
The Limits of Buffering: A Tight Lower Bound for Dynamic
Membership in the External Memory Model

Elad Verbin
∗

ITCS, Tsinghua University
Beijing, China

elad.verbin@gmail.com

Qin Zhang
†

HKUST
Hong Kong, China

qinzhang@cse.ust.hk

ABSTRACT
We study the dynamic membership (or dynamic dictionary)
problem, which is one of the most fundamental problems
in data structures. We study the problem in the external
memory model with cell size b bits and cache size m bits.
We prove that if the amortized cost of updates is at most
0.999 (or any other constant < 1), then the query cost must
be Ω(logb log n(n/m)), where n is the number of elements in
the dictionary. In contrast, when the update time is allowed
to be 1 + o(1), then a bit vector or hash table give query
time O(1). Thus, this is a threshold phenomenon for data
structures.

This lower bound answers a folklore conjecture of the ex-
ternal memory community. Since almost any data struc-
ture task can solve membership, our lower bound implies
a dichotomy between two alternatives: (i) make the amor-
tized update time at least 1 (so the data structure does not
buffer, and we lose one of the main potential advantages
of the cache), or (ii) make the query time at least roughly
logarithmic in n. Our result holds even when the updates
and queries are chosen uniformly at random and there are
no deletions; it holds for randomized data structures, holds
when the universe size is O(n), and does not make any re-
strictive assumptions such as indivisibility. All of the lower
bounds we prove hold regardless of the space consumption of
the data structure, while the upper bounds only need linear
space.

The lower bound has some striking implications for ex-
ternal memory data structures. It shows that the query
complexities of many problems such as 1D-range counting,
predecessor, rank-select, and many others, are all the same

∗Elad Verbin was supported in part by the National Nat-
ural Science Foundation of China Grant 60553001, and
the National Basic Research Program of China Grants
2007CB807900 and 2007CB807901.†Qin Zhang was supported by Hong Kong Direct Allocation
Grant (DAG 07/08) and Hong Kong CERG Grant 613507.
Some of this work was done when he was visiting ITCS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

in the regime where the amortized update time is less than
1, as long as the cell size is large enough (b = polylog(n)
suffices).

The proof of our lower bound is based on a new combina-
torial lemma called the Lemma of Surprising Intersections
(LOSI) which allows us to use a proof methodology where we
first analyze the intersection structure of the positive queries
by using encoding arguments, and then use statistical ar-
guments to deduce properties of the intersection structure
of all queries, even the negative ones. In most other data
structure arguments that we know, it is difficult to argue
anything about the negative queries. Therefore we believe
that the LOSI and this proof methodology might find future
uses for other problems.

Categories and Subject Descriptors
F.2.3 [Theory of Computation]: ANALYSIS OF AL-
GORITHMS AND PROBLEM COMPLEXITY—Tradeoffs
among Complexity Measures; E.1 [Data]: DATA STRUC-
TURES

General Terms
Theory

Keywords
Data Structures, External Memory, Membership

1. INTRODUCTION
Dynamic membership is one of the most fundamental prob-

lems in data structures. In this problem, we must design a
data structure for maintaining a dynamic set S ⊂ U (|U | =
u) with |S| = n ≤ u.

• Insert: Insert an item x ∈ U into S.

• Delete: Delete an item x ∈ S from S.

• Query: Given any particular x ∈ U , decide whether
x ∈ S.

A closely related problem is the dynamic dictionary problem,
in which the insert operation gets two arguments: an item
x ∈ U and a data element y, which is to be associated with
x; when querying x, if the answer is “yes”, the data structure
should also return x’s associated data.

We study the problem in the external memory model (EM
model) of Aggarwal and Vitter [1]. In this model, the data
structure consists of a collection of b-bit cells (the disk) and
a cache of m bits. The cost of an operation is measured

447

by the number of cells that are probed (= read or written).
Accesses to the cache and changes to it are free. Thus, the
EM model is similar to Yao’s cell probe model [31] with an
additional free-to-access cache. The cache often drastically
changes the behavior of the model, since it enables update
operations to potentially take o(1) amortized time, by writ-
ing the inserted elements to the cache (for free) and then,
every few operations, writing them to the disk all at once
using only one probe; this effect is called buffering or batch-
ing and it is one of the most interesting features of the EM
model. Another difference between the EM model and the
cell probe model is that in the cell probe model we are typi-
cally interested in cells of size b ≈ log u bits, while in the EM
model we typically care about b = polylog(u) or even larger
values of b. For more information on the EM model, see e.g.
the book of Vitter [29]. About data structures in the EM
model, also see e.g. [19, 2]. Recall that, in both the cell probe
model and the EM model, computation is free; the only
charge is for probing cells. Lower bounds in these models
often have matching upper bounds in more realistic models
(e.g. RAM) even though they are significantly stronger than
real-world machines in their computational ability. This elu-
cidates the point that in data structures, the bottleneck is
often in collecting information for the computation, rather
than in performing the computation itself.

