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Abstract We give the first algorithm that is both query-efficient and time-efficient
for testing whether an unknown function f : {0,1}n → {−1,1} is an s-sparse
GF(2) polynomial versus ε-far from every such polynomial. Our algorithm makes
poly(s,1/ε) black-box queries to f and runs in time n · poly(s,1/ε). The only pre-
vious algorithm for this testing problem (Diakonikolas et al. in Proceedings of the
48th Annual Symposium on Foundations of Computer Science, FOCS, pp. 549–558,
2007) used poly(s,1/ε) queries, but had running time exponential in s and super-
polynomial in 1/ε.
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Our approach significantly extends the “testing by implicit learning” methodology
of Diakonikolas et al. (Proceedings of the 48th Annual Symposium on Foundations
of Computer Science, FOCS, pp. 549–558, 2007). The learning component of that
earlier work was a brute-force exhaustive search over a concept class to find a hy-
pothesis consistent with a sample of random examples. In this work, the learning
component is a sophisticated exact learning algorithm for sparse GF(2) polynomials
due to Schapire and Sellie (J. Comput. Syst. Sci. 52(2):201–213, 1996). A crucial
element of this work, which enables us to simulate the membership queries required
by Schapire and Sellie (J. Comput. Syst. Sci. 52(2):201–213, 1996), is an analysis
establishing new properties of how sparse GF(2) polynomials simplify under certain
restrictions of “low-influence” sets of variables.

Keywords Property testing · GF(2) polynomials · Sparse polynomials ·
Randomized algorithms

1 Introduction

Background and Motivation Given black-box access to an unknown function f :
{0,1}n → {−1,1}, a natural question to ask is whether the function has a particular
form. Is it representable by a small decision tree, or small circuit, or sparse poly-
nomial? In the field of computational learning theory, the standard approach to this
problem is to assume that f belongs to a specific class C of functions of interest, and
the goal is to identify or approximate f . In contrast, in property testing nothing is
assumed about the unknown function f , and the goal of the testing algorithm is to
output “yes” with high probability if f ∈ C and “no” with high probability if f is
ε-far from every g ∈ C . (Here the distance between two functions f,g is measured
with respect to the uniform distribution on {0,1}n, so f and g are ε-far if they dis-
agree on more than an ε fraction of all inputs.) The complexity of a testing algorithm
is measured both in terms of the number of black-box queries it makes to f (query
complexity) as well as the time it takes to process the results of those queries (time
complexity).

There are many connections between learning theory and testing, and a grow-
ing body of work relating the two fields (see [24] and references therein). Testing
algorithms have been given for a range of different function classes such as linear
functions over GF(2) (i.e. parities) [4]; degree-d GF(2) polynomials [1]; Boolean lit-
erals, conjunctions, and s-term monotone DNF formulas [22]; k-juntas (i.e. functions
which depend on at most k variables) [12]; halfspaces [20]; and more (see surveys of
[10, 23, 26]).

Recently, Diakonikolas et al. [8] gave a general technique, called “testing by im-
plicit learning,” which they used to test a variety of different function classes that were
not previously known to be testable. Intuitively, these classes correspond to functions
with “concise representations,” such as s-term DNFs, size-s Boolean formulas, size-s
Boolean circuits, and s-sparse polynomials over constant-size finite fields. For each
of these classes, the testing algorithm of [8] makes only poly(s,1/ε) queries (inde-
pendent of n).
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The main drawback of the [8] testing algorithm is its time complexity. For each of
the classes mentioned above, the algorithm’s running time is 2ω(s) as a function of s

and ω(poly(1/ε)) as a function of ε.1 Thus, a natural question asked by [8] is whether
any of these classes can be tested with both time complexity and query complexity
poly(s,1/ε).

Our Result: Efficiently Testing Sparse GF(2) Polynomials In this paper we focus on
the class of s-sparse polynomials over GF(2). Polynomials over GF(2) (equivalently,
parities of ANDs of input variables) are a simple and well-studied representation for
Boolean functions. It is well known that every Boolean function has a unique repre-
sentation as a multilinear polynomial over GF(2), so the sparsity (number of mono-
mials) of this polynomial is a very natural measure of the complexity of f . Sparse
GF(2) polynomials have been studied by many authors from a range of different per-
spectives such as learning [3, 6, 7, 11, 27], approximation and interpolation [14, 16,
25], the complexity of (approximate) counting [9, 17, 18], and property testing [8].

The main result of this paper is a testing algorithm for s-sparse GF(2) polynomials
that is both time-efficient and query-efficient:

Theorem 1 There is a poly(s,1/ε)-query algorithm with the following performance
guarantee: given parameters s, ε and black-box access to any f : {0,1}n → {−1,1},
it runs in time poly(s,1/ε) and tests whether f is an s-sparse GF(2) polynomial
versus ε-far from every s-sparse polynomial.

This answers the question of [8] by exhibiting an interesting and natural class of
functions with “concise representations” that can be tested efficiently, both in terms
of query complexity and running time.

We obtain our main result by extending the “testing by implicit learning” approach
of [8]. In that work the “implicit learning” step used a naive brute-force search for a
consistent hypothesis, while in this paper we employ a sophisticated proper learning
algorithm due to Schapire and Sellie [27]. However, it is much more difficult to “im-
plicitly” run the [27] algorithm than the brute-force search of [8]. One of the main
technical contributions of this paper is a new structural theorem about how s-sparse
GF(2) polynomials are affected by certain carefully chosen restrictions; this is an
essential ingredient that enables us to use the [27] algorithm. We elaborate on this
below.

Techniques We begin with a brief review of the main ideas of [8]. The approach
of [8] builds on the observation of Goldreich et al. [13] that any proper learning
algorithm for a function class C can be used as a testing algorithm for C . (Recall that a
proper learning algorithm for C is one which outputs a hypothesis h that itself belongs
to C .) The idea behind this observation is that if the function f being tested belongs

1We note that the algorithm also has a linear running time dependence on n, the number of input variables;
this is in some sense inevitable since the algorithm must set n bit values just to pose a black-box query
to f . Our algorithm has running time linear in n for the same reason. For the rest of the paper we discuss
the running time only as a function of s and ε.
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to C then a proper learning algorithm will succeed in constructing a hypothesis that
is close to f , while if f is ε-far from every g ∈ C then any hypothesis h ∈ C that the
learning algorithm outputs must necessarily be far from f . Thus any class C can be
tested to accuracy ε using essentially the same number of queries that are required to
properly learn the class to accuracy �(ε).

The basic approach of [13] did not yield query-efficient testing algorithms
(with query complexity independent of n) since virtually every interesting class of
functions over {0,1}n requires �(logn) examples for proper learning. However,
[8] showed that for many classes of functions defined by a size parameter s, it is
possible to “implicitly” run a (very naive) proper learning algorithm over a number
of variables that is independent of n, and thus obtain an overall query complexity
independent of n. More precisely, they first observed that for many classes C every
f ∈ C is “very close” to a function f ′ ∈ C for which the number r of relevant variables
is polynomial in s and independent of n; roughly speaking, the relevant variables for
f ′ are the variables that have high influence in f . (For example, if f is an s-sparse
GF(2) polynomial, an easy argument shows that there is a function f ′—obtained by
discarding from f all monomials of degree more than log(s/τ)—that is τ -close to f

and depends on at most r = s log(s/τ) variables.) They then showed how, using ideas
of Fischer et al. [12] for testing juntas, it is possible to construct a sample of uniform
random examples over {0,1}r which with high probability are all labeled accord-
ing to f ′. At this point, the proper learning algorithm employed by [8] was a naive
brute-force search. The algorithm tried all possible functions in C over r (as opposed
to n) variables, to see if any were consistent with the labeled sample. Diakonikolas
et al. [8] thus obtained a testing algorithm with overall query complexity poly(s/ε)

but whose running time was dominated by the brute-force search. For the class of
s-sparse GF(2) polynomials, their algorithm used Õ(s4/ε2) queries but had running
time at least 2ω(s) · (1/ε)log log(1/ε) (for the required value of τ , which is poly(ε/s),
there are at least this many s-sparse GF(2) polynomials over r = s log(s/τ) vari-
ables).

Current Approach The high-level idea of the current work is to employ a much
more sophisticated—and efficient—proper learning algorithm than brute-force
search. In particular we would like to use a proper learning algorithm which, when
applied to learn a function over only r variables, runs in time polynomial in r and
in the size parameter s. For the class of s-sparse GF(2) polynomials, precisely such
an algorithm was given by Schapire and Sellie [27]. Their algorithm, which we de-
scribe in Sect. 4, is computationally efficient and generates a hypothesis h which is an
s-sparse GF(2) polynomial. But this power comes at a price: the algorithm requires
access to a membership query oracle, i.e. a black-box oracle for the function being
learned. Thus, in order to run the Schapire/Sellie algorithm in the “testing by implicit
learning” framework, it is necessary to simulate membership queries to an approx-
imating function f ′ ∈ C which is close to f but depends on only r variables. This
is significantly more challenging than generating uniform random examples labeled
according to f ′, which is all that is required in the original [8] approach.

