m] is within pv x · (ni · pv ± (t − 1) · ni0.6),

which is within the range ni · pv · pv x± (t− 1) · ni0.6. Let δ = ni
−0.4/2. Notice that we have

δ · E[m] < ni
0.6 and E[m] > ni

0.9/2. Meanwhile, each device in the state v decides which
action to perform next independently. By Chernoff bound, the probability that m is within
1±δ fraction of E[m] is at least 1−2 exp(−δ2 ·E[m]/3) ≥ 1−2 exp(−(ni

−0.4/2)2 ·(ni0.9/2)/3) >
1−O(ni

−9). Therefore, with such probability, m is in the range E[m](1± δ), which is within
ni · pv · pv x ± t · ni0.6.

Lemma 3.5. For an execution of A on ni devices, Pi holds with probability at least 1− ni−7.

Proof. For the base case of t = 1, it is straightforward to see that Pi holds for the initial state. For
each 1 < t ≤ di, assuming Pi holds for all states at layer t− 1, then we show that Pi holds for all
states at layer t with probability at least 1−O(ni

−8).

10

That Pi holds for all states at layer t − 1 guarantees that for each state v in layer t − 1 of Ti,
the number of devices entering v is within ni · pv ± (t− 1) · ni0.6. By the union bound on at most
3t−1 choices of v and 3 choices of x, the statement of Lemma 3.4 holds for all choices of v and x
with probability at least 1−

(
3t
)
·O(ni

−9) ≥ 1−O(ni
−8) (recall that t < log log ni). This implies

that the number of devices transmitting at time t− 1 is either 0 or at least ni
0.9− t ·ni0.6 > 1, and

hence no message is successfully sent by the layer t (i.e. right before the time slot t). Therefore, at
layer t, all devices are confined in states within Tno-comm. Let u be the child of v in Tno-comm such
that the action leading to u is x. By the choice of ni, u ∈ Ti implies that pu = pv · pv x ≥ ni−1/10;
and u /∈ Ti implies that pu = pv · pv x ≤ ni−10. Therefore, assuming Pi holds for all states at layer
t− 1, Lemma 3.4 guarantees that, with probability at least 1−O(ni

−8), Pt holds for all states at
layer t.

By the union bound on all t ∈ {1, . . . , di}, Pi holds with probability at least 1 − ni−7. Notice
that di < log logni.

We claim that Tno-comm has no terminal state u with pu 6= 0. Suppose that u ∈ Tno-comm is a
terminal state with pu 6= 0. Then there exists an index i such that for all j ≥ i, u ∈ Tj . Among all
{nj}j≥i, the decision of u is a correct estimate of at most one nj (recall that any two network sizes
in {nj}j≥1 are not within a constant factor of each other). Therefore, the adversary can choose one
network size nj′ from {nj}j≥i such that when A is executed on nj′ devices, any device entering u
gives a wrong estimate of nj′ . By Lemma 3.5, with probability 1− nj′−7 > 1/nj′ , there is a device
entering u, and hence the algorithm fails with probability higher than 1/nj′ , a contradiction.

Forcing energy expenditure. Let pidle be the probability for a device entering a state u in layer
di of Ti to be idle throughout the time interval [di, di+1 − 1]. For a device s to correctly give an
estimate of network size ni within the time constraint T (ni) < di+1, the device s must successfully
hear some message m ∈ M. Recall that Tno-comm has no terminal state u with pu 6= 0, and hence
a device must leave the tree Tno-comm before it terminates. If Pi holds, then one unit of energy
expenditure in the time interval [di, di+1− 1] is required for any device s in a state in layer di of Ti.
Therefore, for all devices to terminate by time T (ni) with probability at least 1− 1/ni when A is

executed on ni devices, we need 1/ni ≥ Pr[Pi] ·pidle, and this implies pidle < 2/ni ≤ 2 ·2−2di < 2−di .
In other words, for any device in a state in layer di of Ti, the device spends at least one unit of
energy in the time interval [di, di+1 − 1] with probability at least 1− pidle > 1− 2−di .

The lower bound. Consider an execution of A on ni devices, and let s be any one of the ni
devices. Let j ∈ {1, . . . , i}. We claim that, given that Pi holds, with probability 1 − 2 · 2−dj the
device s spends at least one unit of energy in the interval [dj , dj+1 − 1].

• First, we show that the probability that s enters a state in layer dj of Tj is at least 1− 2−dj .
Recall that Tj is a subtree of Ti. By definition, if u is a state in layer dj but not belongs to
Tj , then pu < nj

−1/10. Therefore, the proportion of the devices that do not enter a state in
layer dj of Tj is at most 1

ni

(
ni · nj−1/10 + dj · ni0.6

)
· 3dj =

(
nj
−1/10 + dj · ni−0.4

)
· 3dj < 2−dj .

• Second, as argued in the above paragraph, a device that enters a state in layer dj of Tj spends
at least one unit of energy in the time interval [dj , dj+1 − 1] with probability 1− 2−dj .

Therefore, the claim is concluded.

11

By the union bound on j = 1, . . . , i, the probability that the device s spends at least one unit
of energy in each of the intervals [dj , dj+1−1], 1 ≤ j ≤ i, is at least Pr[Pi]−2

∑i
j=1 2−dj > 1/2 (we

choose d1 to be a large enough number to make the inequality hold). We conclude the theorem.

Theorem 3.6. For any i ≥ 1, there exists a network size n with di + 1 ≤ n ≤ di+1 such that if A
is executed on n devices, for any device s, with probability at least 1/2 the device s spends at least
one unit of energy in each of the time intervals [dj , . . . , dj+1 − 1], 1 ≤ j ≤ i.

As long as T (n) = O
(

α︷ ︸︸ ︷
22···

2n)
for a constant α, the energy cost of Approximate Counting in

the Sender-CD model is Ω(log∗ n). Our lower bound proof naturally offers a time-energy tradeoff.
For example, the lower bound generalizes to higher time constraints as follows. For any function
g(n) ≤ log n, under time constraint T (n) = g−1(n), the energy cost is Ω(g∗(n)).

3.3 Lower Bound in the Strong-CD Model

Let A be any T (n) time algorithm for Approximate Counting in the Strong-CD model with failure
probability at most 1/n. Similar to the Section 3.2, we construct a sequence of network sizes {ni}
with checkpoints {di} such di < ni ≤ T (ni) < di+1. Each pair (ni, di) is associated with a truncated
decision tree Ti such that with probability 1 − 1/poly(ni) the execution history of all devices are
confined in Ti when running A on ni devices by time di. Due to the capability of differentiating
between silence and noise in the Strong-CD model, a device is able to perform a binary search on a
set of candidate network sizes {ni}1≤i≤k, which costs only O(log k) unit of energy. In comparison,
in the Sender-CD model O(k) energy consumption is needed in the worst case. In the lower bound
proof, we construct a path P in Tno-comm which captures the worst case scenario of the binary
search, and we will see that the energy consumption of a device whose execution history follows
the path P is Ω(log(log∗ n)).

Checkpoints di, network sizes ni, and subtrees Ti. The definitions of no-communication
tree Tno-comm and probability estimate pu are the same as in the previous section. However, notice
that in the Strong-CD model each state in Tno-comm has exactly four children, corresponding to all
valid combinations of {λS , λN} and {transmit, listen, idle}: (transmit, λN), (listen, λS), (listen, λN),
and (idle,N/A). Notice that a device transmitting a message never hear silence in the Strong-CD
model. The definition of the checkpoints di and how we select the network sizes ni are also the
same as in the previous section.

For an index i, the subtree Ti, along with the sequence {mi,t}1≤t≤di−1 indicating noise/silence
of the channel at time slot t, is defined inductively as follows. Initially Ti consists of the initial
state (the base case of t = 1). For each 1 < t ≤ di, suppose that Ti has been defined up to layer
t− 1. If there exists a state v in layer t− 1 of Ti with pv · pv transmit ≥ ni−1/10, define mi,t−1 = λN ;
otherwise define mi,t−1 = λS . A state u in layer t that is a child of a state in Ti is added to the
subtree Ti if the following two conditions are met:

• The probability estimate of u is high: pu ≥ ni−1/10.

• Either the action performed in the first phase of time slot t − 1 that leads to the state u is
idle, or the message received in the second phase of time slot t − 1 that leads to the state u
is mi,t−1.

12

Observe that all states in Ti are confined to layer at most di, and each state in Ti that is not a leaf
has 3 children, corresponding to the three actions.

Similar to the previous section, for an execution of A on ni devices, we write Pi to denote the
event that for each state u in layer 1 ≤ t ≤ di of the decision tree T , the number of devices entering
u is within ni · pu ± t · ni0.6 if u is in layer t of Ti, and is 0 if u /∈ Ti.

Lemma 3.7. For an execution of A on ni devices, Pi holds with probability at least 1− ni−7.

Proof. This is essentially the same as the proof of Lemma 3.5.

High energy path and active indices. Observe that, unlike the Sender-CD model, we do not
have T1 ⊆ T2 ⊆ Therefore, to obtain a lower bound, a new technique is needed. Let k ≥ 3 be
an integer. Among {ni}1≤i≤k, our goal is to find an index î such that for an execution of A on nî
devices, with probability 1−1/poly(nî) there exists a device that uses Ω(log k) unit of energy. This
is achieved by constructing a high energy path P = (u1, u2, . . . , ut̂), along with a sequence of sets
of active indices {Kt}1≤t≤t̂ such that i ∈ Kt implies ut ∈ Ti. The path P is a directed path in the

tree Tno-comm, and ut belongs to layer t, for each t. The number t̂ will de chosen later. Intuitively,
any device entering the state ut is unable to distinguish between {ni}i∈Kt , and we will later see
that {1, . . . , k} = K1 ⊇ K2 ⊇

The path P is chosen to contain at least Ω(log k) transitions that corresponds to listen or
transmit. Therefore, by setting î as any index in Kt̂, we have ut̂ ∈ Tî, and hence t̂ ≤ dî. By
Lemma 3.7, in an execution of A on nî devices, with probability 1−nî−7 there is at least nî · put̂ −
t̂ · nî0.6 = Ω(nî

0.9) > 1 device entering the state ut̂, and such a device uses at least Ω(log k) unit of
energy.

