
State-Independent Experimental Test of Quantum Contextuality with a Single Trapped Ion

Xiang Zhang,1 Mark Um,1 Junhua Zhang,1 Shuoming An,1 Ye Wang,1 Dong-ling Deng,1,2

Chao Shen,1,2 Lu-Ming Duan,1,2 and Kihwan Kim1,*
1Center for Quantum Information, Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing 100084, People’s Republic of China
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 11 September 2012; published 11 February 2013)

Using a single trapped ion, we have experimentally demonstrated state-independent violation of a

recent version of the Kochen-Specker inequality in a three-level system (qutrit) that is intrinsically

indivisible. Three ground states of the 171Ybþ ion representing a qutrit are manipulated with high fidelity

through microwaves and detected with high efficiency through a two-step quantum jump technique.

Qutrits constitute the most fundamental system to show quantum contextuality and our experiment

represents the first one that closes the detection efficiency loophole for experimental tests of quantum

contextuality in such a system.
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It is a long-standing debate whether quantum mechanics
gives a complete description for all the properties of
physical systems. In the world view of classical reality,
the measurement outcomes on physical properties are
noncontextual, i.e., predetermined independent of other
compatible measurements that can be performed simulta-
neously, while in quantum mechanics measurements are
contextual. Kochen, Specker, and Bell proved that quan-
tum mechanics and any theory based on noncontextual
classical reality give conflicting predictions [1,2]. The
conflict is rooted in the structure of quantum mechanics
and independent of the states of the system. This conflict
was later reformulated as experimentally testable inequal-
ities, in general referred to as the Kochen-Specker (KS)
inequalities. The conventional Bell inequalities can be
considered a special type of the KS inequalities, where
the contextuality is enforced by nonlocality. While Bell’s
inequalities can be violated only by entangled states, the
violation of the KS inequalities in principle can be
observed for any state of the system.

A number of recent experiments [3–6] have demon-
strated the Kochen-Specker inequality for two qubits
[7–9], using photons, ions, neutrons, or nuclear spin
ensembles. In particular, the experiment [3] closes the
important detection efficiency loophole for experimental
tests of quantum contextuality on two qubits using trapped
ions. On the other hand, it is known that two qubits are not
the simplest system to show quantum contextuality. A
single three-level system, called a qutrit, is the most fun-
damental system manifesting the conflict between quan-
tum mechanics and noncontextual hidden variable theory.
The test of the KS inequality with qutrits is of special
interest for several reasons. Firstly, a qutrit is the simplest
system to show quantum contextuality. Second, a violation
of the KS inequality in a three-level system would imply its
violation in higher dimensions with d > 3; however, the

reverse is not true. In this sense, it is more fundamental to
test the KS inequality in the qutrit system. Finally, the
qutrit system is intrinsically indivisible with no tensor
product structure for its Hilbert space and thus has abso-
lutely no entanglement. A violation of the KS inequality in
qutrits clearly shows that quantum contextuality is not
based on entanglement or particular quantum states but
rooted in the fundamental structure of quantum mechanics.
Experimental tests of quantum contextuality with indi-

visible qutrits only became possible very recently, with
significant improvement of the KS inequalities for qutrit
systems. A version of the KS inequality for qutrits was
proposed in Ref. [10] using five measurement settings;
however, this version of the KS inequality requires us to
prepare the system in a particular quantum state and thus is
not state independent. A significantly simplified state-
independent version of the KS inequality was proposed
recently in Ref. [11] using 13 measurement settings, and 13
has been proven to be the minimum number of settings
required for tests of quantum contextuality in a qutrit
system [12]. On the experimental side, for a qutrit system,
the violation of state-dependent KS inequality was first
observed in Ref. [13] and the state-independent experimen-
tal test of quantum contextuality was just reported in
Ref. [14]. Both of these experiments use single photons
to represent qutrits and thus are subject to the detection
efficiency loophole because of the low detection efficiency
of photons as well as the post-selection technique required
in this kind of experiment.
In this Letter, we report the first experimental test of

quantum contextuality for a qutrit system that closes the
detection efficiency loophole. We use three ground states
of a single trapped ion to represent a qutrit. The violation of
the KS inequality for a qutrit is only about a few percent
even for a perfect system. We use high-fidelity quantum
gates based on microwave operation to rotate the
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measurement bases and a two-step quantum jump tech-
nique to distinguish the qutrit states and measure all the
required correlation functions with a high detection effi-
ciency. The KS inequality is observed to be violated for all
the 12 different quantum states.

