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Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain
amount of quantum information with a few players, has wide applications in quantum information. The
critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated
number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional
critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by
employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared
quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any
one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion.
Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our
setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can
be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
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Suppose that two presidents have established a secure
quantum channel via sharing of entangled states, such as
many Einstein-Podolsky-Rosen (EPR) pairs. At some
point, one president takes a vacation and does not trust
her individual vice presidents entirely; she therefore
decides to divide up her halves of the EPR pairs into
shares and distributes to the vice presidents in a quantum
secret sharing (QSS) scheme. Only when all of the vice
presidents work together are they allowed to communicate
with the other president. Hence, in quantum cryptography,
for instance, QSS can help to establish a quantum key
in a multipartite scenario. Moreover, in a long-distance
quantum network, the quantum channels, by which a
quantum state can be transmitted between remote nodes,
are typically very lossy. QSS is an efficient error correction
protocol against qubit losses as erasure errors. Furthermore,
QSS provides a robust and secure solution for quantum
state storage and computation [1].
A significant class of secret sharing schemes is the (k, n)

threshold scheme, which is described as follows. The dealer
encodes the initial secret into a large system composed of n
parts, and sends each player a share. To recover the dealer’s
information, at least k (with k ≤ n) players should combine
their shares together. Any subgroupwith less than k players is
forbidden to decode any knowledge about the shared infor-
mation. There are two criteria in a (k, n) threshold scheme.
The first criterion is reliability; ifmore thankplayers combine
their shared piece together, the information originating from

the dealer can be faithfully recovered. The second criterion is
confidentiality [2,3]; otherwise, with less than k players, no
information can be recovered. The no-cloning theorem [4,5]
implies that no quantum (k, n) threshold scheme exists
for 2k ≤ n. In QSS, a third critical criterion exists, namely,
the capability of sharing entangled and unknown quantum
information, as required in the aforementioned quantum
cryptography example. Note that the third criterion can also
be understood as maintaining coherence of quantum states
during processing, which is generally required in quantum
communication and quantum information. Numerous
attempts to realize QSS have been reported in the literature;
however, noneof themsatisfies all three criteria. For instance,
in many experiments, quantummeans are employed to share
classical information [6–9], none of which can satisfy the
confidentiality criterion when used for sharing a quantum
state. In other implemented schemes [10–12], pure-qubit
state sharing has been demonstrated; however, entangled
states have never been shared and recovered.
In their seminal work, Cleve, Gottesman, and Lo [1]

showed that for any k ≤ n ≤ 2k − 1, efficient constructions
of quantum threshold schemes exist. The essential idea is
that a quantum (k, 2k − 1) threshold scheme can be realized
by a quantum error-correcting code that is capable of
correcting k − 1 erasure errors with a code length of 2k − 1.
Intuitively, if an error-correcting code can correct k − 1

erasure errors, any k shares can recover the initial state
by treating the missing k − 1 shares as erasure errors. Any
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information gain of the unknown initial state by measuring
k − 1 shares leads to disturbance of the recovered state by
the remaining k shares. Because k shares can be used to
perfectly reconstruct the initial state, no information can be
obtained by less than k − 1 shares; otherwise, the principle
of “information gain means disturbance” in quantum
mechanics is violated [13]. Furthermore, for a general case
with n ≤ 2k − 1, the quantum (k, n) threshold scheme
can be constructed by discarding 2k − 1 − n shares from a
quantum (k, 2k − 1) threshold scheme.
According to the Cleve-Gottesman-Lo secret sharing

theory [1], the (3,3) threshold scheme is inherited from the

five-qubit quantum error-correcting code [14]. The
derivations are reviewed in Sec. I of the Supplemental
Material [15]. The dealer holds the to-be-shared quantum
state αjHi þ βjVi, which, in principle, could be unknown
to the dealer, and encodes it into a three-photon mixed
state

