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Abstract—Cognitive radio networks (CRNs) have been pro-
posed to solve the spectrum scarcity problem. One of their
fundamental procedures is to construct a communication link
on a common channel for the users, which is referred as
rendezvous. In reality, the capability to sense the spectrum may
vary from user to user, and such users form what is known as
a heterogeneous cognitive radio network (HCRN). The licensed
spectrum is divided in to n channels, U = {1, 2, . . . , n}. We
denote the capability of user i as Ci ⊆ U and the set of
available channels (i.e. the channels not occupied by the paying
users) as Vi ⊆ Ci. We study the rendezvous problem in HCRN
under two circumstances: fully available spectrum (Vi = Ci) and
partially available spectrum (Vi 6= Ci). For any two users a, b, we
propose the Traversing Pointer (TP) algorithm that guarantees
rendezvous in O(max{|Ca|, |Cb|} log log n) time slots for the
fully available spectrum scenario. This result is only O(log log n)
larger than our constructive lower bound. Moreover, it removes
an O(min{|Ca|, |Cb|}) factor as compared to the state-of-the-art
result (O(|Ca||Cb|) in [26]). For the partially available spectrum
scenario, we propose the Moving Traversing Pointers (MTP) algo-
rithm to guarantee rendezvous in O((max{|Va|, |Vb|})

2 log log n)
time slots, which works more efficiently than the previous best
result (O(|Ca||Cb|) in [25]) in various circumstances. We also
conduct extensive simulations and the results corroborate our
analysis.

Index Terms—Heterogeneous Cognitive Radio Network, Ren-
dezvous, Fully available spectrum, Partially available spectrum

I. INTRODUCTION

The wireless spectrum is becoming scarce due to the rapid

growth of wireless devices. There are two types of wireless

spectrum, licensed spectrum which is owned by paying users,

such as the TV frequency bands [8]; and unlicensed spectrum

which is free to use for wireless devices, such as the Indus-

trial Scientific and Medical (ISM) band [9]. The unlicensed

spectrum is overcrowding with the increasing demands for

wireless services, while the utilization of licensed spectrum

remains consistently at a low level [27]. Cognitive radio

networks (CRNs) were proposed to improve the situation by

allowing unlicensed users to exploit and access the unused

parts of the licensed spectrum. Unless otherwise specified,

‘users’ hereafter refers to the unlicensed users.

In constructing a CRN, the users have to establish a link on a

common frequency band (channel) for communication, which

is referred as rendezvous [19]. The process of constructing

a communication link includes such detailed operations as

beaconing and handshaking, which we leave out in this paper

but focus on the rendezvous problem: how to choose the same

channel at the same time? Technically, the licensed spectrum

is assumed to be divided into n non-overlapping channels,

U = {1, 2, . . . , n}; correspondingly, the time is divided into

slots of equal length [10], [11], [13], [18], [22]. The user can

access an available channel in each time slot where available

means the channel is not occupied by nearby paying users,

and two users rendezvous if they choose the same channel in

the same time slot.

Many extant rendezvous algorithms have been proposed

by constructing channel sequences based on the channels’

labels [5], [10], [13], [18], [22], [24], and the users accessing

the channels by repeating the sequences are guaranteed to

rendezvous in bounded time based on such principles as the

Chinese Remainder Theorem. The state-of-the-art results can

guarantee rendezvous in O(n2) time slots even for the worst

situations. However, they all assume that the users have the

capability to sense and access all the licensed channels, which

is unrealistic when the number of channels (n) is very large

and some wireless devices may only operate on a small frac-

tion of the channels. Therefore, the notion of heterogeneous

cognitive radio network (HCRN) came about, in which the

users may have different spectrum-sensing capabilities. Several

algorithms have been proposed for the rendezvous problem in

HCRN [21], [25], [26].

Let Ci ⊆ U be the spectrum sensing capability for user

i where Ci is a set of continuous channels in U [21], and

Vi ⊆ Ci be the set of sensed available channels. We say the

spectrum is fully available for user i if Vi = Ci; otherwise it is

partially available. For any two users a and b with capability

sets Ca, Cb and available channel sets Va, Vb, rendezvous is

verified in [21] when |Ca|, |Cb| ≤ 8, but they do not provide

a theoretical guarantee for all cases. The Heterogeneous Hop-

ping (HH) algorithm, proposed in [26], guarantees rendezvous

in O(|Ca||Cb|) time slots when the spectrums of both users are

fully available. Moreover, the Interlocking Channel Hopping

(ICH) algorithm, proposed in [25] for users with partially

available spectrum, also guarantees rendezvous in O(|Ca||Cb|)
time slots. In this paper, we propose improved algorithms

for both scenarios. Different from most Chinese Remainder

Theorem based constructions, our new method introduces two

‘pointers’ to construct the rendezvous sequence. For the fully

available scenario, the moving pointer traverses the channels

in the capability set while the fixed pointer stays at the first
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channel. For the partially available scenario, the fixed pointer

is modified to move once the moving pointer has traversed the

channels. The contributions of this paper are as follows:

1) We propose a rendezvous scheme for the special case

that |Va| = |Vb| = 2, Va ∩ Vb 6= ∅. Based on three

disjoint relaxed difference sets (DRDSs), the scheme

guarantees rendezvous in O(log log n) time slots, which

is the foundation of our rendezvous algorithms.

2) We propose the Traversing Pointer (TP) algorithm when

the users’ spectrum is fully available. Two ‘pointers’ are

introduced to traverse the channels and the algorithm

guarantees rendezvous in O(max{|Ca|, |Cb|} log log n)
time slots, which improves the latest result in [26] by

an O(min{|Ca|, |Cb|} factor.