To see why membership queries to f ′ are more difficult to simulate than uniform
random examples, recall that f and the f ′ described above (obtained from f by dis-
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carding high-degree monomials) are τ -close. Intuitively this is extremely close, dis-
agreeing only on a 1/m fraction of inputs for an m that is much larger than the number
of random examples required for learning f ′ via brute-force search (this number is
“small”—independent of n—because f ′ depends on only r variables). Thus in the
[8] approach it suffices to use f , the function to which we actually have black-box
access, rather than f ′ to label the random examples used for learning f ′; since f and
f ′ are so close, and the examples are uniformly random, with high probability all the
labels will also be correct for f ′. However, in the membership query scenario of the
current paper, things are no longer that simple. For any given f ′ which is close to f,

one can no longer assume that the learning algorithm’s queries to f ′ are uniformly
distributed and hence unlikely to hit the error region—indeed, it is possible that the
learning algorithm’s membership queries to f ′ are clustered on the few inputs where
f and f ′ disagree.

In order to successfully simulate membership queries, we must somehow consis-
tently answer queries according to a particular f ′, even though we only have oracle
access to f . Moreover this must be done implicitly in a query-efficient way, since
explicitly identifying even a single variable relevant to f ′ requires at least �(logn)

queries. This is the main technical challenge in the paper.
We meet this challenge by showing that for any s-sparse polynomial f , an approx-

imating f ′ can be obtained as a restriction of f by setting certain carefully chosen
subsets of variables to zero. Roughly speaking, this restriction is obtained by ran-
domly partitioning all of the input variables into r subsets and zeroing out all subsets
whose variables have small “collective influence” (more precisely, small variation in
the sense of [12]).2 Our main technical theorem (Theorem 12, given in Sect. 5) shows
that this f ′ is indeed close to f and has at most one of its relevant variables in each
of the surviving subsets. We moreover show that these relevant variables for f ′ all
have high influence in f .3 This property is important in enabling our simulation of
membership queries. In addition to the crucial role that Theorem 12 plays in the com-
pleteness proof for our test, we feel that the new insights the theorem gives into how
sparse polynomials “simplify” under (appropriately defined) random restrictions may
be of independent interest.

Organization In Sect. 3, we present our testing algorithm, Test-Sparse-Poly, along
with a high-level description and sketch of correctness. In Sect. 4 we describe in
detail the “learning component” of the algorithm. In Sect. 5 we prove Theorem 12,
which provides intuition behind the algorithm and serves as the main technical tool in
the completeness proof. The completeness and soundness proofs are given in Sects. 6
and 7, respectively. We make some concluding remarks in Sect. 8.

2We observe that it is important that the restriction sets these variables to zero rather than to a random
assignment; intuitively this is because setting a variable to zero “kills” all monomials that contain the
variable, whereas setting it to 1 does not.
3The converse is not true; examples can be given which show that not every variable that has “high influ-
ence” (in the required sense) in f will in general become a relevant variable for f ′ .
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2 Preliminaries

GF(2) Polynomials A GF(2) polynomial is a parity of monotone conjunctions
(monomials). It is s-sparse if it contains at most s monomials (including the
constant-1 monomial if it is present). The length of a monomial is the number of
distinct variables that occur in it; over GF(2), this is simply its degree.

Notation For i ∈ N
∗, denote [i] def= {1,2, . . . , i}. It will be convenient to view the out-

put range of a Boolean function f as {−1,1} rather than {0,1}, i.e. f : {0,1}n →
{−1,1}. We view the hypercube as a measure space endowed with the uniform prod-
uct probability measure. For I ⊆ [n] we denote by {0,1}I the set of all partial as-
signments to the coordinates in I . For w ∈ {0,1}[n]\I and z ∈ {0,1}I , we write w � z

to denote the assignment in {0,1}n whose ith coordinate is wi if i ∈ [n] \ I and
is zi if i ∈ I . Whenever an element z in {0,1}I is chosen randomly (we denote
z ∈R {0,1}I ), it is chosen with respect to the uniform measure on {0,1}I . We use
E and V to denote the standard notions of expectation and variance of a random
variable.

Influence, Variation and the Independence Test Recall the classical notion of influ-

ence [15]: The influence of the ith coordinate on f : {0,1}n → {−1,1} is Infi (f )
def=

Prx∈R{0,1}n [f (x) �= f (x⊕i )], where x⊕i denotes x with the ith bit flipped.
The influence of a single coordinate can be generalized to a set of multiple coor-

dinates by using the variation:

Definition 2 (Variation, [12]) Let f : {0,1}n → {−1,1}, and let I ⊆ [n]. We define

the variation of f on I as Vrf (I )
def= Ew∈R{0,1}[n]\I [Vz∈R{0,1}I [f (w � z)]].

When I = {i} we will sometimes write Vrf (i) instead of Vrf ({i}). It is easy to
check that Vrf (i) = Infi (f ), so variation is indeed a generalization of influence. In-
tuitively, the variation is a measure of the ability of a set of variables to sway a func-
tion’s output. The following two simple properties of the variation will be useful for
the analysis of our testing algorithm:

Lemma 3 (Monotonicity and sub-additivity, [12]) Let f : {0,1}n → {−1,1} and
A,B ⊆ [n]. Then Vrf (A) ≤ Vrf (A ∪ B) ≤ Vrf (A) + Vrf (B).

Lemma 4 (Probability of detection, [12]) Let f : {0,1}n → {−1,1} and I ⊆ [n]. If
w ∈R {0,1}[n]\I and z1, z2 ∈R {0,1}I are chosen independently, then Pr[f (w � z1) �=
f (w � z2)] = 1

2 Vrf (I ).

We now recall the independence test from [12], a simple two query test used to
determine whether a function f is independent of a given set I ⊆ [n] of coordinates.

Independence Test Given inputs f : {0,1}n → {−1,1} and I ⊆ [n], the indepen-
dence test chooses w ∈R {0,1}[n]\I and z1, z2 ∈R {0,1}I independently. It accepts if
f (w � z1) = f (w � z2) and rejects if f (w � z1) �= f (w � z2).



586 Algorithmica (2011) 61:580–605

Lemma 4 implies that the independence test rejects with probability exactly
1
2 Vrf (I ).

Random Partitions Throughout the paper we will use the following notion of a ran-
dom partition of the set [n] of input coordinates:

Definition 5 A random partition of [n] into r subsets {Ij }rj=1 is constructed by in-
dependently assigning each i ∈ [n] to a randomly chosen Ij for some j ∈ [r].

We now define the notion of low- and high-variation subsets with respect to a partition
of the set [n] and a parameter α > 0.

Definition 6 For f : {0,1}n → {−1,1}, a partition of [n] into {Ij }rj=1 and a pa-

rameter α > 0, define L(α)
def= {j ∈ [r] | Vrf (Ij ) < α} (low-variation subsets) and

H(α)
def= [r] \ L(α) (high-variation subsets). For j ∈ [r] and i ∈ Ij , if Vrf (i) ≥ α we

say that the variable xi is a high-variation element of Ij .

Finally, the notion of a well-structured subset will be important for us:

Definition 7 For f : {0,1}n → {−1,1} and parameters α,� > 0 satisfying α > �,
we say that a subset I ⊆ [n] of coordinates is (α,�)-well structured if there is an
i ∈ I such that Vrf (i) ≥ α and Vrf (I \ {i}) ≤ �.

Note that since α > �, by monotonicity, the i ∈ I in the above definition is unique.
Hence, a well-structured subset contains a single high-influence coordinate, while the
remaining coordinates have small total variation.

3 The Testing Algorithm Test-Sparse-Poly

In this section we present our main testing algorithm and give high-level sketches of
the arguments establishing its completeness and soundness. The algorithm, which is
called Test-Sparse-Poly, takes as input the values s, ε > 0 and black-box access to
f : {0,1}n → {−1,1}. It is presented in full in Fig. 1.

Test-Sparse-Poly is based on the idea that if f is a sparse polynomial, then it
only has a small number of “high-influence” variables, and it is close to another
sparse polynomial f ′ that depends only on (some of) those high-influence variables.
Roughly speaking, the algorithm works by first isolating the high-influence variables
into distinct subsets, and then attempting to exactly learn f ′. (This learning is done
“implicitly,” i.e. without ever explicitly identifying any of the relevant variables for
f or f ′.)

We now give a more detailed description of the test in tandem with a sketch of
why the test is complete, i.e. why it accepts s-sparse polynomials (we give a sketch
of the soundness argument in the next subsection). The first thing Test-Sparse-Poly
does (Step 2) is to randomly partition the variables (coordinates) into r = Õ(s4/τ)
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Algorithm Test-Sparse-Poly(f, s, ε)

Desired input: Black-box access to f : {0,1}n → {−1,1}; sparsity parameter s ≥ 1; error
parameter ε > 0.
Desired output: “yes” if f is an s-sparse GF(2) polynomial, “no” if f is ε-far from every
s-sparse GF(2) polynomial.