It is interesting to note that buffering is the feature that
captures the benefit of real-world caching (such as when us-
ing RAM as a cache for the hard drive, or using L2 cache as
a cache for RAM, etc). In such real-world cases, the cost of
accessing the cache is so small compared to accesses to the
higher level memory, that it is essentially free. In some types
of real-world caching, once a page becomes “full” we write it
all back to higher-level memory, which is exactly what hap-
pens in the theoretical concept of buffering. Often, the goal
of real-world caching is to enable faster data access and data
modification. In this sense, the membership problem in the
external memory model is a fundamental problem in the con-
text of data access in real-world computing. It is well known
that much of the machine time of databases, routers, search
engines, and many other applications is taken by hashing
and other types of membership searching, and that most of
this time is spent on copying data from higher levels in the
memory hierarchy. Thus, any improvement on member-
ship in the external memory model would mean immediate
and significant speedups in many applications. (And it is
therefore somewhat tragic that in this paper we show that
dramatic improvements on the current state of the art are
impossible, at least under the EM theoretical model).

So, how fast can we solve membership in the EM model?
When looking at the EM literature, it quickly becomes clear
that there are two radically different approaches to solving
the membership problem, which are disconnected from one
another: hashing and buffering. In the hashing-type ap-
proaches (e.g. [29, chap. 10], [19, sec. 4]), a hash table is
used, and the goal is to make the operations as efficient as
possible, but it is always implicit that they cannot take less
than 1 probe each (hence, no buffering is achieved). The
query times are typically O(1) with a very small constant in
the big-Oh, or even 1 + o(1). The goal is to make the con-
stants as good as possible, under various measures (worst
case, average case, etc). On the other hand, in the buffering-
type approaches (e.g. [29, chap. 11], [19, sec. 3.5]), various
ways to achieve buffering are explored, and typical solutions

such as the ubiquitous buffer tree (see Section 1.2) achieve
an amortized update time of o(1); in fact, the update time

can be as small as log2 u
b

, which is much smaller than 1 if b
is large enough (see e.g. [3, 4, 9]; also, recall that b and m
are measured in bits). However, all of these buffering-type
approaches take query time roughly log n or log n

log log n
.

Few texts discuss why these two types of approaches are
so different. Is there a way to get the best of both worlds: a
data structure with amortized update time o(1) and query
time O(1) ? This fundamental question has often been
asked informally, and was also asked explicitly by Jensen
and Pagh [12]. In this paper we give a very strong negative
answer to this question: we prove a threshold result – that
if the amortized update time is any constant bounded below
1 (for example, 0.999), then the query time must be roughly
at least logarithmic in n, namely ≥ Ω(logb log n(n/m)). See
Theorem 1. This is an unusually delicate threshold behav-
ior for data structures problems, and seems to say something
deep about the EM model.

Since membership is one of the easiest data structures
problems (in the sense that it is reducible to most other data
structure problems) it follows that this lower bound applies
for most other data structure problems as well (such as dic-
tionary, predecessor, prefix sum, range counting, union find,
rank-select, and many others; reductions will be formally
proved in the full version of the paper).

Our lower bound means that for large enough b, for most
of these data structures problems, one can either choose to
use the optimal RAM solution (without doing any buffer-
ing), or one can achieve buffering using the buffer tree, but
the query time is logarithmic, and there’s nothing in be-
tween!

In the remainder of Section 1 we present our results, de-
scribe the buffer tree, and discuss previous work. In Section
2 we give a fake proof of our lower bound, which is quite sim-
ple (but not formally true) and captures many of the ideas
behind our result. In Section 3 we present the real, formal,
proof of our lower bound.

1.1 Our results
The statement of our lower bound is:

Theorem 1. Suppose we insert a sequence of n elements
chosen uniformly at random, into any initially empty ran-
domized data structure in the EM model with cell size b and
cache size m. If the expected total cost of these insertions is
n · tu, and the data structure is able to answer a membership
query with expected average tq probes,1 then we have the fol-
lowing tradeoff: If tu ≤ 0.9, then tq ≥ Ω(logb log n(n/m)).

This holds provided that u ≥ 1010000n. It holds even when
we measure tu only by the number of cells written.

This theorem settles a folklore conjecture (explicitly pro-
posed by Jensen and Pagh [12]), thereby completing the line
of research of [30] and [33].

1That is, at any time during the updated sequence, if we
query uniformly at random an element from the universe,
then the expected cost of the query should be no more than
tq. All expectations are taken over all possible update se-
quences.

448

It is important to note that our bound does not assume in-
divisibility.2 The ideas behind it might be useful for further
bounds in the EM model that do not assume indivisibility.