3) We propose the Moving Traversing Pointers

(MTP) algorithm when the users’ spectrum is

partially available, which guarantees rendezvous in

O(max{|Va|, |Vb|}
2 log log n) time slots. When Vi only

accounts for a small fraction of Ci, the MTP algorithm

works more efficiently than the ICH algorithm [25].

4) We conduct extensive simulations to compare our algo-

rithms with extant algorithms and the results show that

our algorithms have better performance.

The remainder of the paper is organized as follows. The

next section highlights some related work on the rendezvous

problem. The system model and problem formulations are

given in Section III. We introduce the rendezvous scheme for

two available channels in Section IV as a foundation. Section

V describes the TP algorithm for the scenario that the users’

spectrum is fully available and Section VI presents the MTP

algorithm for when the users’ spectrum is partially available.

We have conducted extensive simulations, and the results are

discussed in Section VII. Finally, we conclude the paper in

Section VIII.

II. RELATED WORKS

A. Rendezvous for CRN

There are three categories of rendezvous algorithms: central-

ized algorithms, decentralized algorithms based on Common

Control Channel (CCC) and blind rendezvous algorithms.

Centralized algorithms assume the existence of a central

controller or a common control channel (CCC) which simpli-

fies the problem as users can coordinate through the central

unit [15], [20]. However, the central controller or the CCC

could be a bottleneck in large scale networks as well as being

easily vulnerable to adversary attacks. There are also several

decentralized algorithms establishing local CCCs [14], [16]

based on the sensed channels and they can be used for com-

munication between neighbors. Nevertheless, these algorithms

incur too much overhead in establishing and maintaining the

local CCCs.

Therefore, blind rendezvous algorithms without any CCC

were introduced in recent years [1]–[3], [5]–[7], [10], [12],

[18], [22]. Channel Hopping (CH) is the main technique

behind, where the users hop among the sensed available

channels in different time slots on the basis of a pre-generated

CH sequence, and rendezvous can be guaranteed once they

access the same channel in the same time slot.

Generated Orthogonal Sequence (GOS) [7] is a pioneering

work, which generates an orthogonal sequence of length

N(N + 1) based on a random permutation of {1, 2, · · · , n}.
Nevertheless, GOS works for the situation that all channels are

available. Quorum-based Channel Hopping (QCH) [1]–[3] is

proposed for synchronous users (i.e. the users start at the same

time) on the basis of quorum systems, while the enhanced

Asynchronous QCH [4] is applicable to two asynchronous

users, which is only limited to two channels.

Jump-Stay (JS) [18], Channel Rendezvous Sequence

(CRSEQ) [22], Disjoint Relaxed Difference Set (DRDS) [10],

Conversion Based Hopping (CBH) [13], and the scheme in

[5] are several representative blind rendezvous algorithms.

JS generates a sequence of length O(n3) for each user by

generating a jump-pattern and a stay-pattern. Two users are

guaranteed to rendezvous in O(n3) time slots in one of four

possible pattern combinations: jump-jump, jump-stay, stay-

jump, stay-stay. This result is later improved to O(n2) as

the Enhanced JS in [17]. CRSEQ constructs a sequence of

O(n2) numbers on the basis of the triangle number (i.e.

Ti = i(i+1)
2 when i ∈ [1, n]) and modular operations. Two

users can rendezvous on the same channel quickly by repeating

the sequence. DRDS based rendezvous algorithm is a new

method guaranteeing rendezvous in O(n2) time slots, which

is implemented by constructing a DRDS and transforming the

DRDS into a CH sequence. In [5], the rendezvous sequences

are designed based on a special construction for two channels.

It counts the number of available channels and finds two

primes larger than the number, and then two channels are

chosen according to the primes and rendezvous is guaranteed

in O(|Va||Vb| log log n) time slots where Va, Vb are the sets

of available channels. CBH algorithm is the only one using

no global information such as the number of channels n.

Assuming each user has a unique identifer (ID), CBH converts

the user’s ID into a distinct string and constructs sequences

based on the conversion. CBH guarantees rendezvous in

O((max{|Va|, |Vb|})
2) time slots. Most of these algorithms are

based on the Chinese Remainder Theorem by picking primes

and guaranteeing rendezvous according to laws and derivations

in number theory.

B. Rendezvous for Heterogeneous CRN

When the users have different spectrum-sensing capabilities,

the rendezvous process becomes different, especially when the

sensed channels account for a small fraction of all channels.

There are mainly three works [21], [25], [26] that propose

guaranteed rendezvous for heterogeneous networks.

In [21], rendezvous can be achieved when |Ca|, |Cb| ≤ 8,

where Ca, Cb ⊆ U represent the sensing capabilities. How-

ever, it does not provide a theoretical guarantee for all cases

under the heterogeneous circumstance. In [26], a new channel

hopping algorithm called Heterogeneous Hopping (HH) is pro-

posed, which is realized with a two-layer design: fixed-short-
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TABLE I
MTTR COMPARISON FOR FULLY & PARTIALLY AVAILABLE SCENARIOS

Algorithms Fully Available Scenario Partially Available Scenario

HH [26] O(|Ca||Cb|) −

ICH [25] O(|Ca||Cb|) O(|Ca||Cb|)

TP (this paper) O(max{|Ca|, |Cb|} log logn) −

MTP (this paper) O(max{|Va|, |Vb|}
2 log logn) O(max{|Va|, |Vb|}

2 log logn)

Remarks: 1) “−” means the algorithm is not applicable to the partially
available spectrum scenario; 2) Ca, Cb ⊆ U represent the capability sets
of user a and b respectively; 3) Va ⊆ Ca, Vb ⊆ Cb represent the available
channel set of users a and b respectively.

cycle and parity-alignment. These two techniques could help

guide rendezvous in O(|Ca||Cb|) time slots. However, this re-

sult is only applicable to the fully available spectrum. Interlock

Channel Hopping (ICH) is proposed in [25], where three types

of sequences are constructed for heterogeneous networks: fixed

sequence, rotating sequence and insurance sequence. This

method could guarantee rendezvous in O(|Ca||Cb|) time slots

but it is inefficient when the number of available channels is

much smaller than the capability.