1. Set τ = ε/600,� = min{�0, (τ/8s2)(δ/ ln(2/δ))}, r = 4Cs/� (for a suitable

constant C from Theorem 12), where �0
def= τ/(1600s3 log(8s3/τ)) and δ

def=
1/(100s log(8s3/τ)Q(s, s log(8s3/τ), ε/4,1/100)).

2. Set {Ij }r
j=1 to be a random partition of [n].

3. Choose α uniformly at random from the set A(τ,�)
def= { τ

4s2 + (8
 − 4)� : 1 ≤ 
 ≤ K}
where K is the largest integer such that 8K� ≤ τ

4s2 (so we have τ
4s2 + 4� ≤ α ≤ τ

2s2 −
4�).

4. For each subset I1, . . . , Ir run the independence test M
def= 2

�2 ln(200r) times and let
˜Vrf (Ij ) denote 2 × (fraction of the M runs on Ij that the test rejects). If any subset
Ij has ˜Vrf (Ij ) ∈ [α − 2�,α + 3�] then exit and return “no,” otherwise continue.

5. Let ˜L(α) ⊆ [r] denote {j ∈ [r] : ˜Vrf (Ij ) ≤ α} and let ˜H(α) denote [r] \ ˜L(α). Let ˜f ′ :
{0,1}n → {−1,1} denote the function f |0←⋃

j∈˜L(α) Ij
.

6. Draw a sample of m
def= 2

ε ln 12 uniform random examples from {0,1}n and evaluate both
˜f ′ and f on each of these examples. If f and ˜f ′ disagree on any of the m examples then
exit and return “no.” If they agree on all examples then continue.

7. Run the learning algorithm LearnPoly′(s, | ˜H(α)|, ε/4,1/100) from [27] using
SimMQ(f, ˜H(α), {Ij }j∈ ˜H(α),α,�, z, δ/Q(s, | ˜H(α)|, ε/4,1/100)) to simulate each

membership query on a string z ∈ {0,1}| ˜H(α)| that LearnPoly′ makes.a If LearnPoly′
returns “not s-sparse” then exit and return “no.” Otherwise the algorithm terminates
successfully; in this case return “yes.”

aSee Sect. 4 for detailed explanations of the procedures LearnPoly′ and SimMQ and the function
Q(·, ·, ·, ·).
Fig. 1 The algorithm Test-Sparse-Poly

subsets. If f is an s-sparse polynomial, then it indeed has few high-influence vari-
ables, so with high probability at most one such variable will be present in each
subset. In Steps 3 and 4 the algorithm attempts to distinguish subsets that contain a
high-influence variable from subsets that do not; this is done by using the indepen-
dence test to estimate the variation of each subset (see Lemma 4). To show that, for
sparse polynomials, this estimate can correctly identify the subsets that have a high-
influence variable, we must show that if f is an s-sparse polynomial then with high
probability there is an easy-to-find “gap” such that subsets with a high-influence vari-
able have variation above the gap, and subsets with no high-influence variable have
variation below the gap. This is established by Theorem 12.

Once the high-variation and low-variation subsets have been identified, intuitively
we would like to focus our attention on the high-influence variables. Thus, Step 5
of the algorithm defines a function ˜f ′ which “zeroes out” all of the variables in all
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low-variation subsets.4 Note that if the original function f is an s-sparse polynomial,
then ˜f ′ will be one too. Step 6 of Test-Sparse-Poly checks that f is close to ˜f ′;
Theorem 12 establishes that this is indeed the case if f is an s-sparse polynomial.

The final step of Test-Sparse-Poly is to run the algorithm LearnPoly′ of [27] to
learn a sparse polynomial, which we call ˜f ′′, which is isomorphic to ˜f ′ but is defined
only over the high-influence variables of f (recall that there is at most one from each
high-variation subset). The overall Test-Sparse-Poly algorithm accepts f if and only
if LearnPoly′ successfully returns a final hypothesis (i.e. does not halt and output
“fail”). The membership queries that the [27] algorithm requires are simulated using
the SimMQ procedure, which we define in detail in Sect. 4. Theorem 12 ensures that
for f an s-sparse polynomial, all of the subsets Ij that “survive” into ˜f ′ are well-
structured (see Definition 7); as we show later, this condition is sufficient to ensure
that SimMQ can successfully simulate membership queries to ˜f ′′. Thus, for f an
s-sparse polynomial the LearnPoly′ algorithm can run successfully, and the test will
accept.

3.1 Sketch of Soundness

Here, we briefly argue that if Test-Sparse-Poly accepts f with high probability, then
f must be close to some s-sparse polynomial. Note that if f passes Step 4, then Test-
Sparse-Poly must have obtained a partition of variables into “high-variation” subsets
and “low-variation” subsets. If f passes Step 6, then it must moreover be the case
that f is close to the function ˜f ′ obtained by zeroing out the low-variation subsets.

In the last step, Test-Sparse-Poly attempts to run the LearnPoly′ algorithm using ˜f ′
and the high-variation subsets; in the course of doing this, it makes calls to SimMQ.
Since f could be an arbitrary function, we do not know whether each high-variation
subset has at most one variable relevant to ˜f ′ (as would be the case, by Theorem 12,
if f were an s-sparse polynomial). However, we are able to show (Lemma 24) that,
if with high probability all calls to the SimMQ routine are answered without its ever
returning “fail,” then ˜f ′ must be close to a junta g whose relevant variables are the
individual “highest-influence” variables in each of the high-variation subsets. Now,
given that LearnPoly′ halts successfully, it must be the case that it constructs a final
hypothesis h that is itself an s-sparse polynomial and that agrees with many calls to
SimMQ on random examples. Lemma 25 states that, in this event, h must be close
to g, hence close to ˜f ′, and hence close to f .

4 The LearnPoly′ Algorithm

In this section we describe the procedure LearnPoly′, thus completing our description
of Test-Sparse-Poly. We close this section with a coarse analysis of the overall query

4The difference between ˜f ′ and f ′ from Theorem 12 is that ˜f ′ is defined by zeroing out variables in
subsets which Test-Sparse-Poly empirically determines to have low variation, whereas f ′ is defined by
zeroing out variables in subsets that actually have low variation. Thus ˜f ′ is the “effective” version of f ′
that the algorithm can actually obtain. Theorem 12 will imply that if f is an s-sparse polynomial, then
with high probability ˜f ′ and f ′ are the same.
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Algorithm Set-High-Influence-Variable(f, I,α,�,b, δ)

Desired input: Black-box access to f : {0,1}n → {−1,1}; (α,�)-well-structured set I ⊆ [n];
bit b ∈ {0,1}; failure parameter δ.
Desired output: Assignment w ∈ {0,1}I to the variables in I such that the high-variation
coordinate wi equals b with probability 1 − δ.

1. Draw x uniformly from {0,1}I . Define I0 def= {j ∈ I : xj = 0} and I1 def= {j ∈ I : xj = 1}.
2. Apply c = 2

α ln( 2
δ
) iterations of the independence test to (f, I0). If any of the c iterations

reject, mark I0. Do the same for (f, I1).
3. If both or neither of I0 and I1 are marked, stop and output “fail.”
4. If Ib is marked then return the assignment w = x. Otherwise return the assignment w = x

(the bitwise negation of x).

Fig. 2 The subroutine Set-High-Influence-Variable

complexity of Test-Sparse-Poly which establishes that it makes poly(s, 1
ε
) queries

to f . (We have made no effort to optimize or even determine the precise polynomial.)
Our test runs the LearnPoly′ learning algorithm using simulated membership

queries which are performed by a procedure called SimMQ, which in turn uses a
subroutine called Set-High-Influence-Variables. We give a “bottom-up” description
by first describing Set-High-Influence-Variables and then SimMQ. In Sect. 4.1 we
describe LearnPoly′ and explain how it uses SimMQ.

The procedure Set-High-Influence-Variable (SHIV) is presented in Fig. 2. The idea
of this procedure is that when it is run on a well-structured subset of variables I ,
it returns an assignment in which the high-variation variable is set to the desired
bit value. Intuitively, the executions of the independence test in the procedure are
used to determine whether the high-variation variable i ∈ I is set to 0 or 1 under the
assignment x; depending on whether this setting agrees with the desired value, the
algorithm either returns x or the bitwise negation of x. The following simple lemma
shows that, for suitable values of the parameters, the procedure indeed performs as
desired.

Lemma 8 Let f, I,α,� be such that I is (α,�)-well-structured with � ≤ αδ/

(2 ln(2/δ)), and let wi be the coordinate in I with high variation in I . Then with prob-
ability at least 1−δ, the output of SHIV(f, I,α,�,b, δ) is an assignment w ∈ {0,1}I
which has wi = b.