One may attempt to construct the path P by a greedy algorithm which iteratively extends the
path by choosing the child state with the highest probability estimate. But this is insufficient to
warrant any energy expenditure in P . To force an energy expenditure in P , we make use of the
property that a state entering ut is unable to distinguish between the network sizes in {ni}i∈Kt
(recall that i ∈ Kt implies ut ∈ Ti). If i ∈ Kdi , the probability that a device s entering the state
udi remains idle in all the time slots {di, . . . , di+1 − 1} must be small. Notice that for an execution
of A to be successful, the device s needs to know whether the underlying network size is ni by the
time constraint T (ni) < dj+1. In light of the above, in our construction of P , a special update
rule, which ensures one energy expenditure in the time interval [di, di+1 − 1], is invoked when a
checkpoint di is met with i ∈ Kdi .

Formally, the high energy path P and the sequence of sets of active indices {Kt} are defined by
the following procedure: Initially P = (u1) contains only the initial state, and K1 = {1, 2, . . . , k}.
The following update rules are applied repeatedly until either a terminal state is reached or Kt = ∅.

Let the current P be (u1, u2, . . . , ut).

• Case “regular update”: t 6= di for all i ∈ Kt . Let x ∈ {transmit, listen, idle} be chosen to
maximize put x. If x = idle, append the child of ut that corresponds to being idle at time slot
t to the end of P , and set Kt+1 = Kt. Otherwise, let m ∈ {λS , λN} be chosen to maximize
the number of indices j ∈ Kt with mj,t = m, and append the child of ut that corresponds to
performing action x and receiving message m at time slot t to the end of P , and set Kt+1 to
the set of indices j ∈ Kt with mj,t = m.

13

• Case “special update”: t = di for some i ∈ Kt. Let t′ ∈ {di + 1, . . . , di+1} and x ∈
{transmit, listen} be chosen to maximize the probability for a device entering ut to remain idle
during all the time slots {t, . . . , t′− 2} and to perform x in time slot t′− 1. Let m ∈ {λS , λN}
be chosen to maximize the number of indices j ∈ Kt \ {i} with mj,t′−1 = m. We let ut′

be the unique descendant of ut resulting from applying t′ − t idle actions during time slots
t, . . . , t′ − 2, and then performing action x and receiving message m at time slot t′ − 1. The
path P is extended to have ut′ as the new end point. For each t′′ ∈ {t+ 1, . . . , t′}, we let Kt′′

to be the set of indices j ∈ Kt \ {i} with mj,t′−1 = m.

We select t̂ to be the largest number such that Kt̂ 6= ∅. See Figure 4 for an illustration of the
update rules. Notice that, in the special update, the reason i must be removed from the set of the
active indices is that Ti only contains states up to layer di.

Idle TransmitListen

Layer 𝑡

Layer 𝑡 + 1

Idle

Idle

Idle

Layer 𝑡 = 𝑑𝑖

Layer 𝑡 + 1

Layer 𝑑𝑖+1

⋮

Listen Transmit

Listen Transmit

Listen Transmit

⋮ ⋮
𝑝idle

𝑢𝑡 𝑢𝑡

Figure 4: Left: regular update. Right: special update. The shaded region indicates the
set of candidate endpoints to extend the current path P .

The lower bound. To obtain the desired lower bound, we need to show that (i) i ∈ Kt implies
ut ∈ Ti, and that (ii) the energy cost of the path P is Ω(log k). To prove (i), we need to lower
bound the probability estimate of the states in P . We observe the following:

• In a regular update at time t, we have put+1 ≥ 1
3put .

• In a special update at time t = dj , we have put′ ≥
put

2·(dj+1−dj) (1− pidle) > put
2dj+1

(1− pidle),
where pidle is defined as the probability that a device entering the state udj is idle in all the
time slots {dj , . . . , dj+1 − 1}.

Lemma 3.8. For each i ∈ {1, . . . , k} and each t ∈ {1, . . . , t̂} such that i ∈ Kt, we have ut ∈ Ti.

Proof. Suppose that by induction hypothesis the statement of the lemma holds for all i′ ≤ i and

t′ ≤ t such that (i, t) 6= (i′, t′). Proving put ≥
(

22di
)−1/10

> ni
−1/10 suffices to guarantee that

ut ∈ Ti. Notice that the procedure constructing P and {Kt} guarantees that i ∈ Kt implies that
either (i) ut−1 is idle, or (ii) the message received at time slot t − 1 that leads to the state ut is
mi,t−1. Moreover, the special update implies that t ≤ di.

14

We claim that pidle <
2
nj
< 1/2. This implies that put′ ≥

put
4dj+1

in the special update at time

t = dj . Therefore, by the above two observations, we have:

put ≥ 3−t
arg maxj′{dj′<t}∏

j=1

1

4 · dj+1
= 3−di ·

(
1

4 · di

)i−1

>
(

22di
)−1/10

,

and hence the lemma holds (notice that arg maxj′
{
dj′ < t

}
= O(log∗ t), and also t ≤ di).

What remains to do is to prove that pidle < 2/nj when a special update is applied at time dj .
Let v be the state at time dj+1 that results from being idle in time slots {dj , . . . , dj+1 − 1} after
leaving the state udj . Since a special update is applied at time dj , we have j ∈ Kdj . Also, the fact
that i ∈ Kt guarantees i ∈ Kdj . Therefore, by induction hypothesis, udj belongs to both Ti and Tj .
Since dj < t ≤ di, i and j are distinct indices.

• If v does not give a correct estimate of nj , then we have 1/nj ≥ (1 − nj
−7) · pidle, since

otherwise Lemma 3.7 implies that with probability higher than 1/nj there is a device in the
state v when we execute A on nj devices, and such a device does not give a correct estimate
of nj by time T (nj) < dj+1.

• Otherwise, the devices entering the state v have made a decision, and such a decision is not
a correct estimate of ni. Similarly we need to have 1/ni ≥ (1− ni−7) · pidle.

As a result, pidle ≤ 1
nj ·(1−nj−7)

< 2
nj

.

To lower bound the energy cost of P , we observe the following:

• In a regular update at time t, either (i) |Kt+1| = |Kt|, or (ii) |Kt+1| ≥ |Kt|/2, and there is
one unit of energy expenditure at time slot t.

• In a special update at time t = dj , for each t′′ ∈ {t + 1, . . . , t′}, |Kt′′ | ≥ (|Kt| − 1) /2, and
there is one unit of energy expenditure at time slot t′ − 1.

Therefore, the total energy expenditure in the path P = (u1, . . . , ut̂) is Ω(log |K1| − log |Kt̂|). As
long as |Kt̂| ≤ 2, the energy cost is at least Ω(log k) (recall that |K1| = k). The only possibility to
cause |Kt̂| > 2 is that ut̂ is a terminal state, and so no more update rule can be applied to extend
the path P any further. However, by Lemma 3.8, ut̂ ∈ Ti for each i ∈ Kt̂, and hence Lemma 3.7
guarantees that, with probability 1 − ni−7, there is a device s that enters ut̂ when A is executed
on ni devices. If ut̂ is a terminal state, then there must exist some i ∈ Kt̂ such that s gives an
incorrect estimate of ni. Therefore, |Kt̂| ≤ 2, and we conclude the theorem.

Theorem 3.9. Let k ≥ 3 be any integer. Then there exists a network size n with d1 ≤ n ≤ dk+1

such that if A is executed on n devices, with probability at least 1− n−7 there exists a device s that
uses Ω(log k) units of energy.

As long as T (n) = O
(

α︷ ︸︸ ︷
22···

2n)
for a constant α and T (n) ≥ n, the energy cost of Approximate

Counting in the Sender-CD model is Ω(log(log∗ n)). Similarly, the lower bound generalizes to higher
time constraints as follows: For any function g(n) ≤ log n, under time constraint T (n) = g−1(n),
the energy cost is Ω(log(g∗(n))).

15

3.4 Lower Bound for Other Problems

In this section we demonstrate how our lower bounds proofs can be adapted to Leader Election and
contention resolution. First of all, observe that for both Leader Election and contention resolution,
before a device terminates, it must successfully transmit or listen once. Let A be an algorithm
for Leader Election or contention resolution. Suppose that the underlying model is Sender-CD, by
Lemma 3.5, with probability at least 1− ni−7, the runtime of all devices in an execution of A is at
least di and is at most T (ni) < di+1. Therefore, the runtime of a device can be seen as a very loose
estimate of the network size.

Now we relax the criteria of Approximate Counting by considering any estimate di ≤ ñ < di+1

as a correct estimate of ni, and we also allow different devices to have different estimates. Then A
actually solves such a relaxed version of Approximate Counting with high probability when n = ni for
some i. Since one estimate ñ only works for at most one ni, the lower bound proof for Theorem 3.1
still applies in such a relaxed setting4, and hence the same lower bound applies to both Leader
Election and contention resolution. Similarly, Theorem 3.2 applies to these two problems.

4 Deterministic Algorithms for Leader Election and Census

In this section we prove a tight upper bound on the deterministic energy complexity of Leader
Election in Sender-CD, and also prove a nearly tight upper bound on Census. Our algorithms are
inspired by the energy-sharing technique of Jurdzinski et al. [25].