III. PRELIMINARIES

A. System Model

Assume the licensed spectrum is divided into n non-

overlapping channels as U = {1, 2, . . . , n}. Each user is

equipped with a cognitive radio to sense the licensed spectrum

and a channel is available for the user if it is not occupied by

any nearby paying users. The users may have different spec-

trum sensing capabilities and suppose that user i can sense a

set of continuous channels as Ci = {cx, cx+1, . . . , cx+ki−1} ⊆
U [25], [26], where cx is the starting channel and ki = |Ci|,
1 ≤ x ≤ n − ki + 1. The channels in Ci are either occupied

by nearby paying users or available for the (unlicensed) user

i, and denote Vi ⊆ Ci as the set of all available channels after

the spectrum sensing stage. Time is assumed to be divided

into slots of equal length 2t, where t is the time sufficient for

establishing a communication link if the users access the same

channel at the same time slot (t = 10ms according to the IEEE

802.22 [23]). The intuitive idea of setting each time slot to be

2t is to ensure an overlap of t exists for link establishment

even when the users do not start their process at aligned time

slots [12].
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Fig. 1. Example of different spectrum sensing capability sets and available
channel sets. Channels in black are available and those in white means they
are occupied by some paying users.

For two users a and b with different spectrum sensing

capability sets Ca, Cb and available channel sets Va, Vb, they

can rendezvous on some common channel if Va ∩ Vb 6= ∅,
which implies that their capability sets intersect. In this

paper, we consider two scenarios: fully available spectrum

and partially available spectrum. If all channels in the users’

sensing capability sets are available after the spectrum sensing

stage, we call that fully available (i.e. Vi = Ci). But in most

circumstances, some channels are likely occupied (Vi 6= Ci)

and we call that partially available. For example, Fig. 1 shows

the different capability sets of users a and b, and it is a fully

available scenario when all channels in the capability sets are

available, as in Fig. 1(a). Fig. 1(b), where some channels are

occupied by the paying users, is a partially available scenario.

In each time slot, user i can access an available channel

from Vi and attempt rendezvous with its potential neighbors.

We say rendezvous happens when the users choose the same

channel in the same time slot. Time to rendezvous (TTR)

denotes the number of time slots taken to rendezvous once all

users have begun their attempt. Since the users are dispersed

in different places and they may begin the rendezvous process

in different time slots, we are interested in designing efficient

algorithms for asynchronous users and we use Maximum Time

to Rendezvous (MTTR) to judge the performance of the

rendezvous algorithms.

B. Problem Formulations

We formulate the rendezvous problem for the fully available

spectrum in HCRN as follows:

Problem 1: For any spectrum sensing capability Ci ⊆ U ,

design an algorithm to access channels over different time

slots t : fCi
(t) ∈ Ci, such that for any two users a and b with

Ca, Cb ⊆ U,Ca ∩Cb 6= ∅, supposing user a starts δ ≥ 0 time

slots earlier than user b,

∃Tδ, s.t. fCa
(Tδ + δ) = fCb

(Tδ)

The TTR value is Tδ and MTTR = max∀δ Tδ . The goal is

to design a rendezvous algorithm with bounded MTTR.

Although a fully available spectrum rarely happens in

practice, it represents the best spectrum condition for design-

ing rendezvous algorithms. For more general situations, we

formulate the rendezvous problem for the partially available

spectrum scenario as follows:

Problem 2: For any spectrum sensing capability Ci ⊆ U
and available channel set Vi ⊆ Ci, design an algorithm to

access channels over different time slots t : fCi,Vi
(t) ∈ Vi,

such that for any two users a and b with Ca, Cb ⊆ U, Va ⊆
Ca, Vb ⊆ Cb, Va ∩ Vb 6= ∅, supposing user a starts δ ≥ 0 time

slots earlier than user b,

∃Tδ, s.t. fCa,Va
(Tδ + δ) = fCb,Vb

(Tδ)

The TTR value is Tδ and MTTR = max∀δ Tδ . The goal is

to design rendezvous algorithm with bounded MTTR.

For example, U = {1, 2, . . . , 100}, Ca = {2, 3, 4, 5, 6},
Cb = {5, 6, 7}, and suppose that both users a and b adopt

a simple algorithm by repeating the channels in their sensing

capability set and user a is two time slots earlier than user b. As

depicted in Fig. 2, they rendezvous on channel 5 at time slot 9,
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and thus TTR = 9−2 = 7 time slots. In fact, if the users apply

the extant algorithms based on all channels in U , the maximum

rendezvous time could be O(n2) ≈ 10000 time slots, which is

unacceptable. This figure is an example of the fully available

spectrum scenario. When some channels are occupied, for

example Va = {2, 3, 6}, Vb = {6, 7}, they cannot rendezvous

on channel 5 and one more time slot is needed, and this is an

example of the partially available spectrum scenario.
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Fig. 2. An example of rendezvous problem in HCRN

IV. RENDEZVOUS SCHEME FOR TWO CHANNELS

In this section, we propose a rendezvous scheme for the

special scenario where each user has two available channels

|Va| = |Vb| = 2 and there exists at least one common channel

(Va∩Vb 6= ∅). Our method is to construct a sequence of length

T2 = 16(⌈log log n⌉ + 1) based on three Disjoint Relaxed

Difference Sets (DRDSs). Supposing the available channel set

of the user is V = {v1, v2} ⊆ U where v1 < v2, the scheme

is described in Alg. 1.