As discussed before, the constant 0.9 is arbitrary, and can
be replaced by any constant < 1. The constant 1010000 and
the constants hidden in the big-Ω notation are quite wild, as
is common with lower bounds. We did not make any effort
to optimize them. We are reasonably sure that the “real”
constants are quite tame, and since this makes a big dif-
ference in practice, it might be interesting to perform more
careful analysis in order to pinpoint the right constants.

Theorem 1 is proved in Section 3, but only for determinis-
tic data structures. The theorem can be generalized to hold
for randomized data structures using a Minimax principle
for data structures similar to that of [33]. The details are
deferred to the full version due to space considerations.

Another contribution of this paper is the Lemma of Sur-
prising Intersections (LOSI) which might be of independent
interest. It is first discussed in Section 2, then discussed and
proved in Section 3.4. The data-structural threshold phe-
nomenon that we prove in fact arises from and corresponds
to a threshold phenomenon in the LOSI.

1.2 The Buffer Tree
We describe here the ubiquitous buffer tree which sup-

ports very strong buffering in the EM model. It is relevant
here for two reasons: first of all, since we are claiming to
prove tight lower bounds, it makes sense to show how the
corresponding upper bounds were obtained; secondly, our in-
tuition for the lower bound can be seen to match the upper
bound in some sense (this is quite common with tight lower
bounds), so the upper bound actually helps to get intuition
for the lower bound.

Here we sketch a construction of a buffer tree, which is a
variant of the one in [3]. We assume m ≥ b and b ≥ log1+ε u
for some constant ε > 0. λ ≥ 2 is an adjustable parameter
used to adjust the tradeoff between tu and tq. A buffer tree
is a tree where the degrees of all nodes except the root are
between λ/4 and λ. The height of the tree is Θ(logλ

n
m

)
The root consists of a buffer containing m/ log u universe
elements. Each internal node consists of a buffer containing
2b/ log u universe elements. The buffer of the root always
resides in the cache, and the rest resides in the disk; each
internal node is stored in O(1) memory cells.

Intuitively, the buffer tree processes updates in a “lazy”
fashion. For example, when we try to insert an item, we
do not trace all the way down the tree and find the right
place to perform the insertion. Instead, we just put it in
the root. We do this until the root is half-full, and then we
insert all of its items into the buffers of its children; the ele-
ments are distributed among the children according to their
natural order, just like in a regular B-Tree. Similarly, when-
ever an internal node is half-full, we push all element in its
buffer to its children. Deletions are done similarly (push-
ing them down until they encounter the element they are
meant to delete). Queries can be done similarly, by lazily
pushing them down the tree, if we are content with the data
structure returning the answer to queries at a later time.
Rebalance operations need to be done like in a B-Tree, but
also lazily. In this way all the operations can be performed
in a batched fashion, thus the amortized cost of each opera-

2The indivisibility assumption assumes that each element
should be stored atomically in the data structure.

tion is O(λ log u
b

logλ
n
m

). However, if we want a query to be
answered immediately, as is required in our problem, then
we have to walk down a root-to-leaf path for each query in
order to find the answer, which takes Θ(logλ

n
m

) time.
It is thus interesting to note that the lower bound in this

paper crucially relies on the need to answer queries imme-
diately. If answers to queries can be delayed, a buffer tree
can support both updates and queries in time o(1) (when b
is large enough).

By storing some additional data, the buffer tree can also
be made to solve many other data structure problems with
the same update times, see e.g. [3].

1.3 Previous Work
Dynamic membership has a long history of research. Here

we review just the works that are most relevant to ours.
On the upper bound side, Knuth [13] already showed that
using hashing with standard collision resolution strategies
(e.g. linear probing or chaining) gives a data structure for
dynamic membership with both average query time (both
successful and unsuccessful) and amortized update time only

slightly larger than 1, namely tq = tu = 1 + 1/2Ω(b/ log u).
In a follow up work, Jensen and Pagh [12] showed how to
design a hash table that uses close to n log u bits (which is
roughly the optimal space) and has update time and query

time both 1+O(1/
p

b/ log u). If tq is required to be worst
case, Pagh and Rodler [21] proposed an interesting hashing
method called cuckoo hashing; in this method tq = 2 and
tu is still a constant in expectation. All these upper bounds
work for both dynamic dictionary and dynamic member-
ship. Intuitively, membership may have better upper bounds
than dictionary, but we are not aware of any data structure
that solves membership strictly better than dictionary. The
Bloom filter [6] achieves better space utilization than all data
structures that solve dictionary, but it has query and update
cost larger than some constant> 1, and also contains false
positives. All these are hashing-type data structures, and
more related works on external hashing can be found in [10,
15, 14].

Another class of data structures that solve the dynamic
membership problem is the buffering-type data structure, for
example, the buffer tree and several of its variants developed
by Brodal and Fagerberg [7]. All of these buffering-type data
structures can achieve tu = o(1) (when b is large enough),
but tq = Ω(logb(n/m)).