Theorem 4.1. There exists a deterministic Sender-CD algorithm that solves Leader Election in
O(N) time with energy O(log logN).

Theorem 4.2. There exists a deterministic Sender-CD algorithm that solves Census in O(N) time
with energy O(log2 logN).

4.1 Groups in Deterministic Algorithms

We first introduce the concept of groups, which will be used by our deterministic algorithms. A
group is an ordered list (s0, s1, . . . , sk−1) of active device IDs and each device is in at most one
group. The group containing a device si is denoted G = G(si) and its rank is r(si) = i. The size of
the group is |G| = k. The representative device s0 is called the master of G, denoted m(G). Each
group has a unique group ID, and each device si knows the group ID of G(si), m(G(si)), |G(si)|
and r(si).

The notion of groups already breaks symmetry: if an algorithm outputs a single group, the
current master of this group can be considered the leader. To solve the more difficult Census
problem, we formalize the information known by a device s as a set I(s) maintained by s.

Definition 4.1. A group G is centralized if I(m(G)) =
⋃
s∈G I(s).

Notice that, by initializing I(s) = {s} for each active device ID s, the Census problem is solved
when there is one device collecting {I(s)}s over all active IDs s.

4Also observe that our lower bounds work for estimating log∗ n within a constant additive error.

16

4.2 A Simple Census/Leader Election Algorithm

In this section we show how to leverage the notion of groups in order to distribute energy costs,
by presenting a simple deterministic Census algorithm SimpleCensus(N̂). Prior to executing the
algorithm, it is guaranteed that the devices are partitioned into centralized groups with group ID
space [N̂], and each group has size larger than log N̂ . After the execution of SimpleCensus(N̂), one
device s of rank h = dlog N̂e identifies itself as the leader which collects all input information.

The algorithm SimpleCensus(N̂) is executed recursively. If N̂ = 1, the leader device is simply
the master of the only group. If N̂ > 1, the algorithm recursively calls SimpleCensus(dN̂/2e) two
times on the two halves of the ID space, respectively. Suppose the two leader devices of the two
recursive calls are s0 and s1, which both have rank h− 1 in their own groups.

In the final two time slots, s0 announces its group ID and I(s0), and s1 does likewise. Each
device with rank h in its group listens to these two slots. If s0 exists, the leader is the device in
G(s0) of rank h; if s0 does not exist and s1 exists, the leader is the device in G(s1) with rank h.
The leader device s then sets I(s)← I(s0) ∪ I(s1). Observe that any device listens to at most two
time slots and transmits in at most one.

Theorem 4.3. The algorithm SimpleCensus(N̂) successfully assigns a leader device s in O(N̂) time,
where I(s) contains

⋃
G I(m(G)) for every group G. Moreover, in each group G, devices with ranks

0, 1, . . . , dlog N̂e spend constant energy and all others spend zero energy.

The algorithm SimpleCensus(N) solves Census and Leader Election efficiently, and the strategy
behind our proofs of Theorem 4.1 and Theorem 4.2 is to merge the devices into groups to dlogNe,
so that an application of SimpleCensus(N) solves the problem.

4.3 An O(log logN) Leader Election Algorithm

In this section we prove Theorem 4.1. Without loss of generality, we assume logN is an integer.
Our algorithm consists of log logN phases. All devices participate initially and may drop out in
the middle of the algorithm. We maintain the following invariants:

1. At the beginning of the i-th phase, all participating devices are organized into active groups
of size exactly 2i.

2. The number of active groups is at least one.

At the beginning of Phase 0, each device forms a singleton group. During each phase, some pairs of
groups are merged into groups of doubled size; the devices in the unmerged groups are terminated.
There are two possible outcomes of our algorithm.

• After Phase i there is only one active group G remaining, for some i ≤ log logN − 1. Then
the algorithm is terminated at Phase i with the master of G being the leader.

• More than one active group remains after Phase log logN − 1. As the groups that survive
until the end have size logN , a leader can be elected by applying SimpleCensus(N).

Intuitively, in Phase i of our algorithm, each active group attempts to find another active group
to merge into a group with size 2i+1. All groups that are not merged during Phase i are terminated.
We will later see that the energy cost per active group is O(log logN). For each phase, there is a

17

representative in each group which is responsible for carrying out the procedure in this phase. At the
end of a phase the representative of a group announces their new group membership to other group
members. The energy cost in a phase for a device s is O(log logN) if s serves as a representative
in this phase, and is O(1) otherwise. We will later see that each device is responsible for no more
than 2 phases throughout the algorithm. Therefore, the total energy cost of the algorithm is

2 ·O(log logN) +

log logN−1∑

i=0

O(1) = O(log logN).

In the subsequent discussion we focus on describing and analyzing one phase of the algorithm,
which is based on the procedure DetLE(N̂). Prior to executing the procedure DetLE(N̂), it is
guaranteed that the devices are partitioned into centralized groups with group ID space [N̂], each
group has the same size, and the number of groups is at least 2. By the end of the execution, each
group has either dropped out or merged with another group. The procedure DetLE(N̂) is defined
recursively as follows.

Base Case. There are exactly two groups G0 and G1, and N̂ = 2. Using two time slots, the
representatives of the two groups exchange the information I(G0) and I(G1). Then the two
groups are merged.

Inductive Step. Uniformly divide the group ID space [N̂] into N̂ ′ = d
√
N̂e intervals. For each

j ∈ [N̂ ′], if there are at least two groups whose ID belongs to the j-th interval of N̂ ′ IDs (this
can be checked in one time slot), recursively call DetLE(N̂ ′) on the j-th interval of N̂ ′ IDs.
Each group that does not participate in any recursive call change its ID from d to bd/N̂ ′c. If
the number of remaining groups is at least two (again, this can be checked in one time slot),
then call DetLE(N̂ ′) on these groups.

By initially assigning each active group G the group ID mins∈G ID(s), an execution of DetLE(N)
fulfills the task of one phase of our algorithm. The inductive step guarantees that (i) each recursive
call invoked has at least two groups participating, and (ii) as long as the number of active groups is
at least 2, at least one recursive call is invoked. Therefore, given that the number of active groups
is at least 2 in the beginning of a phase, we must reach the base case and have two groups merged.

Let E(N) (T (N)) denote the energy complexity (time complexity) of DetLE(N). Since each rep-

resentative is involved in at most one recursive call of DetLE(d
√
N̂e), we have E(N̂) = E(d

√
N̂e)+

O(1). Hence the energy cost is O(log logN). Similarly, since DetLE(N) invokes at most d
√
N̂e+ 1

recursive calls of DetLE(d
√
N̂e), we have T (N̂) = (d

√
N̂e+ 1) · T (d

√
N̂e) +O(d

√
N̂e). Hence the

runtime is O(N).

Energy Sharing. As mentioned earlier, in order to save energy, only the representatives of the
groups participate in the procedure of each phase. For Phase i (i > 0), the device with rank 2i−1−1
in group G will be selected as the representative of G. It is straightforward to verify that, after
Phase 0, each device s serves as a representative for at most one time.

We allocate N extra time slots after each phase to let the representatives announce their new
group membership to other group members. Let G and G′ be two groups that are merged in phase
i, and let s (s′) be the representative of the group G (G′) in phase i. If the ID of the group G

18

(G′) is g (g′), then s (s′) announces the ID of the merged group G ∪ G′ to all other members in
G (G′) at the g-th (g′-th) time slot. Each device in the merged group then recomputes their new
ranks and updates the group size locally. The message size complexity is O(logN). Also, if G is
not successfully merged during phase i, the representative of G can also transmit to terminate all
devices in G.

Time complexity. Recall that there are O(log logN) phases during the execution of the algo-
rithm, each uses O(N) time slots, thus the total time complexity of the algorithm is O(N log logN).

The running time can be further reduced toO(N) by a preprocessing which uniformly divides the
ID space into N

log logN intervals and calls SimpleCensus(log logN) on every interval. Here the initial
group size is 1, and each device simulates log(log logN) devices in its group. The preprocessing
uses O(N) time and O(log log logN) = o(log logN) energy, and after that the leader devices from

the N
log logN intervals execute the algorithm in this section on the ID space

[
N

log logN

]
.

4.4 An O(log2 logN) Census Algorithm

In this section we prove Theorem 4.2. We describe the deterministic algorithm DetCensus(N̂ , l).
Prior to executing the algorithm DetCensus(N̂ , l), it is guaranteed that the devices are partitioned
into centralized groups with group ID space [N̂], and each group has the same size 2l. It is ensured
that the group size is always a power of 2 ranging from 20 to 2dlog logNe. After the execution, there
is one centralized group G?, which is the union of some input groups. Devices in G? all identify G?

as the leader group, and I(m(G?)) =
⋃
s I(s) for every device s in the input groups, even if s /∈ G?.

The algorithm is executed recursively. There are three base cases of the recursion.

Base Case 1. If l = dlog logNe, all the devices execute SimpleCensus(N̂) over the ID space [N̂].
The leader device s then transmits the group ID of G? = G(s) and all devices listen. Any
device not in G? halts.

Base Case 2. If l < dlog logNe, and there is only one group in the ID space, then the only group
is the leader group G?. In Sender-CD the devices can check whether they are in this case using
unit energy. In the first time slot the masters of each group transmit and all devices listen.

Base Case 3. If l < dlog logNe, N̂ = 2, and the two groups G0 and G1 both exist. In two time
slots, m(G0) and m(G1) transmit I(m(G0)) and I(m(G1)) and all devices in G0 and G1 listen.
Then the two groups are merged into a leader group G? = G0 ∪ G1 of size 2l+1, such that
m(G?) is the former m(G0). Every device s formerly in G1 sets r(s)← r(s) + 2l.