ρQSS ¼
1

4

X1

i;j¼0

jϕijihϕijj ð1Þ

with

jϕ00i ¼
1ffiffiffi
2

p ðαjHi þ βjViÞAðjHHi − jVViÞBC −
1ffiffiffi
2

p ðβjHi − αjViÞAðjHHi þ jVViÞBC;

jϕ01i ¼
1ffiffiffi
2

p ðαjHi þ βjViÞAðjHHi − jVViÞBC þ 1ffiffiffi
2

p ðβjHi − αjViÞAðjHHi þ jVViÞBC;

jϕ10i ¼
1ffiffiffi
2

p ðαjVi þ βjHiÞAðjHVi − jVHiÞBC −
1ffiffiffi
2

p ðαjHi − βjViÞAðjVHi þ jHViÞBC;

jϕ11i ¼
1ffiffiffi
2

p ðαjVi þ βjHiÞAðjHVi − jVHiÞBC þ 1ffiffiffi
2

p ðαjHi − βjViÞAðjVHi þ jHViÞBC; ð2Þ

where jHi and jVi denote horizontal and vertical polari-
zation, respectively. The subscripts A, B, and C represent
the three players Alice, Bob, and Charlie in the scheme.
Note that the to-be-shared quantum state can be unknown
to the dealer. In fact, it can be a part of a large entangled
state.
The quantum state of Eq. (1) can also be treated as the

five-qubit code state after two erasure errors. Thus, if we
can show that the original qubit can be recovered from
Eq. (1), we can conclude that the five-qubit code is capable
of correcting two erasure errors, which has been proven to
be equivalent to correcting an arbitrary error [16]. Hence,
such decoding circuits could also demonstrate that the five-
qubit code is capable of correcting an arbitrary qubit error.
To generate the three-photon mixed state ρQSS,

we employ a six-photon entangled state. A schematic of
the experimental setup is shown in Fig. 1. An ultraviolet
laser pulse (∼140 fs, 76 MHz, 390 nm) successively
passes through three 2-mm-thick β-barium borate (BBO)
crystals to generate three entangled photon pairs [17]. We
then overlap the two generated photons on a polarizing
beam splitter (PBS) to generate an ultrabright entangled
photon pair [18]. For paths i, j, the entangled pair state is
jΦþiij ¼ ðjHHiij þ jVViijÞ=

ffiffiffi
2

p
. Details of the photon

source are presented in Supplemental Material [15].
Using three entangled pairs, we prepare the state shown
in Eq. (1) for the (3,3) threshold scheme. In Fig. 1, X, Y,
and Z are denoted as the Pauli operators and H is denoted
as the Hadamard operation.
The dealer (photon 2) holds the quantum secret αjHi2 þ

βjVi2 heralded by projecting photon 1 on the state

α�jHi þ β�jVi. Photons 4 and 5 overlap on PBS1, which
leads the outgoing state to a four-photon Greenberger-
Horne-Zeilinger (GHZ) state jGHZi4 ¼ ðjHHHHi340506 þ
jVVVVi340506Þ=

ffiffiffi
2

p
. By projecting photon 40 on the

state jþi ¼ ðjHi þ jViÞ= ffiffiffi
2

p
, jGHZi3 ¼ ðjHHHi3506 þ

jVVVi34050 Þ=
ffiffiffi
2

p
is obtained. A rotation XHX, which is

realized by a half-wave plate (HWP) set at 67.5°, is
applied to photon 3 to convert the state jGHZi3 into
ðj −HHi34050 − j þ VVi34050 Þ=