The basis vectors for a qutrit are denoted by j1i, j2i, j3i.
The 13 observables in the KS inequality take the form of
Ai ¼ I � 2Vi, where Vi is the normalized projection opera-
tor onto a vector jvii ¼ aj1i þ bj2i þ cj3i. The 13 corre-
sponding vectors jvii are displayed in a three-dimensional
Hilbert space as shown in Fig. 1(a), with real values for the
coefficients (a, b, c), which are general enough for our
purpose. In Fig. 1(b), an edge ði; jÞ 2 E indicates the or-
thogonal relation of the projectors ViVj¼0, where the

corresponding Ai and Aj are compatible observables. In

total, there are 24 compatible pairs (Ai, Aj) represented by

the 24 edges in Fig. 1(b). An improved version of the KS
inequality for a qutrit system takes the form [15],

h�13i ¼
X

i2V

�ihAii �
X

ði;jÞ2E

�ijhAiAji

� X

ði;j;kÞ2C

�ijkhAiAjAki � 25; (1)

where h� � �i denotes the average of measurement outcomes,
�i ¼ 1 for (i ¼ 1; 2; . . . ; 9), �i ¼ 2 for (i ¼ 10; . . . ; 13),
�ij ¼ 1 when (i, j) are in the triangles fð1; 4; 7Þ;
ð2; 5; 8Þ; ð3; 6; 9Þg, and �ij ¼ 2 otherwise. In Eq. (1), C

denotes the set of four triangles in Fig. 1(a), and �ijk ¼ 3

when ði; j; kÞ 2 fð1; 4; 7Þ; ð2; 5; 8Þ; ð3; 6; 9Þg and 0 other-
wise. This inequality can be derived through an exhaustive
check of all possible assignments of values �1 to the 13
variables. In quantum mechanics, one finds �13 ¼ ð25þ
8=3ÞI when Ai are identified with the qutrit observables

given in Fig. 1(a), which clearly violates the inequality (1)
independent of the system state.
For a more strict hidden variable model that is required

to preserve the algebraic structures of compatible observ-
ables, one can derive another inequality [11],

h�4i ¼
X13

i¼10

hVii � 1: (2)

This inequality is only valid under the additional assump-
tions of the product rule and the sum rule [11], so it is
logically weaker but easier to be violated in experiments.
Quantum mechanics predicts �4 ¼ ð4=3ÞI, so the inequal-
ity (2) is violated quantum mechanically with a significant
margin.
We test the KS inequalities (1) and (2) using a single

trapped 171Ybþ ion in a four-rod Paul trap with the setup
similar to the one described in Ref. [16]. The basis vectors
of a qutrit are represented by the three hyperfine levels of
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FIG. 1 (color online). Observables and compatibility relations
for the state-independent KS inequality for a qutrit system.
(a) The 13 observables are represented as vectors in a three-
dimensional space. jvii0s are specified as jv1i ¼ ð1; 0; 0Þ, jv2i ¼
ð0; 1; 0Þ, jv3i ¼ ð0; 0; 1Þ, jv4i ¼ ð0; 1;�1Þ, jv5i ¼ ð1; 0;�1Þ,
jv6i ¼ ð1;�1; 0Þ, jv7i ¼ ð0; 1; 1Þ, jv8i ¼ ð1; 0; 1Þ, jv9i ¼
ð1; 1; 0Þ, jv10i ¼ ð�1; 1; 1Þ, jv11i ¼ ð1;�1; 1Þ, jv12i ¼
ð1; 1;�1Þ, and jv13i ¼ ð1; 1; 1Þ. (b) The compatibility graph
between 13 observables. The nodes represent the 13 vectors
jvii and the 24 edges show the orthogonality or compatibility
relations. The experimental realization and joint measurements
of the 24 orthogonal observables are described in Table I and
Fig. 2(c).
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FIG. 2 (color online). The 171Ybþ ion system and the mea-
surement scheme. (a) The energy diagram of 171Ybþ. Qutrit
states j1i, j2i, and j3i are mapped onto jF¼1;mF¼0i, jF ¼ 1;
mF ¼ 1i, and jF ¼ 0; mF ¼ 0i in the S1=2 ground state mani-