When the conditions for the above three base cases do not fit, the algorithm uses three phases,
where the first two are recursive:

Phase 1. Uniformly divide the group ID space [N̂] into N̂ ′ = d
√
N̂e intervals. For each j ∈ [N̂ ′],

recursively call DetCensus(N̂ ′, l) on the j-th interval of N̂ ′ IDs, and denote the leader group
by Gj which uses j as the new group ID. Notice that because of mergers, |Gj | varies from 2l

to 2dlog logNe.

Phase 2. For each k = l, l + 1, . . . , dlog logNe, recursively call DetCensus(N̂ ′, k) on the ID space
[N̂ ′], restricting the input groups to those among {Gj} with |Gj | = 2k. Denote the leader

19

group of this recursive call by G(k). Again, |G(k)| varies between 2k and 2dlog logNe. Let k0 be
the maximum index such that G(k0) exists. The goal of the next phase is to aggregate all the
information in G(k0) = G?.

Phase 3. This phase has only 2(dlog logNe − l) time slots, partitioned into 2 slots for each rank
k from dlog logNe − 1 to l, in decreasing order. In the first slot, if k0 > k, the device with
rank k in G(k0) transmits

⋃
k′>k I(m(G(k′))); all devices in G(k) listen and the device with

rank k − 1 in G(k0) listens. If k0 > k, the leader m(G(k)) transmits I(m(G(k))) in the second
slot, the device with rank k− 1 in G(k0) listens, and all devices in G(k) halt. If the first slot is
silent, devices in G(k) deduce that k0 = k. All members of G? = G(k0) listen to the two time
slots for rank l to learn

⋃
k I(m(G(k))).

To solve the Census problem, each device in the ID space [N] regards itself as a group of size
1, whose group ID is the same as the device ID, and then executes DetCensus(N, 0). Let T (N̂) be
the maximum running time of DetCensus(N̂ , l) over all l < dlog logNe. The function T (N̂) satisfies
the following recursive formula:

T (N̂) ≤ (
√
N̂ + log logN)T (

√
N̂) +O(

√
N̂) +O(log logN), T (0) = O(1).

The additiveO(
√
N̂) reflects the time for DetCensus(N̂ ′, dlog logNe) in Phase 2 and theO(log logN)

is the time for Phase 3. Let f(N) = (log logN)log log log logN+2. In Appendix A we prove that
T (N) = O(N · f(N)). The running time can be further reduced to O(N) by a preprocessing
which uniformly divides the ID space into N/f(N) intervals and calls SimpleCensus(f(N)) on every
interval, as what we have done in Section 4.3.

To analyze the energy cost of DetCensus, we make use of the following lemma, which is proved
by induction on N̂ .

Lemma 4.4. If l < dlog logNe, and the leader group of DetCensus(N̂ , l) has size 2l, it must have
halted in Base Case 2.

Let E(N̂ , l, k) be the maximum energy cost of a device s during the execution of DetCensus(N̂ , l)
which satisfies |G(s)| = 2k after the execution. Suppose s ∈ Gj after Phase 1 and |Gj | = 2k

′
for

some k′ ≥ l. The energy spent by s is E(N̂ ′, l, k′) + E(N̂ ′, k′, k) + c, for some c = O(1). Thus, E
satisfies the following inductive definition.

E(2, l, l + 1) = c Base Case 3

E(N̂ , l, l) = c Base Cases 1 and 2, N̂ > 2, l ≤ dlog logNe

E(N̂ , l, k) ≤ max
k′∈[l,k]

(
E(d

√
N̂e, l, k′)+E(d

√
N̂e, k′, k) + c

)
If N̂ > 2, k > l, l < dlog logNe

The bound on E(N̂ , l, l) follows from Lemma 4.4 when l < dlog logNe and Theorem 4.3 when
l = dlog logNe. By induction, E(N̂ , l, k) ≤ 2c((log log N̂)(k − l) + 1/2). Thus, the energy cost of
DetCensus(N, 0) is O(log2 logN).

5 Deterministic Dense Leader Election and Census

In this section we present a deterministic algorithm that solves Leader Election and Census with
energy cost O(α(N)) when the input is dense in the ID space, i.e., the number of active devices

20

n is at least c ·N for a fixed constant c > 0. Here α(N) denotes the inverse-Ackermann function.
Formally, we prove the following theorem:

Theorem 5.1. There exists a deterministic algorithm in No-CD model that solves Leader Elec-
tion and Census with energy cost O(α(N)) and time O(N) for the case N = Θ(n).

At the beginning of our algorithm, each device is a group5 with only one member. A key
subroutine of our algorithm, DenseAlgoi(N̂ , j), recursively merges groups into fewer and larger
ones. When only one group G remains, a leader is successfully elected by making the master s of
G identify itself as the leader and all other devices identify themselves as follower.

A group G is said to be j-rich if the size of G is at least j. We write j-density to denote the
proportion of j-rich groups in all groups. From the above definition, it is straightforward to see
that the 1-density is at least c at the beginning of the algorithm.

The input/output specification and the efficiency of the subroutine DenseAlgoi(N̂ , j) are de-
scribed as follows:

• Input: Before the execution of DenseAlgoi(N̂ , j), all groups have group IDs in [N̂], and the
j-density is at least 1

log j . All groups have size either zero or at least j.

• Output: After the execution of DenseAlgoi(N̂ , j), all groups have group IDs in [dN̂/bi(j)e],
and the ai(j)-density is at least 1

log ai(j)
, for some functions ai(j) and bi(j) to be determined.

All groups have size either zero or at least ai(j) and are centralized6. In addition, there are
[dN̂/bi(j)e] output time slots. In the k-th output time slot, the leader of the new group G
with group ID k announces the list of all members of G.

• Energy cost: Each device spends O(i) energy during the execution of DenseAlgoi(N̂ , j).

• Time slots: DenseAlgoi(N̂ , j) uses O(N̂) time slots (with taking the output time slots into
consideration).

In addition, we always assume j > 32.
In Section 5.1, we give the formal description of the subroutine DenseAlgoi(N̂ , j). In Section

5.2 and Section 5.3 we illustrate how to use DenseAlgoi(N̂ , j) to solve Leader Election and Census,
and thus prove Theorem 5.1.

5.1 The Subroutine DenseAlgoi(N̂ , j)

In this section we present the subroutine DenseAlgoi(N̂ , j) that meets the required specification.
The first step of DenseAlgoi(N̂ , j) is the initialization step, whose purpose is to create groups with
enough number of devices to run the subsequent steps.

Initialization step. The group ID space is partitioned into dN̂/2je consecutive parts, and each
part contains 2j group IDs, possibly except for the last part. For each part p, we run SimpleCensus to
merge all j-rich groups in part p into a single centralized group. Notice that it is guaranteed in
the input specification of DenseAlgoi(N̂ , j) that all groups have size either zero or at least j. After
merging each part into a single group, all devices in groups with size smaller than j5 are terminated.
The following lemma summarizes the performance of the initialization step.

5See Section 4.1 for the definition of group.
6See Section 4.1 for the definition of centralized.

21

Lemma 5.2. Suppose N̂ > 2j and j > 32, all groups have IDs in [N̂] and the j-density is at least
1

log j . After the initialization step, all groups have IDs in [dN̂/2je] and the j5-density is at least
1

4 log j . The initialization step uses O(N̂) time slots and each device spends constant energy during
the initialization step.

Proof. The worst case occurs when all j-rich groups have precisely size j and all other groups have
size zero. Before the initialization step, the total number of devices is at least 1

log j · j · N̂ . After the

initialization step, each group contains at most j · 2j devices and the number of devices which are
in groups with size smaller than j5 is at most

j5 · dN̂/2je < N̂.

After the initialization step, the number of j5-rich groups is minimized when they have the maxi-
mum size, which is ⌊

1

log j
· j · N̂/(j · 2j)

⌋
>

1

4 log j
dN̂/2je.

Meanwhile, the number of time slots and energy cost of the initialization step directly follows
Theorem 4.3. So the lemma holds.

Once N̂ ≤ 2j , we can then use SimpleCensus to merge all j-rich groups into a single group and
skip all further time slots.

Algorithm. The subroutine DenseAlgoi(N̂ , j) is defined inductively as follows. For the base
case of i = 0, DenseAlgo0(N̂ , j) consists of only the initialization step. For i > 0, after the
initialization step, all members of groups with size less than j5 have been terminated. For each j5-
rich group G, each member of G constructs j disjoint subgroups G1, G2, . . . , Gj , with each subgroup
containing b|G|/jc ≥ j4 devices. For 1 ≤ r < j, as Gr and Gr+1 have the same size, we set up
a bijection φr : Gr → Gr+1. There are j recursive calls to DenseAlgoi−1 during the execution of

DenseAlgoi(N̂ , j) and only devices in the r-th subgroup participate in the r-th recursive call. For
each device s in the r-th subgroup Gr, after s finishes the r-th recursive call, if s is not terminated
yet, φr(s) continues to play the role of s in the (r + 1)-th recursive call. φr(s) learns all the
information known by s, by listening to output time slot of the r-th recursive call.

The parameters of the j recursive calls are chosen to make sure the input specification of
DenseAlgoi−1 is always met. By Lemma 5.2, after the initialization step, the j5-density is at least

1
4 log j , and thus the j4-density is at least 1

4 log j = 1
log j4

after partitioning each j5-rich group into j

subgroups, each with size at least j4. DenseAlgoi(N̂ , j) can therefore invoke DenseAlgoi−1

(
dN̂/2je, j4

)
.