Algorithm 1 Rendezvous Scheme for Two Channels

1: l1 = ⌈log n⌉+ 1, l2 = ⌈log l1⌉+ 1;

2: Find the smallest number c ∈ [1, l1] such that the c-th bit

of v2 is 1 and the c-th bit of v1 is 0;

3: Let
−→
D = {∗, cl2 , cl2−1, . . . , c1} where (cl2 , cl2−1, . . . , c1)

is the binary representation of c;
4: Denote the rendezvous sequence S = ∅;
5: for r = 1 : l2 + 1 do

6: If
−→
D(r) = ∗, add S∗ = (v1, v1, v2, v1, v1, v2, v2, v2)

twice to S;

7: If
−→
D(r) = 0, add S0 = (v1, v1, v2, v1, v2, v1, v2, v2)

twice to S;

8: If
−→
D(r) = 1, add S1 = (v1, v1, v2, v1, v2, v2, v2, v1)

twice to S;

9: end for

10: Repeat the rendezvous S until rendezvous;

Alg. 1 finds the smallest number c ∈ [1, l1] such that

the c-th bit of v2 is 1 but the c-th bit of v1 is 0, where

l1 = ⌈log n⌉ + 1 (since v1 < v2, c must exist). It is obvious

that c can be represented by l2 = ⌈log log n⌉ + 1 binary

bits. We construct vector
−→
D by adding a special symbol ∗

to the binary representation as in Line 3, and we generate the

rendezvous sequence in l2+1 rounds. In each round, different

sequences S∗, S0, S1 are added twice to S and the intuitive

idea of designing these sequences comes from the DRDS [10].

Definition 4.1: A set S = {a1, a2, · · · , ak} ⊆ Zn (the set

of all nonnegative integers less than n) is called a Relaxed

Difference Set (RDS) if for every d 6= 0 (mod n) there exists

at least one ordered pair (ai, aj) such that ai − aj ≡ d (mod

n), where ai, aj ∈ D.

Definition 4.2: A set D = {S1, S2, · · · , Sh} is called a

Disjoint Relaxed Difference Set (DRDS) under Zn if ∀Si ∈ D,

Si is an RDS under Zn and ∀Si, Sj ∈ D, i 6= j, Si ∩ Sj = ∅.
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Fig. 3. Constructing sequences S0, S1 on the basis of D0, D1

Let D∗ = {{1, 2, 4, 5}, {3, 6, 7, 8}}, D0 = {{1, 2, 4, 6},
{3, 5, 7, 8}} and D1 = {{1, 2, 4, 8}, {3, 5, 6, 7}}; it is easy to

check that they are three DRDS under Z8. S∗, S0 and S1 are

then constructed on the basis of D∗, D0, D1 respectively. The

construction is shown in Fig. 3 (S0, S1 as examples). In each

round, S∗, S0 or S1 is added twice to the rendezvous sequence

because the users can start the algorithm asynchronously.

Lemma 4.1: Every 8 continuous time slots in each round

correspond to a DRDS.

Proof: Consider the round containing two S0 where S0 is

constructed based on the DRDS D0. Every 8 continuous time

slots [i, i + 7] where 1 ≤ i ≤ 9 can be seen as rotating S0

by i − 1 time slots. From the definition of RDS, the rotation

of the RDS is also an RDS and thus the rotation of S0 also

corresponds to a DRDS. For example, when i = 3, the 8
continuous time slots are {v2, v1, v2, v1, v2, v2, v1, v1} and that

corresponds to the DRDS {{2, 4, 7, 8}, {1, 3, 5, 6}}. We can

get the same result for the other two sequences S1, S∗, and

thus the lemma holds.

Consider two users a and b with available channel sets Va =
{a1, a2} and Vb = {b1, b2}, and suppose the chosen numbers

in Line 2 are ca, cb respectively. We show the correctness of

Alg. 1 based on ca, cb.

Lemma 4.2: Alg. 1 guarantees rendezvous in 16 time slots

if ca = cb.

Proof: When ca = cb, we claim that a1 6= b2 and a2 6= b1.

If a1 = b2, we have b1 < b2 = a1 < a2. From Line 2, the

cb-th bit of b2 is 1 and the ca-th bit of a1 is 0, but ca = cb
and it is a contradiction. Thus a1 6= b2. Similarly, a2 6= b1.

Since the users have at least one common channel, a1 = b1 or

a2 = b2 and we show that both pairs (a1, b1), (a2, b2) appear

in the sequences when two users have begun their process.

Denote the constructed sequences for the users as Sa and

Sb respectively, and they are composed of l2 + 1 rounds. We

say the i-th round of user a (denoted as r(a, i)) overlaps with

the j-th round of user b (r(b, j)) if their intersection length is

at least 8 (time slots). Without loss of generality, suppose user

a is δ time slots earlier than user b. We show the lemma in

two cases.