fold, respectively. The transition frequencies are !1 ¼
ð2�Þ12 642:8213 MHz and !2 ¼ !1 þ ð2�Þ7:6372 MHz. The
quantum state projected to j1i or j2i generates fluorescence,
while the state collapsed to j3i does not generate photons.
Therefore, we assign zero on the observable related to state j3i
when we detect photons and one when no photons are detected.
(b) The matrix representations of R1ð�1; �1Þ; R2ð�2; �2Þ rota-
tions, which are realized by applying microwave pulses with the
frequencies of !1 and !2. Here �1, �2 and �1, �2 are controlled
by the duration and the phase of the applied microwaves. (c) The
sequential measurement scheme to detect the correlations
hViVji, where Mi and Mj denote the measurement boxes asso-

ciated with the observables Vi and Vj, respectively. The detailed

implementation is explained in the text.
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the 171Ybþ ion in the S1=2 ground-state manifold, with

j1i ¼ jF ¼ 1; mF ¼ 0i, j2i ¼ jF ¼ 1; mF ¼ 1i, and j3i ¼
jF ¼ 0; mF ¼ 0i, as shown in Fig. 2(a).

The experiment takes the following procedure: after
1 ms Doppler cooling, the state of the ion is initialized to
j3i by 3 �s standard optical pumping [16]. The states for
the test are coherently prepared by the microwaves !1 and
!2 that are resonant to the transitions between j1i and j3i,
and between j2i and j3i, respectively with high fidelity
[17]. The pulse sequences for the preparations of different
initial states are shown in Table I. The coherent rotations
of the microwaves are represented by the matrices
R1ð�1; �1Þ; R2ð�2; �2Þ shown in Fig. 2(b). Here �1, �2
and �1, �2 are controlled by the duration and the phase
of the applied microwaves. The 2� times for both Rabi
oscillations are adjusted to 29:5 �s, that is, the Rabi fre-
quency �1;2 ¼ ð2�Þ33:9 kHz. The separation !2 �!1 ¼
ð2�Þ7:6372 MHz with the magnetic field B ¼ 5:455 G.
The maximum probability of off-resonant excitation
�2=ð!2 �!1Þ2 is about 1:6� 10�5, small enough to
ensure the independence of each Rabi oscillation.

We measure the average of single observables, hAii in
Eq. (1) or hVii in Eq. (2) by rotating the measurement

axis jvii to the state j3i through microwave operation as

shown in Fig. 2(c). Then we measure the probability of the

state Pj3i ¼ hVii, which gives hAii through Ai ¼ 1� 2Vi.

The standard quantum jump detection based on the state-

dependent fluorescence through a cycling transition can

distinguish the jF ¼ 0i level from the three jF ¼ 1i levels.
We observe on average 10 photons for the j1i or j2i states
(referred to as the bright states) and basically no photon for

the j3i state (referred to as the dark state) by collecting

photons through an objective lens with high numerical

aperture at the front side and backside of the ion trap system.

We assign value 1 to Vi when no photons are detected and

value 0 when photons are detected. Therefore, the proba-

bility Pj3i is obtained by dividing the number of no-photon

events by the number of total repetitions. The state detection

error rates for wrongly registering the state j3i and missing

the state j3i are 0.5 and 1.5%, respectively, with the dis-

crimination threshold set at nph ¼ 1.

To measure the correlations, we use the following rela-

tion: hAiAji ¼ hð1� 2ViÞð1� 2VjÞi ¼ 1� 2hVii� 2hVjiþ
4hViVji, where hVii and hVji are obtained by the method

described above. The correlation term hViVji is sequen-

tially measured as shown in Fig. 2(c), composed of two

consecutive measurement boxes Mi and Mj associated

with the observables Vi and Vj, respectively. Each mea-

surement box Mi is implemented by a unitary rotation Ui,

followed by a measurement in the standard basis which

detects projection to the state j3i and an inverse unitary

rotationUy
i . The rotationUi and thus the measurement box

Mi is uniquely determined by the observable Vi and is

implemented in the same way in the experiment when we

measure the correlation of Vi with other compatible

observables to assure context independence. The unitary

Ui is realized with one or two microwave rotations and the

corresponding pulse sequences forUi (i ¼ 1; 2; . . . ; 13) are
listed in Table I for all the 13 different observables Vi. As

an example, we illustrate the measurement of the correla-

tion hViVji with i ¼ 11 in Fig. 2(c).