After the first recursive call, all groups have IDs in d N̂
2j ·bi−1(j4)

e and the ai−1(j4)-density is at least

1
log ai−1(j4)

, and thus DenseAlgoi(N̂ , j) invokes DenseAlgoi−1

(
d N̂

2j ·bi−1(j4)
e, ai−1(j4)

)
as the second

recursive call. In general, DenseAlgoi(N̂ , j) invokes

DenseAlgoi−1






N̂

2j ·∏r−1
t=1 bi−1

(
a

(t−1)
i−1 (j4)

)



, a

(r−1)
i−1 (j4)




as the r-th recursive call.

22

After the last recursive call ends, all groups have IDs in






N̂

2j ·∏j
t=1 bi−1

(
a

(t−1)
i−1 (j4)

)





 ,

and the a
(j)
i−1(j4)-density is at least 1

log
(
a
(j)
i−1(j4)

) . Thus, we define

bi(j) = 2j ·
j∏

r=1

bi−1

(
a

(r−1)
i−1 (j4)

)
,

and ai(j) = a
(j)
i−1(j4) for i > 0. For the base case of i = 0, by Lemma 5.2 we define a0(j) = j5 and

b0(j) = 2j , as 1
4 log j >

1
5 log j = 1

log j5
= 1

log a0(j) . Therefore, the choices of ai(j) and bi(j) are valid,
and they are lower bounded by the standard Ackermann function.

Recall that after the last recursive call ends, all members of each group are from the j-th
subgroup. Notice that it is guaranteed that all groups are centralized after the execution of
DenseAlgoi(N̂ , j), thus after the last recursive call ends, the leader has the information of all its
groups members and can thus merge devices in the first j − 1 subgroups back into corresponding
groups and centralize the group.

Analysis. During DenseAlgoi(N̂ , j), each device uses constant energy in the initialization step.
For each device s in the r-th subgroup, s uses constant energy to listen for the information φ−1

r−1(s).
Each device only participates in one recursive call, which takes O(i− 1) energy by induction. Thus
each device spends O(i) energy during the execution of DenseAlgoi(N̂ , j).

Denote Ti(N̂ , j) to be the total number of time slots used by DenseAlgoi(N̂ , j). The initialization
step uses O(N̂) time slots. Also, the number of output time slots is dN̂/bi(j)e ≤ N̂ . Thus, we have

Ti(N̂) ≤ O(N̂) + Ti−1(dN̂/2je) + Ti−1

(⌈
N̂

2j · bi−1(j4)

⌉)
+

for i > 0 and
T0(N̂) = O(N̂).

Noticing that j > 32 and bi−1(j4) > 2 when i > 0, thus we have Ti(N̂ , j) = O(N̂).
Notice that during the execution of DenseAlgoi(N̂ , j), all the recursive calls have the second

parameter higher than j, thus the assumption j > 32 is valid.

5.2 Algorithm for Leader Election

The algorithm of Theorem 5.1 for Leader Election is a preprocessing step followed by an execution
of DenseAlgo. The purpose of the preprocessing step is to guarantee that the input specification of

DenseAlgoi(N̂ , j) is met. In the preprocessing step, we first partition the ID space into
⌈
N̂/d2 8

c e
⌉

parts, where each part contains at most d2 8
c e IDs, and then use the algorithm of Theorem 4.3 to

merge all devices in each part into a single group by letting each device emulate d8/ce devices.

Members of groups with size smaller than d2 4
c e are terminated. Each device spends O(1/c) energy

23

during the preprocessing step and the time complexity of the preprocessing step is O(N). After

the preprocessing step, we calculate the minimum i such that bi

(
d2 4

c e
)
≥
⌈
N̂/d2 8

c e
⌉

and then

execute DenseAlgoi

(⌈
N/d2 8

c e
⌉
, d2 4

c e
)

. By using an averaging argument we can show that after

the preprocessing step, the input specification of DenseAlgoi

(⌈
N/d2 8

c e
⌉
, d2 4

c e
)

is satisfied. Readers

can refer to the proof of Lemma 5.2 for a formal proof.

According to the output specification, after the execution of DenseAlgoi

(⌈
N/d2 8

c e
⌉
, d2 4

c e
)

, only

one group remains, and thus a leader is successfully elected. Later we have shown in Section 5.1,
ai(j) and bi(j) are two functions lower bounded by the standard Ackermann function, and thus
i = O(α(N)). Since the energy cost of DenseAlgoi(N̂ , j) is O(i) and DenseAlgoi(N̂ , j) use O(N̂)
time slots, thus there exists an algorithm that solves Leader Election with energy cost O(α(N)) and
time O(N) when N = Θ(n).

5.3 Algorithm for Census

In this section, we further modify the algorithm in Section 5.2 to solve Census. We first show that
after the execution of the algorithm in Section 5.2, the only remaining group G has size Ω(n). We
first partition the ID space into parts with size O(1/c). For each part p, we assign one device in G to
collect the list of active stations in p, by using constant energy. Finally, we merge the information
of all group members by using O(N) time slots and constant energy, and thus Census is solved.

Number of terminated devices. During the execution of the whole algorithm, a device is
terminated only in the following two cases.

• During the preprocessing step, devices in groups with size smaller than d2 4
c e are terminated.

• During the initialization step, devices in groups with size smaller than j5 are terminated.

During the preprocessing step, the fraction of devices that are terminated is at most
⌈
N/d2 8

c e
⌉
· d2 4

c e
c ·N =

1

2Ω(1/c)
.

During the initialization step, the fraction of devices that are terminated is at most
⌈
N/2j

⌉
· j5

1
log j · j ·N

< 1/j

by noticing that j > 32.
Denote Terminatedi(j) to be the fraction of devices the are terminated during the execution

of DenseAlgoi(N̂ , j), now we prove that Terminatedi(j) ≤ 2
j .

Terminatedi(j)

≤1−
(

1− 1

j

)
·
(
1−Terminatedi−1(j4)

)
·
(
1−Terminatedi−1(ai−1(j4))

)
· · · ·

≤1−
(

1− 1

j

)
·
(

1− 2

j4

)
·
(

1− 2

ai−1(j4)

)
· · · · (By induction hypothesis)

≤2

j
.

24

Thus, the overall fraction of devices that are terminated during the execution of the whole
algorithm is at most

1−
(

1− 1

2Ω(1/c)

)
·
(

1− 2⌈
28/c

⌉
)

=
1

2Ω(1/c)
,

which implies the only remaining group after the execution of DenseAlgo has size Ω(n).

Algorithm. After the execution of DenseAlgo, we partition the ID space into consecutive parts
with size O(1/c). Denote G = (s0, s1, s2, . . . , s|G|−1) to be the only remaining group after the
execution of DenseAlgo. For each part p, we assign one device s in G to collect all active devices
in p, by letting s listen for constant times and each device in p transmits once. We denote I(si) to
be the list of active devices collected by si.

After that, s0 trasnmits I(s0) and s1 listens, and then s1 transmits I(s0)∪ I(s1) and s2 listens,
. . . . Finally, s|G|−1 transmits I(s0)∪ I(s1)∪ . . .∪ I(s|G|−1) and all devices listen, and thus Census is
solved.

Clearly, this step uses O(N) time slots and each device spends constant energy.

6 Randomized Upper Bounds

In this section we design algorithms for Approximate Counting matching the energy complexity
lower bound proved in Section 3. In [7], an algorithm for Approximate Counting in Strong-CD model
using O(log(log∗ n)) energy is devised. They showed that any circuit of constant fan-in, with input
bits encoded as noise/silence time slots, can be simulated with O(1) energy cost. An estimate of
the network size can be computed by such a circuit. In this section we demonstrate a different
approach to Approximate Counting that is based on our dense Census algorithm and works for all
four collision detection models.

Theorem 6.1. There is an algorithm that, with probability 1 − 1/poly(n), solves Approximate
Counting in no(1) time with energy cost:

• O(log∗ n), if the model is Sender-CD, or is No-CD model with n > 1.7

• O(log(log∗ n)), if the model is Strong-CD or Receiver-CD.

When the algorithm fails, the devices are allowed to behave arbitrarily. In particular, a device
in a failed execution may consume unbounded amount of energy and never halt. This is a standard
assumption in some prior works (e.g. [26, 27, 8]). The exponential difference in energy complexity
reflects the fact that receiver-side collision detection enables the devices to perform a binary search
on a set of candidate estimates of network sizes.

6.1 Testing Network Size

In this section we show that testing whether a given estimate ñ of the network size n is accurate
can be done by dense Census.

7In this section, we always assume n > 1 in the No-CD model. In the No-CD model a sender cannot simultaneously
listen to the channel, and so a device never hears any message if it is the only device in the network. However, when
n is large enough, with high probability a device also does not hear any message in the first few time slots. It
seems hopeless to have an algorithm that detects loneliness of a device, i.e. distinguishes between n = 1 and n > 1.

See [21, 20] for other work dealing with the n
?
= 1 issue.

25

Goal. There are n participating devices agreeing on a number ñ. The goal is to decide whether
ñ is a good estimate of n. We require that a leader elected if n/1.5 ≤ ñ ≤ 1.5 · n, and no leader is
elected if ñ ≥ 1.9 · n or ñ ≤ n/1.9.

Assigning IDs. Running a deterministic algorithm requires IDs. Suppose that the underlying
model is Strong-CD or Sender-CD. We allocate N = Θ(log ñ) time slots. Each participating device
transmits a message in each time slot with probability 1/ñ. If a device s hears its message at ith

time slot, then s assigns itself the ID i.
Recall that in the dense Census with parameter c and ID space [N], if n ≥ c · N , a leader

who collects all IDs of the participating devices is elected. Therefore, the algorithm allows us to
distinguish between the case where the number of participating devices is at least c · N from the
case the number of participating devices is less than c ·N .