As for lower bounds, one of the previous works that is con-
ceptually closest to ours is Brodal and Fagerberg [7]. They
prove a lower bound of roughly

tq ≥ logb/ log u(n/m) ,

regardless of what tu is, in the comparison model, which as-
sumes that elements are indivisible and the only operation
allowed on them is comparison. This model obviously does
not support hashing, and is in general too weak to indi-
cate what is possible on a real machine. One of the other
lower bounds that they prove is very interesting – they prove
roughly that tq ' n

m
/(m/b)O(tub/ log u) also in the compar-

ison model. For tu = O(log u/b) this gives tq ' n
m

. We
believe that this is essentially true in the general EM model
as well, but proving it might be outside the reach of current
technology (in the common settings, the best type of bounds
that the cell probe lower bound community can prove are
tq ≥ nε where ε > 0 is a problem-dependent constant which

449

is typically very small). See Section 4 for further discussion
of this question.

What is known outside of the comparison model? If we
consider the worst case operation cost, Pagh [20] proved that
tq must be at least 2, even for static membership, meaning
that cuckoo hashing is optimal in terms of worst-case query
time. In [8, 16, 28] some super-constant lower bounds on
max{tq, tu} are shown but they are proved in models more
restrictive than (or incomparable to) the EM model. There
are very few lower bounds for dynamic membership in the
RAM model. The reason might be that if there is no cache,
then each update has to be committed immediately to the
disk, thus tu must be at least 1. Therefore Knuth’s upper
bound is already tight up to an o(1) additive term. In the
EM model, tu does not necessary have to be at least 1 if
the size of a cell is large, so there was some hope (dispelled
by our lower bound) to get update time less than 1 while
maintaining good query time. To prove this is impossible,
[30, 33] gave a set of tradeoff curves between tq and tu.
Concretely, they showed that the amortized update cost is at
least Ω(1) if the average query cost is required to be no more
than 1+δ for any constant δ < 1/2. This result already ruled
out the possibility of achieving tq = 1 + o(1) and tu = o(1)
simultaneously. [30] also studied the radically different case
where we only measure the average query time for positive
queries.3 In this case, [30] show a data structure achieving
both tq = 1 + o(1) and tu = o(1) . Therefore, there is a gap
between the case of supporting only successful queries and
the case of also supporting unsuccessful ones.

Figure 1 depicts some of the known upper bounds and
lower bounds.

Query

Insert
0

upper bounds

lower bounds

1
B

log n 1
1
B

log M

B

n

ℓ

B
logℓ n, logℓ n (2 < l < B)

n
ǫ

truncated buffer tree

buffer tree

hashing

logB log n n

0.9
1

1 + 1/2Ω(B)

B
ǫ

B
log n

[This paper]

[Brodal, Fagerberg, SODA’03]

B: size of a cell. M : size of the cache. Both in words.

Figure 1: Some of the known upper and lower
bounds on membership data structures in the exter-
nal memory model. The thick line which represents
our lower bound curls up as tu decreases, in order
to symbolize that our lower bound should improve
as tu decreases, although we did not deal with this
issue in the current paper.

The techniques used in this paper are somewhat related
to the recent lower bounds on succinct data structures in the
cell probe model, of Golynski [11] and of Pǎtraşcu and Vi-
ola [26]. Their bounds can also be thought of as performing a
“cache elimination” step (like we do in Section 2) interleaved
with a “probe elimination” step. For the “probe elimination”
step we use the LOSI, and their bounds use other ideas.

3That is, tq is defined as the expected query cost of a random
x ∈ S, instead of x ∈ U .

2. FAKE PROOF OF THE LOWER BOUND
In this section we provide an exposition of our results that

is not strictly true, but captures many of our ideas in an
easy-to-understand setting, and in fact represents the way
that we came up with the solution in the first place. We be-
lieve that this section not only helps to explain our bound,
but actually might be useful for novices to the field, by show-
ing how very simple (but technically false) arguments give
the “right” lower bounds, as well as the right intuition, for
data structure lower bounds. These arguments can then
be formalized into correct (but more complicated) proofs,
which will be our task in the rest of the paper. Thus, this
paper can also be read as a case study in getting a simple
fake proof based on cache elimination, and then turning it
into a correct proof based on encoding arguments.

In the presentation in this section we cheat constantly,
with the goal of getting across most of our ideas, without the
required hard work. Thus, we warn in advance that nothing
in this section should be assumed to be strictly correct, and
the whole section should be treated as just intuition.

We begin by discussing the cache elimination principle.

The Cache Elimination Principle. For most “reason-
able” problems P , if there is a data structure for problem
P with parameters (n, u, m, tq, tu) then there exists a data
structure for problem P with parameters
(n/10m, u/10m, 0, tq, tu).