ffiffiffi
2

p
, where jþi ¼ ðjHi þ

jViÞ= ffiffiffi
2

p
and j−i ¼ ðjHi − jViÞ= ffiffiffi

2
p

. A controlled-ZX
gate, which can be decomposed into three phase shift
gates [i.e., two Hadamard gates and a controlled-Z
(C-PHASE) gate; the decomposition of the controlled-ZX
gate is shown in Sec. I D of the Supplemental Material
[15]], is applied on target photon 2 and control photon 3.
The phase shift gate RðθÞ keeps jHi unchanged but adds a
phase eiθ on jVi, i.e., RðθÞjHi ¼ jHi, RðθÞjVi ¼ eiθjVi.
The sequence of the three phase shift gates is shown in
Fig. 1, and the value of three phase shifts in our experiment
is set to θ1 ¼ −π=2 and θ2 ¼ θ3 ¼ π=2. Rðπ=2Þ and
Rð−π=2Þ are achieved by setting the quarter-wave plates
(QWPs) at 0° and 90°. Two Hadamard gates (HWPs set at
22.5°) are applied on target photon 2 and 20 before and after
the C-PHASE gate. The C-PHASE gate is implemented by
overlapping photons 2 and 3 on a polarization-dependent
beam splitter (PDBS) (TH ¼ 1 and TV ¼ 1=3) with two
supplemental PDBSs (TV ¼ 1 and TH ¼ 1=3) at each exit
port of the overlapping PDBS [19]. After the controlled-ZX
gate, the state becomes
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1ffiffiffi
2

p ðj −HHi3506 − j þ VVi34050 Þ ⊗ ðαjH2i þ βjVi2Þ

→
C−ZXð3−2Þ 1ffiffiffi

2
p jHi30 ðjHHi506 − jVVi506ÞðαjHi20 þ βjVi20 Þ −

1ffiffiffi
2

p jVi30 ðjHHi506 þ jVVi506ÞðβjHi20 − αjVi20 Þ: ð3Þ

From Eq. (3), we can obtain jϕ00i and jϕ01i by pro-
jecting photon 30 onto the states jþi and j−i, respectively.
From Eq. (2), we find that jϕ00iðjϕ01iÞ can be transformed
into jϕ11iðjϕ10iÞ by the operation XA ⊗ XB ⊗ IC, i.e.,
XA ⊗ XB ⊗ ICjϕ00iðjϕ01iÞ ¼ jϕ11iðjϕ10iÞ. Thus, by ran-
domly setting the degree of polarizer on photon 30 at
45°ðjþiÞ and −45°ðj−iÞ and randomly inserting two HWPs
set at 45°ðXÞ on path 20 and 50, we obtain the mixed state
ρQSS upon sixfold coincidence postselection. Three pho-
tons, 20, 50, and 6, are distributed to Alice, Bob, and Charlie,
respectively. Note that this method used to generate ρQSS is
rather universal; thus, it can not only be used in linear optics
systems, but also in other quantum systems as well. The
detailed quantum circuit is provided in Sec. I D of the
Supplemental Material [15].
After preparing the quantum state for the (3,3) threshold

scheme, we test the reliability and confidentiality on ρQSS.
We confirm the reliability of the (3,3) threshold scheme by
showing that the initial quantum information αjHi þ βjVi
issued by the dealer can be faithfully recovered by the three
players. To do so, a Bell-state measurement (BSM) is first
applied on Bob’s and Charlie’s photons. Then, conditioned
on the outcome of BSM ∈ fjΦþi; jΦ−i; jΨþi; jΨ−ig, an
operation U ∈ fXZ; I; Z; Xg is applied on Alice’s photon
to recover jψi, where jΦ�i ¼ ðjHHi � jVViÞ= ffiffiffi

2
p

and

jΨ�i ¼ ðjHVi � jVHiÞ= ffiffiffi
2

p
are Bell states. As shown in

Fig. 1, the BSM is realized by interfering photons 50 and 6
on a PBS and analyzed by the BSM analyzer [20] on
photon 500 and photon 60. The correcting unitary U is
realized by HWPs. On the basis of the result from the BSM
analyzer, we choose the corresponding unitary operation on
photon 20. In our experiment, we project photon 50 and 6
onto one of the four Bell states, and employ the corre-
sponding U on photon 20 to obtain the initial state. The
recovery results under different BSM results are presented
in Sec. II B of the Supplemental Material [15]. In principle,
Charlie and Bob could feed the outcome of the BSM
forward to Alice, according to which Alice can apply the
corresponding unitary on the photon in her hand to obtain
the secret state.
In the experiment, we choose eight different input