Fact 1. For any two positive integers n, ñ such that ñ ≥ 100, we have:

• Pr[binom(n, p = 1/ñ) = 1] < 0.32 when ñ ≥ 1.9n or ñ ≤ n/1.9.8

• Pr[binom(n, p = 1/ñ) = 1] > 0.33 when n/1.5 ≤ ñ ≤ 1.5n.

By Fact 1, a standard application of Chernoff bounds leads to the following lemma.

Lemma 6.2. For any ñ ≥ 100, with probability 1−min{n−Ω(1), ñ−Ω(1)}, we have:

• The number of the devices assigned an ID is less than 0.325 ·N when ñ ≥ 1.9n or ñ ≤ n/1.9.

• The number of the devices assigned an ID is more than 0.325 ·N when n/1.5 ≤ ñ ≤ 1.5n.

Algorithm. The algorithm Test-Network-Size(ñ) is described as following. First we do the ID
assignment, and then the dense Census with ID space [N] and parameter c = 0.325 is executed on
the devices that are assigned IDs. Notice that it is possible that a device is assigned to multiple
IDs, and in such case the device simulates multiple devices of different IDs in the dense Census
algorithm. Only the devices that are assigned less than β tasks participate in the algorithm, where
β is a constant to be determined. If the leader elected collects less than c · N , it resets itself as
follower.

Analysis. Observe that the probability that there exists a device assigned to at least β tasks
is n−Ω(β) for the case n/1.5 ≤ ñ ≤ 1.5 · n. Therefore, by selecting β as a large enough constant,
with probability n−Ω(1) all devices are assigned to less than β = O(1) tasks. By Lemma 6.2, with
probability 1 − min{n−Ω(1), ñ−Ω(1)}, a leader is elected if n/1.5 ≤ ñ ≤ 1.5 · n, and no leader is
elected if ñ ≥ 1.9 · n or ñ ≤ n/1.9.

The time spent on both assigning IDs and the dense Census are O(N) = O(log ñ), and hence
the algorithm takes O(log ñ) time. The energy complexity is (β − 1) ·O(α(N)) = O(α(ñ)).

8binom(n, p) is defined as the random variable that follows binomial distribution with parameters n and p.

26

Handling networks with no sender-side collision detection. One issue arises when there
is no sender-side collision detection (i.e. Receiver-CD and No-CD). During the ID assignment, a
device transmitting in a time slot does not know whether it is the only device transmitting. One
way to get around this issue is as follows. The number of time slots allocated for ID assignment is
increased to 2 ·N . If the number of devices transmitting at time slot 2 · i and the number of devices
transmitting at time slot 2 · i+ 1 are both one, the device that transmits at time slot 2 · i takes the
ID i. A device can decide whether to take the ID i using two additional time slots t1 and t2.

1. In time slot t1, all devices who transmit at time slot 2 · i speak while all devices who transmit
at time slot 2 · i+ 1 listen.

2. In time slot t2, all devices who transmit at time slot 2 · i + 1 and receive a message at time
slot t1 speak while all devices who transmit at time slot 2 · i listen.

It is straightforward to see that a device receives a message at time slot t2 if and only if the number
of devices transmitting at time slot 2 · i and the number of devices transmitting at time slot 2 · i+ 1
are both one.

Observe that the probability that an ID i is assigned to a device is Pr[binom(n, p = 1/ñ) = 1]2.
Therefore, similar to Lemma 6.2, by setting c′ = c2, with probability 1−min{n−Ω(1), ñ−Ω(1)}, the
number of devices assigned IDs is at least c′ ·N when n/1.5 ≤ ñ ≤ 1.5n, and the number of devices
assigned IDs is less than c′ ·N when ñ ≥ 1.9n or ñ ≤ n/1.9. Hence dense Census with parameter
c′ fulfills our goal.

We conclude the following theorem.

Theorem 6.3. In all four collision detection models, with probability 1 − min{n−Ω(1), ñ−Ω(1)},
Test-Network-Size(ñ) accomplishes the following with energy O(α(ñ)) and in time O(log ñ).

• If n/1.5 ≤ ñ ≤ 1.5 · n, a leader is elected.

• If ñ ≥ 1.9 · n or ñ ≤ n/1.9, no leader is elected.

The asymptotic time complexity of the algorithm Test-Network-Size(ñ) is the same as the al-
gorithm in [7] which works in Strong-CD and is based on circuit simulation. However, the circuit
simulation takes only O(1) energy while Test-Network-Size(ñ) needs O(α(ñ)) energy.

6.2 Exponential Search

As mentioned earlier, the capability of distinguishing noise and silence in the Strong-CD and the
Receiver-CD models allows a device to do binary search on a set of candidate estimates of network
sizes. Such an observation is formalized in this subsection. Suppose that we have an infinite set
D = {d1, d2, . . .} of positive integers such that di+1 ≥ γ · di, for a large enough constant γ > 1. We
let the index î be the one such that dî−1 < log n ≤ dî. The goal is to estimate î within ±1 additive

error. We prove that in Strong-CD model this can be done with high probability in O(log î) time,
and hence using at most O(log î) energy.

Algorithm. We define the 1-round subroutine Test(i) as follows. Each device transmits a message
with probability 2−di , and all other devices listen to the channel. All devices that listen to the
channel decide i ≥ î if the channel is silent, and decide i < î otherwise. Any device that transmits
a message decides i < î. Based on the subroutine Test(i), the procedure Exponential-Search(D) is
defined as follows:

27

1. Repeatedly run Test(i) for i = 1, 2, 4, 8, . . . to find the smallest number i′ ∈ {1, 2, 4, 8, . . .}
such that Test(i′) returns i′ ≥ î.

2. Use Test(i) to perform a binary search on {1, 2, 3, . . . , i′} to find an index ĩ that estimates î.

Theorem 6.4. In the Strong-CD and the Receiver-CD models, the algorithm Exponential-Search(D)
finds an index ĩ with ĩ ∈ {̂i− 1, î, î+ 1} in O(log î) time with probability 1− n−Ω(1).

Proof. Observe that if the following statements hold, then Exponential-Search(D) finds an index ĩ
with ĩ ∈ {̂i− 1, î, î+ 1} in O(log î) time.

• For i ∈ {1, 2, . . . , î− 2}, Test(i) returns i < î for all devices.

• For i ∈ {̂i+ 1, î+ 2, . . . , 2̂i}, Test(i) returns i ≥ î for all devices.

We show that the above statements hold with probability 1 − n−Ω(1). For any i ≤ î − 2, the

probability that Test(i) returns i ≥ î is Pr[binom(n, 2−di) = 0] = n(1 − 2−di)n ≤ n(1 − 2
logn
γ)n =

n · (1− n−1/γ)n ≤ n · exp(−n1−1/γ). For any i ≥ î+ 1, the probability that Test(i) returns i < î is
Pr[binom(n, 2−di) > 0] ≤ n · 2−di ≤ n · 2−γ logn = n−γ+1.

Since î − 1 ≤ dî−1 < log n, we have î ≤ log n. By the union bound, the probability that the

above statement is false is at most (̂i− 2) · n · exp(−n1−1/γ) + (̂i− 1) · n−γ+1 = n−Ω(1).

6.3 The Algorithm

In this section we present an algorithm for Approximate Counting that matches the lower bounds
proved in Section 3.

First of all, for any constant d, it is straightforward to devise an algorithm Trivial-Algorithm(d)
such that in constant time, with probability 1 − 1/poly(n), the algorithm either (i) decides n > d
or (ii) finds an estimate ñ of n with n/2 ≤ ñ ≤ 2n.

Suppose that we are given an infinite set D = {d1, d2, . . .} of positive integers such that di+1 ≥
γdi (to make Exponential-Search(D) work),

∑∞
k=d1

1/
√

2k ≤ 1, and
√

2d1 ≥ 100. We will later

see that the purpose of the constraint
√

2d1 ≥ 100 is to meet the condition of Lemma 6.2 when
Test-Network-Size is invoked. As in the previous section, the index î is defined as the one such
that dî−1 < log n ≤ dî. Notice that the elements of the set D play the roles of checkpoints in our
algorithm. We will see that the set D indicates the iterations to examine whether a leader has been
elected. Notice that different choices of D lead to different time-energy tradeoffs.

Estimate-Network-Size(D)

Initial setup:

1. For any k ≥ d1, a device is labeled k with probability 1/
√

2k such that each device is
labeled by at most one number. Notice that this implicitly requires

∑∞
k=d1

1/
√

2k ≤ 1.

2. Run Trivial-Algorithm(2d1). If an estimate ñ of n is found, the algorithm is terminated.

3. If the model is Strong-CD, let ĩ be the result of Exponential-Search(D), and set k0 = dĩ−2.
Otherwise, set k0 = d1.

28

For k = k0, k0 + 1, k0 + 2, . . ., do the following:

1. The devices with label k collaboratively run Test-Network-Size(
√

2k).

2. If k = di for some i, do the following:

(a) All leaders with an odd label announce their labels, while all other devices listen. If
exactly one message k̃ is sent, the algorithm is terminated with all devices agreeing
on the same estimate ñ = 2k̃.

(b) All leaders with an even label announce their labels, while all other devices listen. If
exactly one message k̃ is sent, the algorithm is terminated with all devices agreeing
on the same estimate ñ = 2k̃.

Lemma 6.5. Let k̂ = dlog ne. With probability 1−O(exp(Ω(
√
n))) the following is true:

• For each k < k̂ − 1, the number of devices labeled k is at least 0.95
√

2n ≥ 1.9
√

2k.