Here n, u, m, tq, tu denote the same quantities as defined in
the introduction: the number of items, universe size, cache
size (in bits), query time and update time, respectively.

Fix tu = 0.9 (any other constant would work as well). The
framework of the fake proof is to use the cache elimination
principle alternately with the following reduction step:

LOSI-Based Cache Augmentation. For the member-
ship problem, in the case where there is no cache, if there is
a data structure with parameters (n, u, 0, tq, tu) then there
is a data structure with parameters (n, u, tqb, tq − 0.2, tu).

By using these two steps alternately, one can start with a
structure with parameters (n, u, m, tq, tu) and end up with
a structure with parameters

(n/m(10tqb)
5tq , u/m(10tqb)

5tq , 0, 0, tu) ,

which implies that n/m(10tqb)
5tq ≤ 1, and this gives

tq = Ω(logbtq
(n/m)) = Ω(logb log n(n/m)) ,

which is the lower bound that we desire.
It is interesting to observe that this string of “reductions”

of parameters matches more or less the structure of the
buffer tree. The LOSI-Based Cache Augmentation step cor-
responds, in some sense, to putting the root of the tree in
the cache, thus saving one probe in each query.

We now give more details on the fake proof, in particular
on the cache elimination principle and on the LOSI-Based
Cache Augmentation step.

The cache elimination principle is analogous to the round
elimination lemma of Miltersen et al. [17] or Sen [27] or
the probe elimination lemma of Patrascu and Thorup [25].
It is also related (and arguably equivalent) to the notion
of “published bits” found in various works of Patrascu and
others (see for example [23]).

We omit here a more comprehensive discussion of the
cache elimination principle, and defer it to Section 2.2. The

450

principle will be easier to understand after we show how we
use it.

The fake proof works only for non-adaptive queries, i.e.
for the case where the set of cells q(x) which are probed
by query(x) depends only on x and not on the state of the
cache or of the disk. Also, it works only when tu is defined
as the expected cost of a random update, rather than as the
amortized cost. Both of these restrictions can be lifted, but
we do not show here how to do so.

We now describe the LOSI-Based Cache Augmentation
step. Let us start with a data structure for dynamic mem-
bership with parameters (n, u, 0, tq, tu). We are going to
heavily exploit the fact that there is no cache. Consider two
uniformly random insertion operations, ins(x) and ins(y),
which we assume are processed together, at a total expected
cost of 2tu probes. Since there is no cache, these operations
must make at least one probe (in total). Denote by p the
probability that they make exactly one probe in total. We
know that their expected total cost is ≥ p+(1−p) ·2. Thus
2tu ≥ p+2(1−p), which gives p ≥ 2(1−tu). Therefore, with
probability at least 2(1− tu), these two updates make only
one probe. From now on consider the case that they make
only one probe in total. Denote by c the common cell that
they probe. Consider the query operations query(x) and
query(y). Since there is no cache, both of these operations
must probe cell c, because it contains the only indication in
the data structure that x and/or y were inserted.

We thus see that for two random elements x and y, with
probability ≥ 2(1 − tu), the queries query(x) and query(y)
probe a common cell.4 We claim that this is a “surprising
intersection” (or “surprising collision”). To see that this sta-
tistical behavior is surprising, consider hashing. In hashing,
the queries are roughly equally split among the cells, and
the collision probability of two random queries is roughly
1/n. In our case, when tu = 0.9, the collision probability is
0.2 – a constant!

Our main technical contribution in this paper is the Lemma
Of Surprising Intersections (LOSI) which shows that if such
surprising statistical behavior occurs, that must be because
the queries have some rigid structure; namely, it shows there
must be a set C that consists of only a few cells, such that
C intersects a constant fraction of all query-paths {q(x)|x ∈
U}. Here is a trivial version of the LOSI, which suffices for
our purposes in this fake proof. The full (and considerably
more involved) LOSI can be found in Lemma 6.

Lemma 1 (LOSI – Very Simple Version). Let F =
{S1, . . . , Su} be a family of sets with the following property:
When choosing two random elements x, y ∈ U , Prx,y[Sx ∩
Sy 6= ∅] ≥ 0.2. Then if we pick x ∈ U at random, we get
that Ex[|{y ∈ U | Sx ∩ Sy 6= ∅}|] ≥ 0.2u.

Proof. Choose x uniformly from U . Then by the condi-
tion, with probability 0.2 over the choice of y, it holds that
Sx ∩ Sy 6= ∅. The conclusion follows by using linearity of
expectation.

By substituting Sx = q(x) (recall that the queries are
non-adaptive), we see that when we choose x randomly, q(x)
4Note that if tu < 1/2 then this probability is > 1 and
this argument explodes. This is one way to see that we
are cheating here. The strange behavior here comes from
the fact that we ignored the error term created by cache
elimination. However, we will just persist, and refer the
suspicious reader to the full proof in Section 3.

intersects 0.2u q(y)’s. Also, since the average query time is
tq, the set q(x) consists of roughly tq elements.