quantum states, in the form of jψi ¼ αjHi þ βjVi, and
measure the fidelity between the input and decoded
states for each case. The best fidelity achieved is
0.93� 0.02 and the average fidelity is 0.82� 0.01. More
details on data processing are shown in Sec. II B of
the Supplemental Material [15]. The results are presented
in Fig. 2. Each of the eight fidelities is beyond the
classical limit 2=3 for more than three standard
deviations.
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FIG. 1. Illustration of the experimental setup. An ultraviolet (UV) pulse passes through BBO1, BBO2, and BBO3 successively. After
pumping on BBO1 (BBO2), the UV pulse is refocused by lenses and directed to BBO2 (BBO3) by mirrors (not shown here). The
interference on PBS1, PDBS, and PBS2 is obtained by finely adjusting the path length of the two input photons. To achieve good
visibility of interference, we filter the photons temporally by narrow band filters and spatially by single-mode fibers (SMFs). Only
sixfold coincidence events, among paths 1, 2’, 3’, 4’, 5”, and 6’, are postselected, with rates of 75 counts per hour in the confidentiality
test and 14 counts per hour in the reliability test. Polarizers (POL) are used for projection-valued measures.
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Furthermore, we show that entangled quantum states can
also be shared and recovered by our setup. As shown in
Fig. 1, photons 1 and 2 are in a maximally entangled state
jΦþ

12i ¼ ðjHHi12 þ jVVi12Þ=
ffiffiffi
2

p
. Photon 2 is divided into

three shares that are distributed to Alice, Bob, and Charlie
and is recovered by collaboration of all three shares. We
then analyze the entanglement between photon 1 and the
recovered photon 20, i.e., ρ120 , by an entanglement witness
W ¼ 1

2
I − jΦþ

120 ihΦþ
120 j. The expectation value of W can be

decomposed into a linear combination of the expectation
values of local observables,

hWi ¼ TrðWρ120 Þ ¼
1

4
ð1 − hZ1Z20 i − hX1X20 i þ hY1Y20 iÞ:

ð4Þ

The measurement results are shown in Fig. 3. From the
measured coincidence count probabilities, we calculate that
hWi ¼ −0.24� 0.02, from which we further obtain the
fidelity of the recovered ρ120 of Fexp ¼ TrðjΦþihΦþjρ120 Þ ¼
1
2
− TrðWρ120 Þ ¼ 0.74� 0.02 [21]. More details on data

processing are shown in Sec. II C of the Supplemental
Material [15]. Clearly, the recovered quantum state is still
entangled with the other half of the EPR pair because
hWi < 0. Thus, we have shown that our QSS setup is
capable of sharing entangled states.
From the viewpoint of error correction, the quantum state

ρQSS we prepared can be treated as the five-qubit code after
going through two erasure errors. The decoding circuit
shown in Fig. 1 is the same as that for the five-qubit
quantum erasure error-correcting code. Thus, we have
successfully demonstrated that the five-qubit code is
capable of correcting two erasure errors with a fidelity
as high as 93%. Correcting two erasure errors has been
proven to be equivalent to correcting an arbitrary error

[16,22] (details are provided in Sec. I E of the Supplemental
Material [15]). Thus, for the first time, we have exper-
imentally verified that a general error can be corrected in a
linear optics quantum computing system.
The confidentiality of the scheme is shown by the fact

that the quantum state of any one or two of the three players
is independent of the secret quantum information jψi. In an
ideal implementation, from Eq. (1), we can easily find that
the density matrix of each player’s qubit is I=2 and that the
density matrix of any two players’ joint state is I ⊗ I=4.
Thus, no information can be obtained unless three players’
shares are combined. In the experiments, we verify single-
player and two-player cases separately.
In the single-player case, the encoding process can be