• For each k > k̂, the number of devices labeled k is at most
√

2k/1.9.

• For at least one of k ∈ {k̂ − 1, k̂}, the number of devices labeled k is within
√

2k/1.5 and
1.5
√

2k.

Proof. First of all, with probability 1−n ·∑∞k=n+1 1/
√

2k = 1−O(exp(−Ω(n))), no device has label
greater than n. Therefore, in what follows we only consider the labels in the range {1, 2, . . . , n}.

• For any k < k̂ − 1, the expected number of devices labeled k is at least n ·
√

2−k ≥ n ·√
2−(logn−1) =

√
2n. Also, 1.9

√
2k ≤ 1.9

√
n/2 = 0.95

√
2n = (1 − 0.05)

√
2n. Therefore, by

Chernoff bound, the probability that the number of devices labeled k is less than 0.95
√

2n is
bounded by exp(0.052

√
2n/2).

• For any n ≥ k > k̂, the probability that the number of devices labeled k is more than√
2k/1.9 is Pr[binom(n,

√
2−k) >

√
2k/1.9] ≤ Pr[binom(n,

√
2−(logn+1)) >

√
2logn+1/1.9] =

Pr[binom(n, 1/
√

2n) >
√

2n/1.9]. The expected value of binom(n, 1/
√

2n) is
√
n/2. By

setting δ = 0.1/1.9, we have
√

2n/1.9 = (1 + δ) E [binom(n, 1/
√

2n)]. Therefore, by Chernoff
bound, the probability that the number of devices labeled k is more than

√
2k/1.9 is bounded

by exp(−δ2
√
n/2/3).

• We let k′ be any one of k̂ − 1, k̂ such that n/
√

2 ≤ 2k
′ ≤
√

2n. The expected number of
devices labeled k′ is within

√
2k′/
√

2 and
√

2 ·
√

2k′ . Since
√

2 < 1.5 and
√

2k′ = Θ(
√
n),

using Chernoff bound we can deduce that with probability 1 − O(exp(Ω(
√
n))) the number

of devices labeled k′ is within
√

2k′/1.5 and 1.5
√

2k′ .

By the union bound, the probability that the statement of the lemma is not met is bounded by
(log n) exp(0.052

√
2n/2) + n exp(−δ2

√
n/2/3) +O(exp(Ω(

√
n))) = O(exp(Ω(

√
n))).

Theorem 6.6. In an execution of Estimate-Network-Size(D), with probability 1−n−Ω(1), all devices
agree on an estimate ñ of the network size n such that n/2 ≤ ñ ≤ 2n with the following time T and
energy E cost:

29

• If the model is Strong-CD or Receiver-CD, then T = O(d2
î
), E = O(log î).

• If the model is Sender-CD or No-CD with n > 1, then T = O(d2
î
), E = O(̂i).

Proof. Suppose that all subroutines Trivial-Algorithm(2d1), Exponential-Search(D), and Test-Network-
Size(

√
2k), for all k, do not fail. Then the statement of Lemma 6.5, which is true with probability

1−O(exp(Ω(
√
n))), implies that only devices with label k ∈ {dlog ne−1, dlog ne} can be elected as

leader through Test-Network-Size(
√

2k), and hence the algorithm ends by the iteration k = dî with
a correct estimate of n.

Since each Test-Network-Size(
√

2k) takes O(k) time, the total time complexity is dî · O(dî) =
O(d2

î
).

The energy cost per device of Trivial-Algorithm(2d1) and Test-Network-Size(
√

2k) are bounded
by a constant. In Sender-CD and No-CD model, the asymptotic energy cost is the number of times
we encounter k = di for some i, which is O(̂i). In Strong-CD and Receiver-CD, the number of times
we encounter k = di for some i is a constant since we start with k0 = dĩ−2, where the index ĩ is

returned by Exponential-Search(D), and we have ĩ ∈ {̂i − 1, î, î + 1}. Therefore, the asymptotic
energy cost equals the energy cost of Exponential-Search(D), which is O(log î).

To complete the proof, we show that under the assumption that the statement of Lemma 6.5
holds, with probability 1 − n−Ω(1), none of the Test-Network-Size(

√
2k) fails. Similar to the proof

of Lemma 6.5, we observe that with probability 1 − n ·∑∞k=n+1 1/
√

2k = 1 − O(exp(−Ω(n))), no
device has label greater than n. Therefore, in what follows we only consider k ∈ {1, 2, . . . , n}.

• Case 1: the number of devices labeled k is at least 0.95
√

2n ≥ 1.9
√

2k. By Theorem 6.3, the

probably that no leader is elected in Test-Network-Size(
√

2k) is at least 1− (0.95
√

2n)
−Ω(1)

=
1− n−Ω(1).

• Case 2: the number of devices labeled k is at most
√

2k/1.9. In this case, Lemma 6.5 guarantees
that k ≥ log n − 1. By Theorem 6.3, the probably that no leader is elected in Test-Network-
Size(

√
2k) is at least 1− (

√
2k/1.9)−Ω(1) = 1− n−Ω(1).

• Case 3: the number of devices labeled k is within
√

2k/1.5 and 1.5
√

2k. In this case, Lemma 6.5
guarantees that

√
2k = Θ(

√
n). By Theorem 6.3, the probably that a leader is elected in Test-

Network-Size(
√

2k) is at least 1−
√

2k
−Ω(1)

= 1− n−Ω(1).

By the union bound on all labels 1, . . . , n, the probability that at least one of Test-Network-Size(
√

2k)
fails is bounded by O(exp(−Ω(n))) + n · n−Ω(1) = n−Ω(1).

In addition to solving Approximate Counting, the algorithm Estimate-Network-Size(D) also solves
Leader Election. Recall that by the end of the algorithm, a unique device s announces its label while
all other devices listen to the channel.

Setting the checkpoints. Similar to the lower bound proofs in the section 3, Theorem 6.6
naturally offers a time-energy tradeoff. We demonstrate how different choices of the checkpoints
D give rise to different time and energy cost. The first checkpoint d1 is always chosen as a large
enough constant so as to meet the three conditions: di+1 ≥ γdi,

∑∞
k=d1

1/
√

2k ≤ 1, and
√

2d1 ≥ 100.
In the subsequent discussion we only focus on defining di inductively based on di−1.

30

To obtain O(log2 n) runtime, we set di = γdi−1 for some constant γ. With such checkpoints, the
energy cost in Sender-CD and No-CD is î = O(log log n); the energy cost in Strong-CD and Receiver-

CD is log î = O(log log log n). Let 0 < ε ≤ O(1). To obtain O(log2+ε n) runtime, we set di = d
1+ε/2
i−1 .

With such checkpoints, the energy cost in Sender-CD and No-CD is î = O(log1+ε/2 log logn) =

O(ε−1 log log log n); the energy cost in Strong-CD and Receiver-CD is log î = O(log(ε−1 log log log n)).

Proof of Theorem 6.1. Observe that setting di = bdi−1 for any constant b > 1 gives a polynomial
time algorithm achieving the desired energy complexity. To obtain sub-polynomial runtime while

maintaining the same asymptotic energy complexity, one may set di = 22(log di−1)
ε

, 0 < ε < 1. This

leads to time complexity of the form O(22(log logn)ε
′

), for some 0 < ε′ < 1.

Final Remarks. As mentioned earlier in this section, a device in a failed execution may run
forever and consume unbounded amount of energy. In particular, both the expected runtime
and the expected energy are unbounded. In the following we suggest several remedies to ease
the problem. The root of the unbounded complexity problem is that, if the algorithm fails to
terminate by the checkpoint dî, very likely the algorithm runs forever. To get around this issue, the

algorithm can be modified to run all Test-Network-Size(
√

2k) from k = k0 to k = di (instead of from
k = di−1 +1 to k = di) for each checkpoint di. Another cause for the algorithm to not terminate by
the checkpoint dî is that Test-Network-Size(

√
2k) can be accidentally passed for some k /∈ {k̂−1, k̂}.

Recall that Test-Network-Size is implemented using dense Census algorithm, so a leader elected in
Test-Network-Size(

√
2k) collects Θ(log(

√
2k)) = Θ(k) number of IDs. The leader can schedule the

Θ(k) devices with these IDs to sabotage the next Θ(k) runs of Test-Network-Size. We leave it as an
open problem to formally derive good expected energy and time bounds for Approximate Counting.

7 Conclusion and Open Problems

In this paper we exposed two exponential separations in the energy complexity of Leader Election on
various wireless radio network models. The upshot is that randomized algorithms in {Strong-CD,
Receiver-CD} are exponentially more efficient than those in {Sender-CD, No-CD}, but determinis-
tic algorithms in {Strong-CD,Sender-CD} are exponentially more efficient than those in {Receiver-
CD,No-CD}. This exponential separation also occurs in the closely related problem of Approximate
Counting.

There are a few intriguing problems left open by this work. Is Θ(α(N)) the correct complexity of
dense Leader Election/Census, and is there an O(log logN)-energy deterministic Census algorithm?
The randomized complexity of Approximate Counting should exhibit a 3-way tradeoff between en-
ergy, time, and error probability (that the estimate ñ is not Θ(n)). Understanding every feasible
tradeoff between these three measures is a difficult problem. Consider one particular tradeoff: it
there a Strong-CD Approximate Counting algorithm taking O(log n) time, O(log log n) energy, with
error probability 1/poly(n)?

Acknowledgement. We would like to thank Tomasz Jurdziński for discussing the details of
[25, 26, 27, 28] and to Calvin Newport for assisting us with the radio network literature.

31

References

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast. Journal of
Computer and System Sciences, 43(2):290–298, 1991.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop radio network
with collision detection on multi-hop radio network with no collision detection. Distributed
Computing, 5(2):67–71, 1991.