Now, to get the LOSI-Based Cache Augmentation step,
we take the elements of q(x) and place them into the cache.
This saved one probe for roughly 0.2-fraction of the universe,
because any probe that used to read one of the elements of
q(x) can now read the cache instead. Thus, from our data
structure that had parameters (n, u, 0, tq, tu) we get a data
structure with parameters (n, u, tqb, tq − 0.2, tu). (The tqb
appears because we put tq cells in the cache, and each cell
consists of b bits).

After applying both types of reductions 5tq times, we
would get a data structure with parameters

(n/m(10tqb)
5tq , u/m(10tqb)

5tq , 0, 0, tu) .

This is an absurdity – we get correct answers to queries,
without having any cache and without any probes. There-
fore, this must mean that the data data structure maintains
less than one element, so that n/m(10tqb)

5tq ≤ 1. This
gives tq = Ω(logbtq

(n/m)) = Ω(logb log n(n/m)), which is
the lower bound that we desired.

In Section 3 we turn this fake proof into a correct one. In
particular, we develop a much stronger version of the LOSI,
and we replace the cache elimination arguments (which are
intuitive but incorrect) by encoding-based arguments (which
are both intuitive and correct, but make the other arguments
more complicated).

2.1 Discussion of the LOSI
One interesting thing to note about the LOSI is that it

allows us to argue about the structure of negative queries
(ones whose answer is “false”) from statistical information
that we know about (much fewer) positive queries. In a
sense, the LOSI allows us to argue about the structure of
queries that we know nothing about, from statistical proper-
ties of probe-sequences of queries that we do know something
about.5

The LOSI might be of special importance in the dynamic
membership problem, as explained by the fact that there is
a data structure for dynamic membership in the EM model
that uses update time o(1) and average query time 1 + o(1)
when the average is taken only over positive queries [30],
so to get our lower bound we really need to argue about
negative queries as well. This is a difficult task when using
only traditional encoding-based techniques, since negative
queries do not correspond to any inserts that were done, and
thus do not correspond to any change to the data structure.

We thus suspect that the LOSI and the idea behind it
(first proving statistical properties of certain queries using
encoding arguments, and then using statistical reasoning to
get implications about the set of all queries) might be of fu-
ture use, particularly for problems where positive queries are
easier to answer than negative queries. It seems like an inter-
esting question to find data structure problems that exhibit
this property, and in general to find further applications of
our lower bound scheme.

5Of course, it seems odd to discuss at such length a lemma
with a two-line proof; however, the strong LOSI (Lemma 6)
is more involved, and it seems necessary when one wishes to
get a non-fake proof of our results.

451

2.2 Justifying the Cache Elimination Princi-
ple

The intuition behind the cache elimination principle is
that if we divide the domain into 10m parts then the cache
contains, on average, 0.1 bits of information about each part.
We then restrict our operations only to one part, chosen
randomly among all 10m parts. Then, since we are working
only in one part, the cache provides only roughly 0.1 bits of
information, so it can be completely eliminated with a small
increase in error (for example by using the average encoding
lemma, see Sen [27]).

To make the cache elimination principle formally true, one
has to introduce error, and to make some (not too restric-
tive) explicit demands on the problem P . Then one can
prove the cache elimination principle for static data struc-
ture problems quite easily; one way to do so is to use an anal-
ogous proof to Sen’s proof of the round elimination lemma
[27]. However, for dynamic problems no formally-correct
proof of anything like cache elimination is known, due to var-
ious technical difficulties that we do not detail here. It would
be very interesting if a proof was found for something like
the cache elimination principle, since this has the potential
to simplify many lower bound proofs. In the present state
of affairs, we use the cache elimination principle in the fake
proof, and in the real proof we do not use anything like it,
instead translating it to an encoding-based proof. It should
be noted that this approach of obtaining lower bounds is
well-known among data structure researchers [22], although
we have not found a source where it is explicitly described.

Zeyuan Allen Zhu [34] observed that the cache elimination
principle can also be used to obtain fake proofs for lower
bounds for dynamic rank, for union-find, for dynamic prefix
sum, and other problems.

3. THE LOWER BOUND
In this section we prove Theorem 1. First we describe the

general framework of the proof. Following that we highlight
two lemmas that express two key ideas, and they together
give the lower bound. Finally we prove the two lemmas.

3.1 The framework of the proof
Let γ = 1/800000. Let l be chosen large enough such that

l ≥ 64 · 106 · tqb/γ. We also assume that tq = O(log n), since
otherwise we are already done.