represented by a quantum channel [23], i.e., ρk ¼ EkðρDÞ,
where ρk denotes the reduced density matrix of player k
and ρD ¼ jψihψ j is the initial secret quantum state.
The ideal-implementation channel Eideal from the dealer
to a single player is a depolarizing channel ρD → I=2.
Experimentally, we remove the PBS2 and BSM analyzer,
and reconstruct Ek using the quantum process tomography
technology [23]. For example, when we reconstruct EA, we
perform tomographic measurements on Alice while treating
Bob and Charlie’s qubits as trigger photons without
measuring their polarization information. The geometry
interpretation of Ek is shown in Fig. 4. We calculate the
process fidelity between ideal Eideal and reconstructed Ek,
namely, Fk ¼ Trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eideal

p
Ek

ffiffiffiffiffiffiffiffiffiffi
Eideal

pp
Þ2 and discover that

FAlice ¼ 0.90� 0.03, FBob ¼ 0.97� 0.01, and FCharlie ¼
0.89� 0.03. More details on data processing are shown in
Sec. II D of the Supplemental Material [15]. We test the
confidentiality of two players by measuring the minimum
error probability to distinguish two orthogonal secret states

Classical limit
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FIG. 2. Quantum secret recovery by three players. The column
represents the corresponding fidelity of the recovered state when
the initial state is prepared into jHðVÞi, j�i ¼ ðjHi � jViÞ= ffiffiffi

2
p

,
jLðRÞi ¼ ðjHi � ijViÞ= ffiffiffi

2
p

and jvðwÞi ¼ ðjHi � ffiffiffi
3

p jViÞ=2.
The error bars are calculated by assuming that our experimental
data follow a normal distribution. The red dashed line represents
the classical limit of 2=3.

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

H1H2 H1V2 V1H2 V1V2 +1+2 +1-2 -1+2 -1-2 L1L2 L1R2 R1L2 R1R2

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

(a) (b) (c)

FIG. 3. Entanglement witness results as local measurements in
the Z, X, and Y bases. (a) Coincidence detections in the Z basis,
projecting to H and V, PðH1; H20 Þ ¼ 0.40ð3Þ, PðH1; V20 Þ ¼
0.10ð2Þ, PðV1; H20 Þ ¼ 0.11ð2Þ and PðV1; V20 Þ ¼ 0.40ð3Þ.
In Eq. (4), hZ1Z20 i ¼ PðH1; H20 Þ − PðH1; V20 Þ − PðV1; H20 Þ þ
PðV1; V20 Þ ¼ 0.59. (b) X basis, projecting to þ and −,
Pðþ;þ20 Þ¼0.40ð2Þ, Pðþ1;−20 Þ¼0.11ð1Þ, Pð−1;þ20 Þ¼0.12ð1Þ,
and Pð−1;−20 Þ ¼ 0.39ð2Þ. (c) Y basis, projecting to L and R,
PðL1;L20 Þ¼0.03ð1Þ, PðL1;R20 Þ ¼ 0.41ð3Þ, PðR1;L20 Þ ¼ 0.52ð3Þ,
and PðR1; R20 Þ ¼ 0.05ð1Þ.

PRL 117, 030501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
15 JULY 2016

030501-4



[24]. The two-player results are presented in Sec. II E of the
Supplemental Material [15].
By designing a linear optical quantum circuit, we

experimentally demonstrate the quantum (3,3) threshold
scheme, satisfying the three criteria for the fully quantum
secret sharing: reliability, confidentiality, and capability of
sharing entangled states. Our setup provides a practical
QSS architecture. With the assistance of entanglement
purification and nested entanglement swapping, a long-
distance QSS scheme can be achieved to protect the secrets.
Such a scheme can serve as one of the founding blocks in
many quantum information tasks, such as all-photonic
quantum repeater [25,26], distributed quantum information
processing [27], and lossy quantum memory [28].
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channel operator matrix reconstructions and assuming white noise.
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