TABLE I. The pulse sequences for initial state preparation and measurement configurations for the 13 observables. We prepare the
various initial states from a simple basis state via a superposition state to mixed states for the test of the state-independence of the
inequalities (1) and (2). The state tomography results of the mixed states �10, �11, �12 are shown in Fig. 3. We rotate the three-
dimensional coordinates to map an observable on the j3i state. Here Uiði ¼ 1; 2; . . . ; 13Þ stands for unitary rotation for the projection
observables Ai or Vi on the vectors jvii shown in Fig. 1(a) and � represents 0:392�. For the correlation measurements between the
orthogonal observables shown as the edges of Fig. 1(b), we perform the sequential measurements described in Fig. 2(c). Note that the
pulse sequences for the observables are conserved in the different experimental contexts.

Preparation sequences Measurement sequences

First Second Third First Second

c 1: R1ð�; 0Þ U1 ¼ R1ð�;�Þ
c 2: R2ð�; 0Þ U2 ¼ R2ð�; 0Þ
c 3: no rotation U3 ¼ no rotation

c 4: R1ð�=2; �Þ U4 ¼ R2ð�=2; �Þ
c 5: R2ð�=2; �Þ U5 ¼ R1ð�=2; 0Þ
c 6: R1ð�; 0Þ R2ð�=2; �Þ U6 ¼ R2ð�;�Þ R1ð�=2; �Þ
c 7: R1ð0:304�; 0Þ U7 ¼ R2ð�=2; 0Þ
c 8: R2ð0:288�;�Þ R1ð0:533�; 0Þ U8 ¼ R1ð�=2; �Þ
c 9: R1ð�=2; �=2Þ R2ð�; 0Þ U9 ¼ R2ð�; 0Þ R1ð�=2; �Þ
�10: R1ð�=2; 0Þ R2ð�; 0Þ½0:5 ms� U10 ¼ R2ð�=2; 0Þ R1ð�; 0Þ
�11: R1ð�; 0Þ R2ð�=2; 0Þ½0:5 ms� U11 ¼ R1ð�=2; �Þ R2ð�;�Þ
�12: R1ð�; 0Þ R2ð�=2; 0Þ½1:0 ms� R2ð�;�Þ½1:0 ms�R2ð�; 0Þ U12 ¼ R1ð�=2; 0Þ R2ð�;�Þ

U13 ¼ R1ð�=2; �Þ R2ð�; 0Þ
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For the last terms in the equality (1), we apply similar
methods as described above. The correlations �hAiAjAki
are expanded to�1þ 2hVii þ 2hVji þ 2hVki � 4hViVji �
4hVjVki � 4hVkVii þ 8hViVjVki. We can ignore the terms

hViVjVki because they should not have negative values

and the inequality without these terms should be bounded
by the same value, 25. Note that we do not discard
any measured data to construct the inequality, which
ensures that the experiment requires no fair-sampling as-
sumption and thus is free from the detection efficiency
loophole.

We perform the measurements of 24 correlations of
compatible observables with exchanged order and the av-
erage values of the 13 observables under a given initial
state. We repeat the same measurements 10 000 times for
the same observable, which result in 480 000 repetitions
for one initial state. To show that the inequalities (1) and
(2) can be violated independent of the system state, we
prepare 12 different initial states as shown in Table I and
Fig. 3 and repeat the measurements described in Fig. 2(c)
and Table I. We observe the fidelities of the prepared states
to be on average 98%.

From our observation, the inequalities (1) and (2) are
clearly violated for all the input states that we tested,
including mixed states as summarized in Fig. 3. The aver-
age of h�13i¼27:38ð�0:21Þ and h�4i¼1:35ð�0:04Þ, sig-
nificantly larger than the limits set by noncontextual
hidden variable models. For some of the input states,
h�4i and h�13i are even larger than the quantum bounds,
but this is of no physical significance as the results are
within the error bar.
In summary, we have observed violation of the KS

inequality for the indivisible qutrit system using a single
trapped ion, closing the detection efficiency loophole for
this fundamental system that manifests quantum contex-
tuality. The measurement results are in agreement with
quantum mechanical predictions and violate the bounds
set by any noncontextual hidden variable models by a
significant margin. The compatibility loophole of the
sequential measurements could be handled in the extended
contextual models [18].
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