For any x ∈ U , let q(x) be the query path of x, that is, the
set of cells that are probed when querying x. q(x) is actually
determined by the cache state M and disk state D at the
time of the query, and we write qM,D(x) explicitly whenever
M and D are not clear from context. When we talk about
q(x) at some time snapshot, we mean q(x) under the cache
state and disk state at that time snapshot, and sometimes
we denote this by qsnapshot(x) for convenience.

We consider an update sequence of n insertions, each of
which is chosen uniformly at random from U with replace-
ment. We think of these n insertions as being performed
on n subsequent “time steps”, from time 1 to time n. In
the sequel, we assume for simplicity that all insertions are
different. It is quite easy to adapt the argument to the case
where the inserted elements can have repetitions, but we do
not show this here. The suspicious reader can choose the
universe size to be at least n3, in which case the birthday
paradox guarantees that with probability 1 − O(1/n) there

are indeed no repetitions and the rest of the argument goes
through easily.

We pick a time snapshot, denoted by END uniformly at
random between time n/1000 and n.6 Most of our anal-
ysis will focus on the time END. We partition the inser-
tions before END into exponentially growing epochs: The
first epoch contains the set of insertions Y1 (|Y1| = m/γ)
immediately before END and epoch i consists of the set of
insertions Yi (|Yi| = mli−1/γ) immediately before epoch
i− 1. Note that we number the epochs in the reverse order:
the first epoch consists of the insertions that are done last.
The total number of epochs created is d = Θ(logl(n/m)) =
Ω(logb log n(n/m)).

For epoch i, let Cu
i be the set of cells that are probed

during the insertion of Yi. Let BEGINi be the snapshot just
before the i-th epoch.

Let Y ′
i be a set of elements of size |Yi|+ |Yi−1|+ . . .+ |Y1|

chosen uniformly at random from U . Let ENDi’ (sometimes
just denoted END’) be the snapshot at the same time as END

created by inserting Y ′
i instead of epochs 1 through i. Let

C′ui be the set of cells probed during the insertion of Y ′
i , and

let C′qi be the set of cells probed when querying all elements
y ∈ Y ′

i in the state (MEND′i , DBEGINi). Let C∗i = Cu
i ∪C′qi and

C∗<i =
S

j<i C∗j . The lower bound follows from the following
lemma:

Lemma 2. Suppose that tu ≤ 0.9 and pick x ∈ U uni-
formly at random. Let Ei be the indicator random variable
which is 1 if qEND(x) intersects C∗i \C∗<i. Then E[Ei] ≥ Ω(1)
for all i = 1, 2, . . . , d.

Lemma 2 directly implies by linearity of expectation that
for a random x, E [|qEND(x)|] ≥ Ω(d) and this immediately
gives Theorem 1. Thus, we just need to prove Lemma 2.
From now on we concentrate on one epoch i and prove that
E[Ei] ≥ Ω(1).

3.2 Proof of Lemma 2
In this section we prove Lemma 2. We start by giving

two lemmas that together imply the correctness of Lemma
2. Their proofs will be given in the next two subsections.

Lemma 3. (the encoding lemma) Let m be the cache
size and suppose Y is the set of the last |Y | insertions. Let
Cu be the set of cells probed by the insertions in Y . Also as-
sume that m ≤ γ |Y |. Let END be the time after inserting Y
and BEGIN be the time before inserting Y . Then with proba-
bility at least 0.999 over the choice of Y , both the following
hold:

1. |{y ∈ Y | qEND(y) ∩ Cu 6= ∅}| ≥ 0.99 |Y |
2.
˛̨
{y ∈ Y | q(MEND,DBEGIN)(y) ∩ Cu 6= ∅}

˛̨
≥ 0.99 |Y |.

Lemma 4. (application of LOSI) Under the same con-
ditions as Lemma 3, let Y ′ be another randomly-drawn set
of |Y | insertions. Let END be the snapshot after inserting
Y ′ instead of Y . Let C′q =

S
y∈Y ′ q(MEND′ ,DBEGIN)(y) and

C∗ = Cu ∪ C′q. If |Cu| ≤ 0.91 · |Y | and m ≤ γ |Y |, then
with probability at least 0.999 over the choices of Y and Y ′,
it holds that |{x ∈ U | qEND(x) ∩ C∗ 6= ∅}| ≥ Ω(u).

6This is done for technical reasons, in order to get the lower
bound to apply for amortized update time. If one just wants
tu to denote the average time for a randomly-selected insert,
then END can be selected to simply be time n.

452

Lemma 4 above implies the correctness of Lemma 2 for the
first epoch by substituting Y = Y1, C = C1, etc. . To prove
Lemma 2 for epoch i > 1, we make the following changes
to the data structure:7 We put all cells C∗<i into the cache.
Then, every time that a probe wishes to read or change a cell
that we put in the cache, we redirect it to the corresponding
location in the cache. This new data structure can simulate
the old one, and notice that for this new data structure, C∗i
is C∗i \C∗<i. Furthermore, the following two properties are
immediate consequences of our conceptual operation.