1) If r(b, 1) overlaps with r(a, 1) and there are at least 8
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overlapping time slots. From Lemma 4.1, the continuous

8 time slots correspond to two DRDSs for users a and b.
From the definition of DRDS, we can check that (a1, b1)
and (a2, b2) both exist in the 8 time slots, and thus they

rendezvous in the first round of user b.
2) If r(b, 1) overlaps with r(a, i) where 1 < i ≤ l2 + 1 and

there are at least 8 overlapping time slots. If (a1, b1) does

not exist in the intersecting 8 slots, channel b1 meets a2
in four time slots and b2 also has to meet a1 in four time

slots. However, the sequence added in r(b, 1) is different

from the sequence in r(a, i) (S∗ is added twice in r(b, 1)
while S0 or S1 is added in r(a, i)), and this situation

cannot happen. Thus, (a1, b1) exists in the first round of

user b. Similarly, we can prove that (a2, b2) exists. Thus

they can rendezvous in 16 time slots.
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Fig. 4. Example of r(b, 1) overlapping with r(a, 1)
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Fig. 5. Example of r(b, 1) overlapping with r(a, i) where 1 < i ≤ l2 + 1

As depicted in Fig. 4, r(b, 1) overlaps with r(a, 1) and

the first 8 overlapping time slots form two DRDSs as

{{2, 3, 7, 8}, {1, 4, 5, 6}} and {{1, 2, 4, 5}, {3, 6, 7, 8}}. Then

we can check that (a1, b1) exists in the 2-nd time slot and

(a2, b2) happens in the 6-th time slot. Similarly, Fig. 5

shows an example that r(b, 1) overlaps with r(a, i) where

1 < i ≤ l2 + 1, and both pairs (a1, b1) and (a2, b2) exist in

the first overlapping 8 time slots. Therefore, the lemma holds.

Lemma 4.3: Alg. 1 guarantees rendezvous in T2 =
16(⌈log log n⌉+ 1) time slots if ca 6= cb.

Proof: When ca 6= cb, there are four possible combi-

nations of rendezvous situations: a1 = b1, a1 = b2, a2 =
b1, a2 = b2. Thus the two users’ overlapping sequences must

contain the four pairs (a1, b1), (a1, b2), (a2, b1), (a2, b2). We

show the lemma in two cases.

1) If r(b, 1) overlaps with r(a, 1), (a1, b1), (a2, b2) exists in

the overlapping part from Lemma 4.2. Since ca 6= cb,

without loss of generality, suppose ca < cb and there

exists 1 ≤ i ≤ l2 such that the i-th bit of ca is 0 but the i-
th bit of cb is 1. When r(b, i+1) overlaps with r(a, i+1),
we claim that (a1, b2) and (a2, b1) exist in the overlapping

part. If (a1, b2) does not happen, a1 has to meet b1 four

times and a2 has to meet b2 four times; however, r(a, i+
1) and r(b, i + 1) use different sequences (S0 and S1)

and this scenario cannot happen. Thus (a1, b2) appears at

least once during the intersecting part. Similarly, (a2, b1)
also exists. Therefore, rendezvous can be guaranteed in

16(i+ 1) ≤ T2 time slots.

2) If r(b, 1) intersects with r(a, i) where 1 < i ≤ l2 + 1,

the pairs (a1, b1) and (a2, b2) both exist from Lemma 4.2.

Using a similar technique, we can check that (a1, b2) and

(a2, b1) exist in the first round of user b.

Combining the two cases, rendezvous can be guaranteed in

T2 time slots, and the lemma holds.

From Lemma 4.2-4.3, we have the theorem:

Theorem 1: Alg. 1 guarantees rendezvous in T2 =
16(⌈log log n⌉ + 1) time slots for the special situation that

each user has two available channels.

Remark 4.1: Another method to achieve rendezvous for

two available channels is proposed in [5] which has sequence

length O(log log n). It however is too complicated and difficult

to implement. In contrast, our proposed algorithm is simple

and easy to implement in reality. More importantly, the intu-

ition and the method of our construction are entirely different

from [5].

V. RENDEZVOUS FOR FULLY AVAILABLE SPECTRUM

For the fully available spectrum scenario, we propose a

new method called Traversing Pointer (TP) algorithm based

on the rendezvous scheme for two channels. Consider t-

wo users a and b with spectrum sensing capability sets

Ca, Cb ⊆ U , the TP algorithm guarantees rendezvous in

O(max{|Ca|, |Cb|} log log n} time slots. Moreover, we show

a constructive lower bound such that max{|Ca|, |Cb|} time

slots are needed for rendezvous.

A. Traversing Pointer Algorithm

Suppose user i has the spectrum sensing capability set as

Ci = {cx, cx+1, . . . , cx+ki−1} ⊆ U where ki = |Ci|, 1 ≤ x ≤
n− ki + 1 and ∀cj ∈ Ci, channel cj is available.

The TP algorithm works on the basis of the rendezvous

scheme for two available channels. There are two constructed

‘pointers’ where fp is fixed at the first channel cx and mp
is a moving pointer that traverses the capability set back and

forth. We divide the time into rounds and each round contains

L = 2T2 time slots (we repeat the constructed sequence from

Alg. 1 twice to tackle the asynchronous situation). fp is fixed

but mp changes in each round. As illustrated in Fig. 6, mp
moves from the last channel cx+ki−1 to the first one cx in the

first ki − 1 rounds, and then from the first one to the last one

in the next ki−1 rounds. The user continues the process until

rendezvous.