Proof We assume that I b contains the high-variation variable i (the other case be-
ing very similar). Recall that by Lemma 4, each run of the independence test on
I b rejects with probability 1

2 Vrf (I b); by Lemma 3 (monotonicity) this is at least
1
2 Vrf (i) ≥ α/2. So the probability that I b is not marked even once after c iterations
of the independence test is at most (1 − α/2)c ≤ δ/2, by our choice of c. Similarly,
the probability that I b is ever marked during c iterations of the independence test is
at most c(�/2) ≤ δ/2, by the condition of the lemma. Thus, the probability of failing
at Step 3 of SHIV is at most δ, and since i ∈ I b , the assignment w sets variable i

correctly in Step 4. �
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Algorithm SimMQ(f,H, {Ij }j∈H ,α,�, z, δ)

Desired input: Black-box access to f : {0,1}n → {−1,1}; subset H ⊆ [r]; disjoint subsets
{Ij }j∈H of [n]; parameters α > �; string z ∈ {0,1}|H |; failure probability δ.
Desired output: Bit b which, with probability 1− δ is the value of f ′ on a random assignment
x in which each high-variation variable i ∈ Ij (j ∈ H ) is set according to z.

1. For each j ∈ H , call Set-High-Influence-Variable(f, Ij ,α,�, zj , δ/|H |) and get back an

assignment (call it wj ) to the variables in Ij .

2. Construct x ∈ {0,1}n as follows: for each j ∈ H , set the variables in Ij according to wj .
This defines xi for all i ∈ ⋃

j∈H Ij . Set xi = 0 for all other i ∈ [n].
3. Return b = f (x).

Fig. 3 The subroutine SimMQ

For the soundness proof, we will require the following lemma which specifies the
behavior of SHIV when it is called with parameters α,� that do not quite match the
real values α′,�′ for which I is (α′,�′)-well-structured:

Lemma 9 If I is (α′,�′)-well-structured (but not necessarily (α,�)-well-struc-
tured), then the probability that SHIV(f, I,α,�,b, δ) passes (i.e. does not output
“fail”) and sets the high variation variable incorrectly is at most (δ/2)α

′/α · (1/α) ·
�′ · ln(2/δ).

Proof The only way for SHIV to pass with an incorrect setting of the high-variation
variable i is if it fails to mark the subset containing i for c iterations of the in-
dependence test, and marks the other subset at least once. Since Vr(i) > α′ and
Vr(I \ i) < �′, the probability of this occurring is at most (1 − α′/2)c · �′ · c/2.
Since SHIV is called with failure parameter δ, c is set to 2

α
ln 2

δ
. �

Figure 3 gives the SimMQ procedure. The high-level idea is as follows: we have a
function f and a collection {Ij }j∈H of disjoint well-structured subsets of variables.
SimMQ takes as input a string z of length |H | which specifies a desired setting for
each high-variation variable in each Ij (j ∈ H ). SimMQ constructs a random assign-
ment x ∈ {0,1}n such that the high-variation variable in each Ij (j ∈ H ) is set in the
desired way in x, and it returns the value f ′(x).

In the completeness proof we shall show that if f is an s-sparse polynomial, then
w.h.p. every call to SimMQ that the test performs correctly simulates a membership
query to a certain s-sparse polynomial ˜f ′′ : {0,1}| ˜H(α)| → {−1,1}. In the soundness
proof we will show that if w.h.p. no call to SimMQ outputs ‘fail,’ then f must be
close to a junta which agrees with many of the queries returned by SimMQ.

4.1 The LearnPoly′ Procedure

4.1.1 Background on Schapire and Sellie’s Algorithm

In [27] Schapire and Sellie gave an algorithm, which we refer to as LearnPoly, for ex-
actly learning s-sparse GF(2) polynomials using membership queries (i.e. black-box
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queries) and equivalence queries. Their algorithm is proper; this means that every
equivalence query the algorithm makes (including the final hypothesis of the algo-
rithm) is an s-sparse polynomial. (We shall see that it is indeed crucial for our pur-
poses that the algorithm is proper.) Recall that in an equivalence query the learning
algorithm proposes a hypothesis h to the oracle: if h is logically equivalent to the
target function being learned then the response is “correct” and learning ends suc-
cessfully, otherwise the response is “no” and the learner is given a counterexample x

such that h(x) �= f (x).
Schapire and Sellie proved the following about their algorithm:

Theorem 10 ([27], Theorem 10) Algorithm LearnPoly is a proper exact learning
algorithm for the class of s-sparse GF(2) polynomials over {0,1}n. The algorithm
runs in poly(n, s) time and makes at most poly(n, s) membership queries and at most
ns + 2 equivalence queries.

We can easily also characterize the behavior of LearnPoly if it is run on a function
f that is not an s-sparse polynomial. In this case, since the algorithm is proper all
of its equivalence queries have s-sparse polynomials as their hypotheses, and conse-
quently no equivalence query will ever be answered “correct.” So if the (ns + 2)th
equivalence query is not answered “correct,” the algorithm may infer that the target
function is not an s-sparse polynomial, and it returns “not s-sparse.”

As pointed out in [27], a well-known result due to Angluin [2] says that in a
Probably Approximately Correct or PAC setting (where there is a distribution D over
examples and the goal is to construct an ε-accurate hypothesis with respect to that
distribution), equivalence queries can be straightforwardly simulated using random
examples. This is done simply by drawing a sufficiently large sample of random
examples for each equivalence query and evaluting both the hypothesis h and the
target function f on each point in the sample. This either yields a counterexample
(which simulates an equivalence query), or if no counterexample is obtained then
simple arguments show that for a large enough (O(log(1/δ)/ε)-size) sample, with
probability 1 − δ the functions f and h must be ε-close under the distribution D,
which is the success criterion for PAC learning. This directly gives the following
corollary of Theorem 10:

Corollary 11 There is a uniform distribution membership query proper learning al-

gorithm which makes Q(s,n, ε, δ)
def= poly(s, n,1/ε, log(1/δ)) membership queries

and runs in poly(Q) time to learn s-sparse polynomials over {0,1}n to accuracy ε

and confidence 1 − δ under the uniform distribution.

We shall refer to this algorithm as LearnPoly′(s, n, ε, δ).
As stated in Fig. 1, the Test-Sparse-Poly algorithm runs LearnPoly′(s, | ˜H(α)|,

ε/4, 1/100) using SimMQ(f, ˜H(α), {Ij }j∈ ˜H(α), α, �, z, 1/(100Q(s, | ˜H(α)|, z,

1/100))) to simulate each membership query on an input string z ∈ {0,1}| ˜H(α)|.
Thus the algorithm is being run over a domain of | ˜H(α)| variables. Since we cer-
tainly have | ˜H(α)| ≤ r ≤ poly(s, 1

ε
), Corollary 11 gives that LearnPoly′ makes at

most poly(s, 1
ε
) many calls to SimMQ. From this point, by inspection of SimMQ,
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SHIV and Test-Sparse-Poly, it is straightforward to verify that Test-Sparse-Poly in-
deed makes poly(s, 1

ε
) many queries to f and runs in time poly(s, 1

ε
) as claimed in

Theorem 1. Thus, to prove Theorem 1 it remains only to establish correctness of the
test.

5 On Restrictions which Simplify Sparse Polynomials

This section presents Theorem 12, which is at the heart of the completeness proof for
our test. Before we proceed with the formal statement, we give an intuitive explana-
tion.

Roughly speaking the theorem is as follows: Consider any s-sparse GF(2) poly-
nomial p. Suppose that its coordinates (variables) are randomly partitioned into
r = poly(s) many subsets {Ij }rj=1. The first two statements say that (w.h.p.) a ran-
domly chosen “threshold value” α ≈ 1/poly(s) will have the property that no single
coordinate i, i ∈ [n], or subset Ij , j ∈ [r], has Vrp(i) or Vrp(Ij ) “too close” to α.
Moreover, the high-variation subsets (w.r.t. α) are precisely those that contain a sin-
gle high variation element i (i.e. Vrp(i) ≥ α), and in fact each such subset Ij is
well-structured (part 3). Also, the number of such high-variation subsets is “small”
(part 4). Finally, let p′ be the restriction of p obtained by setting all variables in the
low-variation subsets to 0. Then, p′ has some “nice” structure: its relevant variables
are spread out (at most) one per high-variation subset (part 5), and it is close to p

(part 6).

Theorem 12 Let p : {0,1}n → {−1,1} be an s-sparse polynomial. Fix τ ∈ (0,1) and

� such that � ≤ �0
def= τ/(1600s3 log(8s3/τ)) and � = poly(τ/s). Let r

def= 4Cs/�,
for a suitably large constant C. Let {Ij }rj=1 be a random partition of [n]. Choose α

uniformly at random from the set A(τ,�)
def= { τ

4s2 + (8
 − 4)� : 
 ∈ [K]} where K

is the largest integer such that 8K� ≤ τ

4s2 . Then with probability at least 9/10 (over
the choice of α and {Ij }rj=1), all of the following statements hold:

1. Every variable xi , i ∈ [n], has Vrp(i) /∈ [α − 4�,α + 4�].
2. Every subset Ij , j ∈ [r], has Vrp(Ij ) /∈ [α − 3�,α + 4�].
3. For every j ∈ H(α), Ij is (α,�)-well structured.
4. |H(α)| ≤ s log(8s3/τ).