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-
hop radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences, 45(1):104–126, 1992.

[4] M. Barnes, C. Conway, J. Mathews, and D. K. Arvind. ENS: An energy harvesting wireless
sensor network platform. In Proceedings of the 5th International Conference on Systems and
Networks Communications, pages 83–87, 2010.

[5] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young. How to scale exponential backoff:
Constant throughput, polylog access attempts, and robustness. In Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 636–654, 2016.

[6] M. A. Bender, J. T. Fineman, M. Movahedi, J. Saia, V. Dani, S. Gilbert, S. Pettie, and
M. Young. Resource-competitive algorithms. SIGACT News, 46(3):57–71, 2015.

[7] M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with log-logstar
channel accesses. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC), pages 499–508, 2016.

[8] P. Brandes, M. Kardas, M. Klonowski, D. Pajak, and R. Wattenhofer. Approximating the size
of a radio network in beeping model. In Proceedings of the 23rd International Colloquium on
Structural Information and Communication Complexity (SIROCCO), 2016.

[9] B. S. Chlebus, D. R. Kowalski, and A. Pelc. Electing a leader in multi-hop radio networks.
In The 16th International Conference On Principles Of Distributed Systems (OPODIS), pages
106–120. Springer, 2012.

[10] A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of
unknown topology. Theoretical Computer Science, 302(1):337–364, 2003.

[11] A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Proceedings of The 24th
International Symposium on Distributed Computing (DISC), pages 148–162. Springer, 2010.

[12] A. Czumaj and P. Davies. Brief announcement: Optimal leader election in multi-hop ra-
dio networks. In Proceedings 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 47–49, 2016.

[13] A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown topology.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 492–501, 2003.

32

[14] S. Daum, S. Gilbert, F. Kuhn, and C. Newport. Leader election in shared spectrum radio
networks. In Proceedings of the 31st ACM symposium on Principles of distributed computing
(PODC), pages 215–224, 2012.

[15] P. Erdős, A. Rényi, and V. T. Sós. On a problem of graph theory. Studia Sci. Math. Hung.,
1:215–235, 1966.

[16] M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro. Lower bounds for clear transmis-
sions in radio networks. In Proceedings of the 7th Latin American Symposium on Theoretical
Informatics (LATIN), pages 447–454, 2006.

[17] J. T. Fineman, S. Gilbert, F. Kuhn, and C. C. Newport. Contention resolution on a fad-
ing channel. In Proceedings 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 155–164, 2016.

[18] J. T. Fineman, C. Newport, and T. Wang. Contention resolution on multiple channels with col-
lision detection. In Proceedings 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 175–184, 2016.

[19] M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop radio networks.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (PODC),
pages 748–766, 2013.

[20] M. Ghaffari, N. A. Lynch, and S. Sastry. Leader election using loneliness detection. Distributed
Computing, 25(6):427–450, 2012.

[21] M. Ghaffari and C. Newport. Leader Election in Unreliable Radio Networks. In Proceed-
ings 43rd International Colloquium on Automata, Languages, and Programming (ICALP),
volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 138:1–138:14,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[22] S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and M. Young. (near) optimal resource-
competitive broadcast with jamming. In Proceedings of the 26th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 257–266, 2014.

[23] S. Gilbert and C. Newport. The computational power of beeps. In Proceedings of the 29th
International Symposium on Distributed Computing (DISC), pages 31–46. Springer, 2015.

[24] A. G Greenberg and S. Winograd. A lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. J. ACM, 32(3):589–596, 1985.

[25] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Efficient algorithms for leader election in
radio networks. In Proceedings of the 21st Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 51–57, 2002.

[26] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Energy-efficient size approximation of radio
networks with no collision detection. In Proceedings of the 8th Annual International Conference
on Computing and Combinatorics (COCOON), pages 279–289, 2002.

33

[27] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Weak communication in radio networks. In
Proceedings of the 8th International European Conference on Parallel Computing (Euro-Par),
pages 965–972, 2002.

[28] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Weak communication in single-hop ra-
dio networks: adjusting algorithms to industrial standards. Concurrency and Computation:
Practice and Experience, 15(11–12):1117–1131, 2003.

[29] T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-
hop radio networks. In Proceedings of the 13th International Symposium on Algorithms and
Computation (ISAAC), pages 535–549, 2002.

[30] M. Kardas, M. Klonowski, and D. Pajak. Energy-efficient leader election protocols for single-
hop radio networks. In Proceedings of the 42nd International Conference on Parallel Processing,
pages 399–408, 2013.

[31] G. Katona and E. Szemerédi. On a problem of graph theory. Studia Scientiarum Mathemati-
carum Hungarica, 2:23–28, 1967.

[32] V. King, J. Saia, and M. Young. Conflict on a communication channel. In Proceedings of
the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
277–286, 2011.

[33] D. R. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. Distributed
Computing, 18(1):43–57, 2005.

[34] D. R. Kowalski and A. Pelc. Leader election in ad hoc radio networks: A keen ear helps. In
Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 521–533, 2009.

[35] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio net-
works. SIAM Journal on Computing, 27(3):702–712, 1998.

[36] M. Kuty lowski and W. Rutkowski. Adversary immune leader election in ad hoc radio networks.
In Proceedings of the 11th European Symposium on Algorithms (ESA), pages 397–408. Springer,
2003.

[37] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester,
and D. Blaauw. A modular 1 mm3 die-stacked sensing platform with low power I2C inter-
die communication and multi-modal energy harvesting. IEEE Journal of Solid-State Circuits,
48(1):229–243, 2013.

[38] K. Nakano and S. Olariu. Energy-efficient initialization protocols for single-hop radio networks
with no collision detection. IEEE Trans. Parallel Distrib. Syst., 11(8):851–863, 2000.

[39] K. Nakano and S. Olariu. Randomized initialization protocols for ad hoc networks. IEEE
Trans. Parallel Distrib. Syst., 11(7):749–759, 2000.

[40] C. C. Newport. Radio network lower bounds made easy. In Proceedings of the 28th Interna-
tional Symposium on Distributed Computing (DISC), pages 258–272, 2014.

34

[41] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless research. In
Proceedings of the 4th International Symposium on Information Processing in Sensor Networks
(IPSN), pages 364–369, 2005.

[42] J. Schneider and R. Wattenhofer. What is the use of collision detection (in wireless networks)?
In Proceedings 24th International Symposium on Distributed Computing (DISC), pages 133–
147, 2010.

[43] K. M. Sivalingam, M. B. Srivastava, and P. Agrawal. Low power link and access protocols
for wireless multimedia networks. In Proceedings of the 47th IEEE Conference on Vehicular
Technology, volume 3, pages 1331–1335, 1997.

[44] D. E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.
SIAM Journal on Computing, 15(2):468–477, 1986.

A Upper Bound on the Recursive Function T (N̂)

In this section we show the omitted proof for T (N) = O(N · f(N)) in Section 4.4, where f(N) =
(log logN)log log log logN+2.

Recall the recursive formula of T (N̂):

T (N̂) ≤ (
√
N̂ + log logN)T (

√
N̂) + c(

√
N̂ + log logN)), T (0) = O(1).

Here c ≥ 1 is a constant. When N̂ ≤ log2 logN , we have T (N̂) ≤ 2 log logN ·T (
√
N̂)+2c log logN ,

which implies that T (N̂) ≤ O((2 log logN)log log N̂).
Furthermore, when log2 logN < N̂ ≤ log4 logN , we have

T (N̂) ≤ 2
√
N̂T (log2 logN) + 2

√
N̂ ≤ c(N̂ − 2

√
N̂)T (log2 logN).

Then we move on to N̂ ≥ log4 logN , where it holds T (N̂) ≤ (
√
N̂ +

4
√
N̂)T (

√
N̂) + 2c

√
N̂ .

We prove by induction that in this case, T (N̂) ≤ c(N̂ − 2
√
N̂)T (log2 logN) still holds, since if the

inequality is true for T (N̂), it implies that

T (N̂2) ≤ (N̂ +
√
N̂)T (N̂) + 2cN̂

≤ c(N̂ +
√
N̂)(N̂ − 2

√
N̂)T (log2 logN) + 2cN̂

≤ c(N̂2 − 2N̂)T (log2 logN)− cN̂(
√
N̂ − 2).

Combining the two parts together, it turns out that when N̂ ≥ log4 logN ,

T (N̂) ≤ c(N̂ − 2
√
N̂)T (log2 logN)

≤ c(N̂ − 2
√
N̂)O((2 log logN)log log(log2 logN)).

Thus we conclude that T (N) = O(N · f(N)).

35

	1 Introduction
	1.1 Prior Work
	1.2 Organization and Technical Overview

	2 Deterministic Lower Bounds
	3 Randomized Lower Bounds
	3.1 Randomized Decision Trees
	3.2 Lower Bound in the Sender-CD Model
	3.3 Lower Bound in the Strong-CD Model
	3.4 Lower Bound for Other Problems

	4 Deterministic Algorithms for Leader Election and Census
	4.1 Groups in Deterministic Algorithms
	4.2 A Simple Census/Leader Election Algorithm
	4.3 An O(loglogN) Leader Election Algorithm
	4.4 An O(log2logN) Census Algorithm

	5 Deterministic Dense Leader Election and Census
	5.1 The Subroutine DenseAlgoi(, j)
	5.2 Algorithm for Leader Election
	5.3 Algorithm for Census

	6 Randomized Upper Bounds
	6.1 Testing Network Size
	6.2 Exponential Search
	6.3 The Algorithm

	7 Conclusion and Open Problems
	A Upper Bound on the Recursive Function T()