For users a and b with Ca = {cx, cx+1, . . . , cx+ka−1}, Cb =
{cy, cy+1, . . . , cy+kb−1} where 1 ≤ x ≤ n− ka + 1, 1 ≤ y ≤
n − kb + 1, and Ca ∩ Cb 6= ∅, a situation must happen with

cx ∈ Cb or cy ∈ Ca. Therefore, the constructed two pointers

can help guarantee rendezvous when one user’s moving pointer

coincides with the other’s fixed pointer.
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Algorithm 2 Traversing Pointer Algorithm

1: t := 1, r := 1, L := 2T2;

2: fp := cx, mp := cx+ki−1;

3: while not rendezvous do

4: r := ⌊t/L⌋+ 1, p := (t− 1)%L+ 1;

5: r′ := (r − 1)%(2(ki − 1));
6: if 0 ≤ r′ < ki − 1 then

7: mp := cx+ki−1−r′ ;

8: else

9: mp := cx+r′%(ki−1);

10: end if

11: Invoke Alg. 1 with available channels {fp,mp} and

repeat the output twice to construct the rendezvous

sequence RSr = {s1, s2, . . . , sL};
12: Access the p-th channel of the sequence sp ∈ RSr;

13: t := t+ 1;

14: end while

�� ���� ���� ���� ��� ����	
�

�� �

Fig. 6. There are two pointers constructed in Alg. 2. fp is fixed at the first
channel in all rounds, while mp traverses the channels back and forth and
round by round.

Theorem 2: Alg. 2 guarantees rendezvous for the fully

available spectrum scenario in O(max{|Ca|, |Cb|} log log n)
time slots.

Proof: Since the channels in the capability sets Ca and

Cb are continuous and Ca ∩ Cb 6= ∅, the first channel of Ca

is in Cb (i.e. cx ∈ Cb) or the first channel of Cb is in Ca

(i.e. cy ∈ Ca). Without loss of generality, suppose cx ∈ Cb.

Denote the consecutive L time slots constructed in Line 11 as

a round, and the chosen available channels in the r-th round

of two users are {fpa,r,mpa,r}, {fpb,r,mpb,r} respectively.

We say the i-th round of user a (denoted as ra,i) overlaps with

the j-th round of user b (rb,j) if their intersection part contains

at least L/2 time slots. From Theorem 1, if ra,i overlaps with

rb,j and {fpa,i,mpa,i} ∩ {fpb,j ,mpb,j} 6= ∅, two users can

achieve rendezvous in L = 32(⌈log log n⌉+ 1) time slots.

If user a starts earlier than user b, suppose the i-th round

of user a overlaps with the first round of user b, after r =
y+ kb− 1−x rounds, ra,i+r overlaps with rb,1+r where user

b’s moving pointer chooses channel mpb,1+r = cy+kb−(1+r) =
cx = fpa,i+r, then rendezvous is guaranteed in (r + 1)L ≤
|Cb|L time slots.

If user b starts earlier than user a, and suppose the i-th
round of user b overlaps with the first round of user a, then

there are two situations according to the moving direction of

user b’s moving pointer (mp). It is easy to check that user

b’s moving pointer chooses channel cx within 2kb rounds

no matter which direction it is heading. Thus rendezvous is

guaranteed in 2|Cb|L time slots.

Similarly, when cy ∈ Ca, rendezvous can be guaranteed in

2|Ca|L time slots. Therefore, Alg. 2 guarantees rendezvous

in 2max{|Ca|, |Cb|}L = O(max{|Ca|, |Cb|} log log n) time

slots when the spectrum is fully available.

B. A Constructive Lower Bound

In order to show the efficiency of the TP algorithm, we

show a constructive lower bound:

Theorem 3: max{|Ca|, |Cb|} time slots are needed to guar-

antee rendezvous for the fully available spectrum condition.

Proof: Suppose user a can sense only 1 channel (i.e.

|Ca| = 1) which belongs to Cb. In order to discover the

channel for rendezvous, user b has to traverse all channels

in Cb at least once and thus (at least) max{|Ca|, |Cb|} time

slots are needed, which concludes the theorem.

It is clear that the lower bound still holds even two users

are synchronous, and the TP algorithm is nearly optimal with

only an additional O(log log n) factor. Compared to the state-

of-the-art result O(|Ca||Cb|) in [26], the TP algorithm removes

an O(min{|Ca|, |Cb|} factor and it works more efficiently.

VI. RENDEZVOUS FOR PARTIALLY AVAILABLE SPECTRUM

In practical situations, the sensed available channels may be

only a fraction of the spectrum sensing capability set. For two

users a and b with capability sets Ca, Cb ⊆ U and available

channel sets Va ⊆ Ca, Vb ⊆ Cb, the TP algorithm may not

guarantee rendezvous. For example, suppose the first channel

of user a (cx) belongs to user b’s capability set (cx ∈ Cb), cx
is available for user a (cx ∈ Va), but it is not available for user

b (cx /∈ Vb). The fixed pointer of user a stays at channel cx all

the time but user b cannot access cx, and thus rendezvous may

not happen. In order to overcome this, we propose a modified

algorithm called Moving Traversing Pointers (MTP) in this

section. The intuitive idea is to move the ‘fixed pointer’ after

the ‘moving pointer’ has already traversed the channels.

A. Algorithm Description

Suppose user i has the spectrum sensing capability set as

Ci = {cx, cx+1, . . . , cx+ki−1} ⊆ U where ki = |Ci| and

1 ≤ x ≤ n − ki + 1, and the available channel set Vi ⊆ Ci.

Order the available channels by increasing order and denote

Vi = {ci,1, ci,2, . . . , ci,mi
} where mi = |Vi| and ∀1 ≤ j1 <

j2 ≤ mi, ci,j1 < ci,j2 holds. The MTP algorithm is presented

in Alg. 3.