Let p′ def= p|0←⋃

j∈L(α) Ij
(the restriction obtained by fixing all variables in low-

variation subsets to 0).

5. For every j ∈ H(α), p′ has at most one relevant variable in Ij (hence p′ is a
|H(α)|-junta).

6. The function p′ is τ -close to p.

In Sect. 5.1 we prove some useful preliminary lemmas about the variation of in-
dividual variables in sparse polynomials. In Sect. 5.2 we extend this analysis to get
high-probability statements about variation of subsets {Ij }rj=1 in a random partition.
We put the pieces together to finish the proof of Theorem 12 in Sect. 5.3.
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Throughout this section the parameters τ , �, r and α are all as defined in Theo-
rem 12.

5.1 The Influence of Variables in s-Sparse Polynomials

We start with a simple lemma stating that only a small number of variables can have
large variation:

Lemma 13 Let p : {0,1}n → {−1,1} be an s-sparse polynomial. For any δ > 0,
there are at most s log(2s/δ) many variables xi that have Vrp(i) ≥ δ.

Proof Any variable xi with Vrp(i) ≥ δ must occur in some term of length at most
log(2s/δ). (Otherwise each occurrence of xi would contribute less than δ/s to the
variation of the ith coordinate, and since there are at most s terms this would imply
Vrp(i) < s ·(δ/s) = δ.) Since at most s log(2s/δ) distinct variables can occur in terms
of length at most log(2s/δ), the lemma follows. �

We next prove that with high probability, we can identify a real interval such that
no coordinate xi has variation in that interval. The following lemma essentially proves
the first part of Theorem 12.

Lemma 14 With probability at least 96/100 over the choice of α, no variable xi has
Vrp(i) ∈ [α − 4�,α + 4�].

Proof The uniform random variable α has support A(τ,�) of size no less than
50s log(8s3/τ). Each possible value of α defines the interval of variations [α − 4�,

α +4�]. Note that α −4� ≥ τ/(4s2). In other words, the only variables which could
lie in [α − 4�,α + 4�] are those with variation at least τ/(4s2). By Lemma 13

there are at most k
def= s log(8s3/τ) such candidate variables. Since we have at least

50k intervals (two consecutive such intervals overlap at a single point) and at most k

candidate variables, at least 48k intervals will be empty. �

Lemma 13 is based on the observation that, in a sparse polynomial, a variable with
“high” influence (variation) must occur in some “short” term. The following lemma is
in some sense a quantitative converse: it states that a variable with “small” influence
can only appear in “long” terms.

Lemma 15 Let p : {0,1}n → {−1,1} be an s-sparse polynomial. Suppose that i is
such that Vrp(i) < τ/(s2 + s). Then the variable xi appears only in terms of length
greater than log(s/τ).

Proof By contradiction. Assuming that xi appears in some term of length at most
log(s/τ), we will show that Vrp(i) ≥ τ/(s2 + s). Let T be a shortest term that xi ap-
pears in. The function p can be uniquely decomposed as follows: p(x1, x2, . . . , xn) =
xi · (T ′ + p1) + p2, where T = xi · T ′, the term T ′ has length less than log(s/τ) and
does not depend on xi , and p1, p2 are s-sparse polynomials that do not depend on xi .
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Observe that since T is a shortest term that contains xi , the polynomial p1 does not
contain the constant term 1.

Since T ′ contains fewer than log(s/τ) many variables, it evaluates to 1 on at least
a τ/s fraction of all inputs. The partial assignment that sets all the variables in T ′
to 1 induces an s-sparse polynomial p′

1 (the restriction of p1 according to the partial
assignment). Now observe that p′

1 still does not contain the constant term 1 (for since
each term in p1 is of length at least the length of T ′, no term in p1 is a subset of
the variables in T ′). We now recall the following (nontrivial) result of Karpinski and
Luby [17]:

Claim 16 ([17], Corollary 1) Let g be an s-sparse multivariate GF(2) polynomial
which does not contain the constant-1 term. Then g(x) = 0 for at least a 1/(s + 1)

fraction of all inputs.

Applying this corollary to the polynomial p′
1, we have that p′

1 is 0 on at least a
1/(s + 1) fraction of its inputs. Therefore, the polynomial T ′ + p1 is 1 on at least a
(τ/s) · 1/(s + 1) fraction of all inputs in {0,1}n; this in turn implies that Vrp(i) ≥
(τ/s) · 1/(s + 1) = τ/(s2 + s). �

By a simple application of Lemma 15 we can show that setting low-variation vari-
ables to zero does not change the polynomial by much:

Lemma 17 Let p : {0,1}n → {−1,1} be an s-sparse polynomial. Let g be a function
obtained from p by setting to 0 some subset of variables all of which have Vrp(i) <

τ/(2s2). Then g and p are τ -close.

Proof Setting a variable to 0 removes all the terms that contain it from p. By
Lemma 15, doing this only removes terms of length greater than log(s/τ). Removing
one such term changes the function on at most a τ/s fraction of the inputs. Since
there are at most s terms in total, the lemma follows by a union bound. �

5.2 Partitioning Variables into Random Subsets

The following lemma is at the heart of Theorem 12. The lemma states that when
we randomly partition the variables (coordinates) into subsets, (i) each subset gets
at most one “high-influence” variable (the term “high-influence” here means rela-
tive to an appropriate threshold value t � α), and (ii) the remaining (low-influence)
variables (w.r.t. t) have a “very small” contribution to the subset’s total variation.

The first part of the lemma follows easily from a birthday-paradox type argument,
since there are many more subsets than high-influence variables. As intuition for the
second part, we note that in expectation, the total variation of each subset is very
small. A more careful argument lets us argue that the total contribution of the low-
influence variables in a given subset is unlikely to highly exceed its expectation.

Lemma 18 Fix a value of α satisfying the first statement of Theorem 12. Let t
def=

�τ/(4C′s), where C′ is a suitably large constant. Then with probability 99/100 over
the random partition the following statements hold true:
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• For every j ∈ [r], Ij contains at most one variable xi with Vrp(i) > t .

• Let I
≤t
j

def= {i ∈ Ij | Vrp(i) ≤ t}. Then, for all j ∈ [r], Vrp(I
≤t
j ) ≤ �.

Proof We show that each statement of the lemma fails independently with probability
at most 1/200 from which the lemma follows.

By Lemma 13 there are at most k
def= s log(2s/t) coordinates in [n] with variation

more than t . A standard argument yields that the probability there exists a subset Ij

with more than one such variable is at most k2/r . It is easy to verify that this is less
than 1/200, as long as C is large enough relative to C′. Therefore, with probability
at least 199/200, every subset contains at most one variable with variation greater
than t . So the first statement fails with probability no more than 1/200.

Now for the second statement. Consider a fixed subset Ij . We analyze the contri-
bution of variables in I

≤t
j to the total variation Vrp(Ij ). We will show that with high

probability the contribution of these variables is at most �.
Let S = {i ∈ [n] | Vrp(i) ≤ t} and renumber the coordinates such that S =

[k′]. Each variable xi , i ∈ S, is contained in Ij independently with probability
1/r . Let X1, . . . ,Xk′ be the corresponding independent Bernoulli random vari-
ables. Recall that, by sub-additivity, the variation of I

≤t
j is upper bounded by X =

∑k′
i=1 Vrp(i) ·Xi . It thus suffices to upper bound the probability Pr[X > �]. Note that

E[X] = ∑k′
i=1 Vrp(i) · E[Xi] = (1/r) · ∑k′

i=1 Vrp(i) ≤ (s/r), since
∑k′

i=1 Vrp(i) ≤
∑n

i=1 Vrp(i) ≤ s (the last inequality here is easily seen to follow from the fact that p

is an s-sparse GF(2) polynomial). To finish the proof, we need the following version
of the Chernoff bound:

Fact 19 [21] For k′ ∈ N
∗, let α1, . . . , αk′ ∈ [0,1] and let X1, . . . ,Xk′ be independent

Bernoulli trials. Let X′ = ∑k′
i=1 αiXi and μ

def= E[X′] ≥ 0. Then for any γ > 1 we

have Pr[X′ > γ · μ] < (eγ−1

γ γ )μ.

We apply the above bound for the Xi ’s with αi = Vrp(i)/t ∈ [0,1]. (Recall that
the coordinates in S have variation at most t .) We have μ = E[X′] = E[X]/t ≤
s/(rt) = C′s/Cτ , and we are interested in the event {X > �} ≡ {X′ > �/t}. Note
that �/t = 4C′s/τ . Hence, γ ≥ 4C and the above bound implies that Pr[X > �] <

(e/(4C))4C′s/τ < (1/4C4)C
′s/τ .