Alg. 3 is different from the TP algorithm where the ‘fixed

pointer’ does not always stay at the same channel. Assume

time is divided into loops of length P = 2(mi−1)L time slots

and each loop contains 2(mi−1) rounds of length L = 2T2 =
32(⌈log log n⌉+ 1). The pointer fp stays at a fixed available

channel in each loop and it moves to the next available one

every P time slots as in Line 7. Similar to the TP algorithm,

the ‘moving pointer’ stays at a fixed channel in each round

and traverses the available channels back and forth and round

by round. As illustrated in Fig. 7(a), fp is fixed at channel

ci,1 for the first P time slots and mp traverses from the last

available channel ci,mi
to the first one ci,1, and then back to
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Algorithm 3 Moving Traversing Pointers Algorithm

1: t := 1, r := 1, mi = |Vi|;
2: L := 2T2, P := 2(mi − 1)L;

3: fp := ci,1, mp := ci,mi
;

4: while Not rendezvous do

5: l := ⌊t/P ⌋+ 1, p1 = (t− 1)%P + 1;

6: r := ⌊p1/L⌋+ 1, p2 := (p1 − 1)%L+ 1;

7: l′ := (l − 1)%mi + 1, fp := ci,l′ ;
8: r′ := (r − 1)%(2(mi − 1)) + 1;

9: if 0 < r′ < mi then

10: mp := ci,mi+1−r′ ;

11: else

12: mp := ci,r′%(mi−1);

13: end if

14: Invoke Alg. 1 with available channels {fp,mp} and

repeat the output twice to construct the rendezvous

sequence RSl,r = {s1, s2, . . . , sL};
15: Access the p2-th channel as sp2

∈ RSl,r;

16: t := t+ 1;

17: end while

the last one every L time slots. In the next loop of P time

slots, fp moves to channel ci,2 as Fig. 7(b) and mp repeats

the traversal. This process continues until rendezvous.

���� ���� ���� ���� ��� ���	�
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Fig. 7. There are two pointers constructed in Alg. 3. mp traverses the channels
back and forth and round by round, while fp moves to the next available
channel every 2(mi − 1) rounds.

B. Correctness and Efficiency

Consider users a and b with capability sets Ca, Cb ⊆
U and available channel sets Va ⊆ Ca, Vb ⊆ Cb where

Ca ∩ Cb 6= ∅. Denote Va = {ca,1, ca,2, . . . , ca,ma
}, Vb =

{cb,1, cb,2, . . . , cb,mb
} where ma = |Va|,mb = |Vb|. We show

the correctness and the efficiency as follows:

Theorem 4: Alg. 3 guarantees rendezvous

for the partially available spectrum scenario in

O((max{|Va|, |Vb|})
2 log log n) time slots.

Proof: Since Va ∩ Vb 6= ∅, there exist 1 ≤ x ≤ ma, 1 ≤
y ≤ mb such that ca,x = cb,y is a common channel. Denote

the consecutive L time slots constructed in Line 14 as a

round and every 2(mi − 1) rounds as a loop (i = a or

b). Denote the r-th round of l-th loop for users a and b as

ra(l, r) and rb(l, r), and the chosen available channels in the

round as {fpa(l, r),mpa(l, r)} and {fpb(l, r),mpb(l, r)} re-

spectively. Similar to the analysis of Theorem 2, we say round

ra(la, ra) overlaps with round rb(lb, rb) if their intersection

part contains at least L/2 time slots. From Theorem 1, if

ra(la, ra) overlaps with rb(lb, rb) and the chosen channels

satisfy {fpa(l, r),mpa(l, r)} ∩ {fpb(l, r),mpb(l, r)} 6= ∅,
rendezvous can be achieved in the intersection part.

Without loss of generality, assuming ma = |Va| ≤ |Vb| =
mb and we show the theorem in two cases.

If user a starts the algorithm earlier than user b, suppose

ra(la, ra) overlaps with the first round of user b (rb(1, 1)).
After (y−1)·2(mb−1) rounds, user b’s fixed pointer (fp) stays

at channel cb,y for the next 2(mb − 1) rounds. Since 2(mb −
1) ≥ 2(ma−1), user a’s moving pointer (mp) has enough time

(rounds) to traverse all available channels including ca,x =
cb,y , and therefore the chosen channels overlap in 2(ma − 1)
rounds and rendezvous is guaranteed in [2(mb− 1) · (y− 1)+
2(ma − 1)] · L ≤ 2(mb − 1)mbL time slots.

If user b starts the algorithm earlier than user a, rendezvous

is also guaranteed in 2(mb − 1)mbL time slots. Due to the

page limits, we omit the details.

Similarly, if ma ≥ mb, rendezvous is guaranteed in

2(ma − 1)maL time slots. Therefore, Alg. 3 guarantees

rendezvous in 2(max{ma,mb})
2 · 32(⌈log log n⌉ + 1) =

O((max{|Va|, |Vb|})
2 log log n) time slots.

Compared to the state-of-the-art result O(|Ca||Cb|) in [25],

the MTP algorithm works much faster when the number of

available channels |Va|, |Vb| only accounts for a small fraction

of |Ca|, |Cb|. When the spectrum is fully available, the MTP

algorithm is only an O(log log n) factor worse than that in

[25], which is also acceptable.

VII. SIMULATION

In this section, we evaluate our proposed algorithms un-

der various circumstances and compare the results with the

state-of-the-art rendezvous algorithms. We choose the Het-

erogeneous Hopping (HH) algorithm [26] to compare with

the Traversing Pointer (TP) algorithm for the fully avail-

able spectrum scenario, and the Interlock Channel Hopping

(ICH) algorithm [25] to compare with the Moving Traversing

Pointers (MTP) algorithm for the partially available spectrum

scenario. For users a and b with capability sets Ca, Cb ⊆ U =
{1, 2, . . . , n} and available channel sets Va ⊆ Ca, Vb ⊆ Cb,

we simulate these algorithms under different circumstances

and use the maximum time to rendezvous (MTTR) as the

measurement. The presented results in the section are based

on 1000 separate runs.