Therefore, for a fixed subset Ij , we have Pr[Vrp(I
≤t
j ) > �] < (1/4C4)C

′s/τ . By a
union bound, we conclude that this happens in every subset with failure probability at
most r · (1/4C4)C

′s/τ . This is less than 1/200 as long as C′ is a large enough absolute
constant (independent of C), which completes the proof. �

Next we show that by “zeroing out” the variables in low-variation subsets, we are
likely to “kill” all terms in p that contain a low-influence variable.

Lemma 20 With probability at least 99/100 over the random partition, every mono-
mial of p containing a variable with influence at most α has at least one of its vari-
ables in

⋃

j∈L(α) Ij .



596 Algorithmica (2011) 61:580–605

Proof By Lemma 13 there are at most b = s log(8s3/τ) variables with influence more
than α. Thus, no matter the partition, at most b subsets from {Ij }rj=1 contain such
variables. Fix a low-influence variable (influence at most α) from every monomial
containing such a variable. For each fixed variable, the probability that it ends up in
the same subset as a high-influence variable is at most b/r . Union bounding over each
of the (at most s) monomials, the failure probability of the lemma is upper bounded
by sb/r < 1/100. �

5.3 Proof of Theorem 12

Proof of Theorem 12 We prove each statement in turn. The first statement of the the-
orem is implied by Lemma 14. (Note that, as expected, the validity of this statement
does not depend on the random partition.)

We claim that statements 2–5 essentially follow from Lemma 18. (In contrast, the
validity of these statements crucially depends on the random partition.)

Let us first prove the third statement. We want to show that (w.h.p. over the choice
of α and {Ij }rj=1) for every j ∈ H(α), (i) there exists a unique ij ∈ Ij such that
Vrp(ij ) ≥ α and (ii) that Vrp(Ij \ {ij }) ≤ �. Fix some j ∈ H(α). By Lemma 18,
for a given value of α satisfying the first statement of the theorem, we have: (i’) Ij

contains at most one variable xij with Vrp(ij ) > t and (ii’) Vrp(Ij \ {ij }) ≤ �. Since
t < τ/4s2 < α (with probability 1), (i’) clearly implies that, if Ij has a high-variation
element (w.r.t. α), then it is unique. In fact, we claim that Vrp(ij ) ≥ α. For otherwise,
by sub-additivity of variation, we would have Vrp(Ij ) ≤ Vrp(Ij \ {ij }) + Vrp(ij ) ≤
� + α − 4� = α − 3� < α, which contradicts the assumption that j ∈ H(α). Note
that we have used the fact that α satisfies the first statement of the theorem, that is
Vrp(ij ) < α ⇒ Vrp(ij ) < α − 4�. Hence, for a “good” value of α (one satisfying
the first statement of the theorem), the third statement is satisfied with probability at
least 99/100 over the random partition. By Lemma 14, a “good” value of α is chosen
with probability 96/100. By independence, the conclusions of Lemmas 14 and 18
hold simultaneously with probability more than 9/10.

We now establish the second statement. We assume as before that α is a “good”
value. Consider a fixed subset Ij , j ∈ [r]. If j ∈ H(α) (i.e. Ij is a high-variation
subset) then by Lemma 18, with probability at least 99/100 (over the random par-
tition), there exists ij ∈ Ij such that Vrp(ij ) ≥ α + 4�. The monotonicity of vari-
ation yields Vrp(Ij ) ≥ Vrp(ij ) ≥ α + 4�. If j ∈ L(α) then Ij contains no high-
variation variable, i.e. its maximum variation element has variation at most α − 4�

and by the second part of Lemma 18 the remaining variables contribute at most �

to its total variation. Hence, by sub-additivity we have that Vrp(Ij ) ≤ α − 3�. Since
a “good” value of α is chosen with probability 96/100, the desired statement fol-
lows.

The fourth statement follows from the aforementioned and the fact that there exist
at most s log(8s3/τ) variables with variation at least α (as follows from Lemma 13,
given that α > τ/(4s2)).

Now for the fifth statement. Lemma 20 and monotonicity imply that the only vari-
ables that remain relevant in p′ are (some of) those with high influence (at least α)
in p, and, as argued above, each high-variation subset Ij contains at most one such
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variable. By a union bound, the conclusion of Lemma 20 holds simultaneously with
the conclusions of Lemmas 14 and 18 with probability at least 9/10.

The sixth statement (that p and p′ are τ -close) is a consequence of Lemma 17
(since p′ is obtained from p by setting to 0 variables with variation less than α <

τ/(2s2)). This concludes the proof of Theorem 12. �

6 Completeness of the Test

In this section we show that Test-Sparse-Poly is complete:

Theorem 21 Suppose f is an s-sparse GF(2) polynomial. Then Test-Sparse-Poly
accepts f with probability at least 2/3.

Proof Fix f to be an s-sparse GF(2) polynomial over {0,1}n. We will first show that,
with high probability, Test-Sparse-Poly given access to f passes Steps 4–6 and the
randomly chosen subsets of variables I1, . . . , Ir satisfy certain properties (based on
Theorem 12). We then use these properties to prove Lemma 22, which states that all
the calls to Sim-MQ in Step 7 are likely to simulate calls to a function f ′′ that is an
s-sparse polynomial over few variables. (We will define f ′′ below—roughly speak-
ing, f ′′ is the junta isomorphic to the restricted function f ′ obtained by assigning 0
to variables in low-influence buckets.) Theorem 21 follows easily from Lemma 22
and the guarantee of the learning algorithm LearnPoly′.

We now establish that Test-Sparse-Poly is likely to make it to Step 7 and that the
randomly chosen subsets are likely to have useful properties. By the choice of the �

and r parameters in Step 1 of Test-Sparse-Poly we may apply Theorem 12, so with
failure probability at most 1/10 over the choice of α and I1, . . . , Ir in Steps 2 and 3,
statements 1–6 of Theorem 12 all hold. We shall write f ′ to denote f |0←⋃

j∈L(α) Ij
.

Note that at each successive stage of the proof we shall assume that the “failure
probability” events do not occur, i.e. henceforth we shall assume that statements 1–6
all hold for f ; we take a union bound over all failure probabilities at the end of the
proof.

Now consider the M executions of the independence test for a given fixed Ij in
Step 4. Lemma 4 gives that each run rejects with probability 1

2 Vrf (Ij ). A standard
Hoeffding bound implies that for the algorithm’s choice of M = 2

�2 ln(200r), the
value ˜Vrf (Ij ) obtained in Step 4 is within ±� of the true value Vrf (Ij ) with fail-
ure probability at most 1

100r
. A union bound over all j ∈ [r] gives that with failure

probability at most 1/100, we have that each ˜Vrf (Ij ) is within an additive ±� of
the true value Vrf (Ij ). This means that (by statement 2 of Theorem 12) every Ij has
˜Vrf (Ij ) /∈ [α − 2�,α + 3�], and hence in Step 5 of the test, the sets ˜L(α) and ˜H(α)

are identical to L(α) and H(α) respectively, which in turn means that the function ˜f ′
defined in Step 5 is identical to f ′ defined above.

We now turn to Step 6 of the test. By statement 6 of Theorem 12 we have that f

and f ′ disagree on at most a τ fraction of inputs. A union bound over the m random
examples drawn in Step 6 implies that with failure probability at most τm < 1/100
the test proceeds to Step 7.
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By statement 3 of Theorem 12 we have that each Ij , j ∈ ˜H(α) ≡ H(α), contains
precisely one high-variation element ij (i.e. which satisfies Vrf (ij ) ≥ α), and these
are all of the high-variation elements. Consider the set of these | ˜H(α)| high-variation
variables; statement 5 of Theorem 12 implies that these are the only variables which
f ′ can depend on (it is possible that it does not depend on some of these variables).

Let us write f ′′ to denote the function f ′′ : {0,1}| ˜H(α)| → {−1,1} corresponding to
f ′ but whose input variables are these | ˜H(α)| high-variation variables in f , one per
Ij for each j ∈ ˜H(α). We thus have that f ′′ is isomorphic to f ′ (obtained from f ′ by
discarding irrelevant variables).

The main idea behind the rest of the completeness proof is that in Step 7 of Test-
Sparse-Poly, the learning algorithm LearnPoly′ is being run with target function f ′′.
Since f ′′ is isomorphic to f ′, which is an s-sparse polynomial (since it is a restriction
of an s-sparse polynomial f ), with high probability LearnPoly′ will run successfully
and the test will accept. To show that this is what actually happens, we must show that
with high probability each call to SimMQ which LearnPoly′ makes correctly simu-
lates the corresponding membership query to f ′′. This is established by the following
lemma:

Lemma 22 With total failure probability at most 1/100, each of the Q(s, | ˜H(α)|,
ε/4,1/100) calls to SimMQ(f, ˜H(α), {Ij }j∈ ˜H(α), α, �, z, 1/(100Q(s, | ˜H(α)|, ε/4,

1/100))) that LearnPoly′ makes in Step 7 of Test-Sparse-Poly returns the correct
value of f ′′(z).

Proof Consider a single call to the procedure SimMQ(f, ˜H(α), {Ij }j∈ ˜H(α), α, �, z,

1/(100Q(s, | ˜H(α)|, ε/4, 1/100))) made by LearnPoly′. We show that with failure

probability at most δ′ def= 1/(100Q(s, | ˜H(α)|, ε/4,1/100) this call returns the value
f ′′(z), and the lemma then follows by a union bound over the Q(s, | ˜H(α)|, ε/4,

1/100) many calls to SimMQ.
This call to SimMQ makes | ˜H(α)| calls to SHIV(f, Ij , α,�, zj , δ

′/ ˜H(α)|), one
for each j ∈ ˜H(α). Consider any fixed j ∈ ˜H(α). Statement 3 of Theorem 12 gives
that Ij (j ∈ ˜H(α)) is (α,�)-well-structured. Since α > τ

4s2 (also by the statement
of Theorem 12), it is easy to check the condition of Lemma 8 holds where the role
of “δ” in that inequality is played by δ′/| ˜H(α)|, so we may apply Lemma 8 and
conclude that with failure probability at most δ′/| ˜H(α)| (recall that by statement 4
of Theorem 12 we have | ˜H(α)| ≤ s log(8s3/τ)), SHIV returns an assignment to the
variables in Ij which sets the high-variation variable to zj as required. By a union
bound, the overall failure probability that any Ij (j ∈ ˜H(α)) has its high-variation
variable not set according to z is at most δ′. Now statement 5 and the discussion
preceding this lemma (the isomorphism between f ′ and f ′′) give that SimMQ sets all
of the variables that are relevant in f ′ correctly according to z in the assignment x it
constructs in Step 2. Since this assignment x sets all variables in

⋃

j∈˜L Ij to 0, the
bit b = f (x) that is returned is the correct value of f ′′(z), with failure probability at
most δ′ as required. �

With Lemma 22 in hand, we have that with failure probability at most 1/100,
the execution of LearnPoly′(s, | ˜H(α)|, ε/4,1/100) in Step 7 of Test-Sparse-Poly
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correctly simulates all membership queries. As a consequence, Corollary 11 thus
gives that LearnPoly′(s, | ˜H(α)|, ε/4,1/100)) returns “not s-sparse” with probability
at most 1/100. Summing all the failure probabilities over the entire execution of the
algorithm, the overall probability that Test-Sparse-Poly does not output “yes” is at
most

Theorem 12
︷︸︸︷

1/10 +
Step 4
︷ ︸︸ ︷

1/100+
Step 6
︷ ︸︸ ︷

1/100+
Lemma 22
︷ ︸︸ ︷

1/100 +
Corollary 11

︷ ︸︸ ︷

1/100 < 1/5,

and the completeness theorem (Theorem 21) is proved. �

7 Soundness of the Test

In this section we prove the soundness of Test-Sparse-Poly:

Theorem 23 If f is ε-far from any s-sparse polynomial, then Test-Sparse-Poly ac-
cepts with probability at most 1/3.

Proof To prove the soundness of the test, we start by assuming that the function f has
progressed to Step 5, so there are subsets I1, . . . , Ir and ˜H(α) satisfying ˜Vrf (Ij ) >

α + 2� for all j ∈ ˜H(α). As in the proof of completeness, we have that the actual
variations of all subsets should be close to the estimates, i.e. that Vrf (Ij ) > α + �

for all j ∈ ˜H(α) except with probability at most 1/100. We may then complete the
proof in two parts by establishing the following:

• If f and ˜f ′ are εa-far, step 6 will accept with probability at most δa .
• If ˜f ′ is εb-far from every s-sparse polynomial, Step 7 will accept with probability

at most δb .

Establishing these statements with εa = εb = ε/2, δa = 1/12 and δb = 1/6 will allow
us to complete the proof (and we may assume throughout the rest of the proof that
Vrf (Ij ) > α for each j ∈ ˜H(α)).

The first statement follows immediately by our choice of m = 1
εa

ln 1
δa

with εa =
ε/2 and δa = 1/12 in Step 6. Our main task is to establish the second statement,
which we do using Lemmas 24 and 25 stated below. Intuitively, we would like to
show that if LearnPoly′ outputs a hypothesis h (which must be an s-sparse polynomial
since LearnPoly′ is proper) with probability greater than 1/6, then ˜f ′ is close to a
junta isomorphic to h. To do this, we establish that if LearnPoly′ succeeds with high
probability, then the last hypothesis on which an equivalence query is performed in
LearnPoly′ is a function which is close to ˜f ′. Our proof uses two lemmas: Lemma 25
tells us that this holds if the high variation subsets satisfy a certain structure, and
Lemma 24 tells us that if LearnPoly′ succeeds with high probability then the subsets
indeed satisfy this structure. We now state these lemmas formally and complete the
proof of the theorem, deferring the proofs of the lemmas until later.

Recall that the algorithm LearnPoly′ will make repeated calls to SimMQ which in
turn makes repeated calls to SHIV. Lemma 24 states that if, with probability greater
than δ2, all of these calls to SHIV return without failure, then the subsets associated
with ˜H(α) have a special structure.
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Lemma 24 Let J ⊂ [n] be a subset of variables obtained by including the highest-
variation element in Ij for each j ∈ ˜H(α) (breaking ties arbitrarily). Suppose that
k > 300| ˜H(α)|/ε2 queries are made to SimMQ. Suppose moreover that Pr [every
call to SHIV that is made during these k queries returns without outputting ‘fail’] is
greater than δ2 for δ2 = 1/�(k). Then the following both hold:

• every subset Ij for j ∈ ˜H(α) satisfies Vrf (Ij \ J ) ≤ 2ε2/| ˜H(α)|; and

• the function ˜f ′ is ε2-close to the junta g : {0,1}| ˜H(α)| → {−1,1} defined as:

g(x)
def= sign(Ez∈{0,1}[n]\J [ ˜f ′((x ∩ J ) � z)]).

Given that the subsets associated with ˜H(α) have this special structure, Lemma 25
tells us that the hypothesis output by LearnPoly′ should be close to the junta g.

Lemma 25 Define QE as the maximum number of calls to SimMQ that will be made
by LearnPoly′ in all of its equivalence queries. Suppose that for every j ∈ ˜H(α),
it holds that Vrf (Ij \ J ) < 2ε2/| ˜H(α)| with ε2 < α

800QE
. Then the probability that

LearnPoly′ outputs a hypothesis h which is ε/4-far from the junta g is at most δ3 =
1/100.

We will prove Lemmas 24 and 25 shortly, but first we argue that they suffice to
prove the desired result. Suppose that LearnPoly′ accepts with probability at least
δb = 1/6. Assume LearnPoly′ makes at least k queries to SimMQ (we address this
in the next paragraph); then it follows from Lemma 24 that the bins associated with
˜H(α) satisfy the conditions of Lemma 25 and that ˜f ′ is ε2-close to the junta g. Now
applying Lemma 25, we have that with failure probability at most 1/100, LearnPoly′
outputs a hypothesis which is ε/4-close to g. But then ˜f ′ must be (ε2 + ε/4)-close
to this hypothesis, which is an s-sparse polynomial.

We need to establish that LearnPoly′ indeed makes k > 300| ˜H(α)|/ε2 SimMQ
queries for an ε2 that satisfies the condition on ε2 in Lemma 25. (Note that if Learn-
Poly′ does not actually make this many queries, we can simply have it make artificial
calls to SHIV to achieve this. An easy extension of our completeness proof han-
dles this slight extension of the algorithm; we omit the details.) Since we need ε2 <

α/800QE and Theorem 10 gives us that QE = (| ˜H(α)|s + 2) · 4
ε

ln 300(| ˜H(α)|s + 2)

(each equivalence query is simulated using 4
ε

ln 300(| ˜H(α)|s +2) random examples),
an easy computation shows that it suffices to take k = poly(s,1/ε), and the proof of
Theorem 23 is complete. �

We now give a proof of Lemma 25, followed by a proof of Lemma 24.

Proof of Lemma 25 By assumption each Vrf (Ij \J ) ≤ 2ε2/| ˜H(α)| and Vrf (Ij ) > α,
so subadditivity of variation gives us that for each j ∈ ˜H(α), there exists an i ∈ Ij

such that Vrf (i) > α − 2ε2/| ˜H(α)|. Thus for every each call to SHIV made by
SimMQ, the conditions of Lemma 9 are satisfied with Vrf (i) > α − 2ε2/| ˜H(α)| and
Vrf (Ij \ J ) < 2ε2/| ˜H(α)|. We show that as long as ε2 < α

800QE
, the probability that

any particular query z to SimMQ has a variable set incorrectly is at most δ3/3QE .
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Suppose SHIV has been called with failure probability δ4, then the probability
given by Lemma 9 is at most:

(δ4/2)1−2ε2/(α·| ˜H(α)|) · 2

α
ln

(

2

δ4

)

· 2ε2/| ˜H(α)|. (1)

We shall show that this is at most δ3/3| ˜H(α)|QE = 1/300QE | ˜H(α)|. Taking ε2 ≤
α/800QE simplifies (1) to:

1

300QE | ˜H(α)| · (δ4/2)1−2ε2/(α·| ˜H(α)|) · 3

4
ln

2

δ4
,

which is at most 1/300| ˜H(α)|QE as long as

(2/δ4)
1−2ε2/(α·| ˜H(α)|) >

3

4
ln

2

δ4
,

which certainly holds for our choice of ε2 and the setting of δ4 = 1/100k| ˜H(α)|. Each
call to SimMQ uses | ˜H(α)| calls to SHIV, so a union bound gives that each random
query to SimMQ returns an incorrect assignment with probability at most 1/300QE .