For the fully available scenario, let Ca = {1, 2, . . . , n/2}
and Cb = {n/2, n/2 + 1, . . . , n} and thus there is on-

ly one common channel in their capabilities. When n in-

creases from 50 to 500, Fig. 8 shows that the the TP

algorithm increases much slower than the HH algorithm.

From Theorem 2, the TP algorithm guarantees rendezvous in

O(max{|Ca|, |Cb|} log log n) time slots, which grows linear-

ly when |Ca|, |Cb| is linearly increasing, which corroborate

our analysis. The worst situation for the HH algorithm is

O(|Ca||Cb|) which is agreed to also by the simulation result.

We evaluate the performance of the HH and the TP algo-

rithms for the more general situation; let Ca = {1, 2, . . . , n/2}
and Cb = {0.1n, 0.1n + 1, . . . , 0.6n} and thus the ratio
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Fig. 8. Comparison between the HH algorithm and the TP algorithm when
n increases from 50 to 500 and |Ca ∩ Cb| = 1
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Fig. 9. Comparison between the HH algorithm and the TP algorithm when
n increases from 50 to 500 and |Ca ∩ Cb| = 0.4n
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Fig. 10. Comparison between the HH algorithm and the TP algorithm when
n = 500 and |Ca ∩ Cb| increases from 1 to 250

of common channels is high (80% for each set). When n
increases from 50 to 500, the TP algorithm also outperforms

the HH algorithm, as illustrated in Fig. 9. Similarly, the

MTTR value of the TP algorithm increases linearly as n
increases, while the value of the HH algorithm is much larger.

To show the impact of the number of common channels,
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Fig. 11. Comparison between the ICH algorithm and the MTP algorithm
when n increases from 50 to 500
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Fig. 12. Comparison between the ICH algorithm and the MTP algorithm
when n = 500 and |Va ∩ Vb| increases from 1 to 100

we fix n = 500 and Ca = {1, 2, . . . , 250}, denote Cb =
{x, x+ 1, . . . , x+ n/2}, and when |Ca ∩ Cb| increases from

1 to 250 (correspondingly, x decreases from 250 to 1), the

MTTR values of both HH and TP algorithms decrease as

depicted in Fig. 10. The figure shows that the TP algorithm

has better performance compared to the HH algorithm. When

|Ca ∩ Cb| = 250, only a constant number of time slots are

needed (3 and 4 respectively) and that suits the analysis of

Alg. 1 since they can achieve rendezvous in the first round by

choosing the same starting channel.

For the partially available spectrum scenario, we first

generate the capability sets as Ca = {1, 2, . . . , 0.6n} and

Cb = {0.4n, 0.4n + 1, . . . , n} and define θg as the ratio of

available channels in their intersection part (Cg = Ca ∩Cb =
{0.4n, 0.4n+1, . . . , 0.6n}) and θa, θb as the ratio of available

channels in Ca \ Cg, Cb \ Cg respectively. We fix θg = θa =
θb = 0.1; when n increases from 50 to 500, Fig. 11 shows that

the MTP algorithm is much better than the ICH algorithm.

This is because the MTP algorithm guarantees rendezvous

in O((max{|Va|, |Vb|})
2 log log n) time slots while the ICH

algorithm guarantees rendezvous in O(|Ca||Cb|) time slots.

When the ratios θg, θa, θb are small, |Va|, |Vb| are much smaller
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and the MTP algorithm is significantly better. In order to show

the impact of the number of common channels, we set n = 500
and let Ca, Cb, θa, θb be the same as Fig. 11; when the number

of common channels increases from 10 to 100 (θg increases

from 10% to 100%), Fig. 12 shows that the MTTR value of

the MTP algorithm increases while the MTTR value of the

ICH algorithm decreases. This is because the MTP algorithm

is impacted by the number of available channels and thus

the MTTR value increases. Differently, the ICH algorithm

has more chance to rendezvous if there are more common

channels. However, MTP also outperforms the ICH algorithm

under the circumstance.

Through the simulation results, the TP algorithm proposed

for the fully available spectrum scenario reduces the MTTR
value significantly as compared to the HH algorithm; the

MTP algorithm proposed for the partially available spectrum

scenario also outperforms the ICH algorithm under most cir-

cumstances, especially when the number of available channels

accounts for only a small fraction.

VIII. CONCLUSION

The rendezvous problem has attracted the attention of both

the academia and the industry due to its importance in the con-

struction of Cognitive Radio Networks (CRNs). In this paper,

we study the rendezvous problem for Heterogeneous Cognitive

Radio Networks (HCRNs) where the users may have different

spectrum sensing capabilities. Different from most extant

Chinese Remainder Theorem based constructions, we propose

a new method to design rendezvous sequence which improves

the state-of-the-art results. For the fully available spectrum

scenario, we introduce two ‘pointers’, where the fixed pointer

stays at the first channel of the capability set, while the moving

pointer traverses all channels. Based on a special rendezvous

scheme for two available channels, this new method guarantees

rendezvous in O(max{|Ca|, |Cb|} log log n) time slots, where

Ca, Cb ⊆ U = {1, 2, . . . , n} are two capability sets. This

result is significantly better than the state-of-the-art result

(O(|Ca||Cb|) [26]). For the partially available spectrum s-

cenario, we propose the Moving Traversing Pointers (MTP)

algorithm by modifying the fixed pointer, which guaran-

tees rendezvous in O((max{|Va|, |Vb|})
2 log log n) time slots

(Va ⊆ Ca, Vb ⊆ Cb are the sets of available channels). The

MTP algorithm works more efficiently than the ICH algorithm

[25] when the number of available channels is small.

In the future, we hope to focus on deriving an explicit lower

bound for the partially available spectrum scenario and design-

ing algorithms that work efficiently under all circumstances.
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