Now, since ˜f ′ and g are ε2-close and ε2 satisfies ε2QE ≤ δ3/3, in the uniform
random samples used to simulate the final (accepting) equivalence query, LearnPoly′
will receive examples labeled correctly according to g with probability at least 1 −
2δ3/3. Finally, note that LearnPoly′ makes at most | ˜H(α)|s + 2 equivalence queries

and hence each query is simulated using 4
ε

ln 3(| ˜H(α)|s+2)
δ3

random examples (for a

failure probability of δ3
| ˜H(α)|s+2

for each equivalence query). Then LearnPoly′ will

reject with probability at least 1 − δ3/3 unless g and h are ε/4-close. This concludes
the proof of Lemma 25. �

Proof of Lemma 24 We prove that if Vrf (Ij \ J ) > 2ε2/| ˜H(α)| for some j ∈ ˜H(α),
then the probability that all calls to SHIV return successfully is at most δ2. The close-
ness of ˜f ′ and g follows easily by the subadditivity of variation and Proposition 3.2
of [12].

First, we prove a much weaker statement whose analysis and conclusion will be
used to prove the proposition. We show in Proposition 26 that if the test accepts
with high probability, then the variation from each variable in any subset is small.
We use the bound on each variable’s variation to obtain the concentration result in
Proposition 27, and then complete the proof of Lemma 24.

Proposition 26 Suppose that k calls to SHIV are made with a particular subset I ,
and let i be the variable with the highest variation in I . If Vrf (j) > ε2/100| ˜H(α)|
for some j ∈ I \ i, then the probability that SHIV returns without outputting ‘fail’ for
all k calls is at most δ∗ = e−k/18 + 2e−c.

Proof Suppose that there exist j, j ′ ∈ I with Vrf (j) ≥ Vrf (j ′) ≥ ε2/100| ˜H(α)|.
A standard Chernoff bound gives that except with probability at most e−k/18, for
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at least (1/3)k of the calls to SHIV, variables j and j ′ are in different parti-
tions. In these cases, the probability SHIV does not output ‘fail’ is at most 2(1 −
ε2/100| ˜H(α)|)c , since for each of the c runs of the independence test, one of the
partitions must not be marked. The probability no call outputs ‘fail’ is at most
e−k/18 + 2(1 − ε2/100| ˜H(α)|)ck/3. Using the standard bound (1 + x) ≤ ex , we have
(1 − ε2/100| ˜H(α)|)ck/3 ≤ (1/e)ckε2/300| ˜H(α)|, and our choice of k > 300| ˜H(α)|/ε2

ensures that (1/e)ckε2/300| ˜H(α)| ≤ (1/e)c . �

Since in our setting |Ij | may depend on n, using the monotonicity of variation
with the previous claim does not give a useful bound on Vrf (I \ i). But we see from
the proof that if the variation of each partition is not much less than Vrf (I \ i) and
Vrf (I \ i) > 2ε2/| ˜H(α)|, then with enough calls to SHIV one of these calls should
output “fail.” Hence the lemma will be easily proven once we establish the following
proposition:

Proposition 27 Suppose that k calls to SHIV are made with a particular subset I

having Vrf (I \ i) > 2ε2/| ˜H(α)| and Vrf (j) ≤ ε2/100| ˜H(α)| for every j ∈ I \ i.
Then with probability greater than 1 − δ∗∗ = 1 − e−k/18, at least 1/3 of the k calls
to SHIV yield both Vrf (I 1) > ηVrf (I \ i)/2 and Vrf (I 0) > ηVrf (I \ i)/2, where
η = 1/e − 1/50.

Proof We would like to show that a random partition of I into two parts will result in
parts each of which has variation not much less than the variation of I \ i. Choosing
a partition is equivalent to choosing a random subset I ′ of I \ i and including i in I ′
or I \ I ′ with equal probability. Thus it suffices to show that for random I ′ ⊆ I \ i, it
is unlikely that Vrf (I ′) is much smaller than Vrf (I \ i).

This does not hold for general I , but by bounding the variation of any particular
variable in I , which we have done in Proposition 26, and computing the unique-
variation (a technical tool introduced in [12]) of I ′, we may obtain a deviation bound
on Vrf (I ′). The following statement follows from Lemma 3.4 of [12]:

Proposition 28 [12] Define the unique-variation of variable j (with respect to i) as

Urf (j) = Vrf ([j ] \ i) − Vrf ([j − 1] \ i).

Then for any I ′ ⊆ I \ i,

Vrf (I ′) ≥
∑

j∈I ′
Urf (j) =

∑

j∈I ′
Vrf ([j ] \ i) − Vrf ([j − 1] \ i).

Now Vrf (I ′) is lower bounded by a sum of independent, non-negative random vari-
ables whose expectation is given by

E

[

∑

j∈I ′
Urf (j)

]

=
n

∑

j=1

(1/2)Urf (j) = Vrf (I \ i)/2
def= μ.
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To obtain a concentration property, we require a bound on each Urf (j) ≤ Vrf (j),
which is precisely what we showed in the previous proposition. Note that Urf (i) = 0,
and recall that we have assumed that μ > ε2/| ˜H(α)| and every j ∈ I \ i satisfies
Vrf (j) < μ/100.

Now we may use the bound from [12] in Proposition 3.5 with η = 1/e − 2/100 to
obtain:

Pr

[

∑

j∈I ′
Urf (j) < ημ

]

< exp

(

100

e
(ηe − 1)

)

≤ 1/e2.

Thus the probability that one of I 0 and I 1 has variation less than ημ is at most 1/2.
We expect that half of the k calls to SHIV will result in I 0 and I 1 having variation
at least ημ, so a Chernoff bound completes the proof of the claim with δ∗∗ ≤ e−k/18.
This concludes the proof of Proposition 27. �

Finally, we proceed to prove the lemma. Suppose that there exists some I such
that Vrf (I \ i) > 2ε2/| ˜H(α)|. Now the probability that a particular call to SHIV with
subset I succeeds is:

Pr[marked(I 0);¬marked(I 1)] + Pr[marked(I 1);¬marked(I 0)].
By Propositions 26 and 27, if with probability at least δ∗ + δ∗∗ none of the k calls to
SHIV return fail, then for k/3 runs of SHIV both Vrf (I 1) and Vrf (I 0) are at least
ηε2/| ˜H(α)| > ε2/4| ˜H(α)| and thus both probabilities are at most (1− ε2/4| ˜H(α)|)c .

As in the analysis of the first proposition, we may conclude that every subset I

which is called with SHIV at least k times either satisfies Vrf (I \ i) < 2ε2/| ˜H(α)| or
will cause the test to reject with probability at least 1 − δ∗∗ − 2δ∗. Recall that δ∗ =
2e−c + e−k/18; since SHIV is set to run with failure probability at most 1/| ˜H(α)|k,
we have that δ2 is 1/�(k). This concludes the proof of Lemma 24. �

8 Conclusion and Future Directions

An obvious question raised by our work is whether similar methods can be used to
efficiently test s-sparse polynomials over a general finite field F, with query and
time complexity polynomial in s, 1/ε, and |F|. The basic algorithm of [8] uses
Õ((s|F|)4/ε2) queries to test s-sparse polynomials over F, but has running time
2ω(s|F|) · (1/ε)log log(1/ε) (arising, as discussed in Sect. 1, from brute-force search for
a consistent hypothesis.). One might hope to improve that algorithm by using tech-
niques from the current paper. However, doing so requires an algorithm for properly
learning s-sparse polynomials over general finite fields. To the best of our knowl-
edge, the most efficient algorithm for doing this (given only black-box access to
f : F

n → F) is the algorithm of Bshouty [5] which requires m = sO(|F| log |F|) logn

queries and runs in poly(m,n) time. (Other learning algorithms are known which
do not have this exponential dependence on |F|, but they either require evaluating the
polynomial at complex roots of unity [19] or on inputs belonging to an extension field
of F [14, 16].) It would be interesting to know whether there is a testing algorithm
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that simultaneously achieves a polynomial runtime (and hence query complexity) de-
pendence on both the size parameter s and the cardinality of the field |F|.

Another goal for future work is to apply our methods to other classes beyond just
polynomials. Is it possible to combine the “testing by implicit learning” approach
of [8] with other membership-query-based learning algorithms, to achieve time and
query efficient testers for other natural classes?
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