• The state of the disk at the end of epoch i is identical
to that in END.

• The size of the cache in this modified data structure is
mi = m + |C∗<i|.

We say epoch i is good if: (1) |Cu
i | ≤ 0.91 · |Yi|, and

(2) mi ≤ γ |Yi| after the conceptual operation. Note that
Lemma 4 actually implies Lemma 2 provided that every
epoch i (1 ≤ i ≤ d) is good with probability > 0.001, which
indeed holds by the following lemma.

Lemma 5. Every epoch i (1 ≤ i ≤ d) is good with prob-
ability at least 0.005. over the random choices of END, and
the choice of the insertion sequences.

Proof. Consider requirement (1). The expected update
cost between time n/1000 and n is at most 0.9n. Averaging
over our choice of END, the total update cost of an epoch
of length |Yi| is 1

0.999
· 0.9 |Yi| in expectation. By Markov’s

inequality, the probability that this update cost is more than
0.91 |Yi| is at most 0.006. As for requirement (2), we union
bound over the events that any of the sets C∗j (j < i) is too
large. The expected size of this sets is tiny compared to Yi,
so this again follows easily from Markov’s inequality.

We give the proofs of Lemma 3 and 4 in Section 3.3 and
3.4, respectively. The proof of Lemma 3 uses an information
theoretic argument and the proof of Lemma 4 explores the
underlying combinatorial structures of the set of query paths
{q(x) | x ∈ U}.

3.3 Proof of Lemma 3
Proof. It is easy to see that if the first item of the lemma

holds, then the second item holds, since the only changes to
the disk between DBEGIN and DEND are in the cells who are in
Cu, so the set in item 1 and the set in item 2 are actually
the same set. From now on we shall just prove the first item
holds.

We consider all query paths {q(y) | y ∈ Y }. The idea
behind the proof is to show how to“compress” (= to encode)
the set Y by just specifying the elements y ∈ Y that do
touch Cu, and specifying the state of the cache at the end
of the insertions. Then, since Y cannot be “compressed”
beyond the standard information-theoretic limit, we get that
the size of the encoding must be large, which means that
many elements y ∈ Y indeed do touch Cu, which is what we
needed to prove.

The trick is to get convinced that this “compression algo-
rithm” indeed compresses Y in a way that Y can be decoded

7We can change the data structure since we just need to
prove Lemma 2 for epoch i. This is why it was important
to use linearity of expectation.

from the compressed representation. Following is the full
proof.

Let Z be the set of queries y in Y such that the query path
q(y) as it is performed at END does intersect Cu. We try to
prove that with probability at least 0.999 over the choice of
Y , it holds that |Z| ≥ 0.99 |Y |.

In the encoding, we condition on the elements that were
previously inserted. By “conditioning” we mean that both
the compressor and the decompressor know which elements
were inserted and in what order they were inserted. We
call this the “shared information” (since it is shared between
the compressor and the decompressor). It is easy to see that
given the shared information, the decompressor can compute
the state of the cache and of the disk at the beginning of the
insertion of Y . (This uses the fact that the data structure is
deterministic). The encoding of Y consists of the following.

1. The state of the cache at the end of the insertion of Y .
This takes m bits.

2. The elements of Z. This takes at most log
`

u
|Z|
´

bits,

which is at most |Z| log(eu/ |Z|).8

We now observe that given the encoding of Y and the shared
information, the decompressor can answer any query(x) (x ∈
U) correctly, as follows: (i) if x is already inserted before Y ,
answer “yes”. (ii) If x ∈ Z, answer “yes”. (iii) If both (i)
and (ii) did not return “yes”, then run the query algorithm
with the state of the cache at END and with the state of the
disk as it is before the insertion of Y . By the definition of Z,
and since x /∈ Z, this returns the right answer. Therefore,
we managed to encode Y into m + |Z| log(eu/ |Z|) bits.

Now, suppose in contradiction that with probability more
than 0.001, |Z| ≤ 0.99 |Y |. With the rest of the probability,
|Z| can be as large as |Y |. Then the expected size of the
encoding is at most

m + 0.999 |Y | · log
eu

|Y | + 0.001 · 0.99 |Y | log
eu

0.99 |Y |
≤ m + 0.99999 |Y | log

eu

0.99 |Y | .

On the other hand, there are at least
`

u−n
|Y |
´ ≥ `

u/2
|Y |
´ ≥

2
|Y | log u/2

|Y | possibilities to choose Y . Since we can never
encode x bits into x− 1 bits, we get that:

m + 0.99999 |Y | log
eu

0.99 |Y | ≥ |Y | log
u/2

|Y |

⇒ m ≥ |Y | log

 „
u

|Y |
«0.00001

· 1

4e

!
> 0.000005 · |Y | .

The last inequality holds since u > c · n ≥ c |Y | for some
sufficiently large constant c. This contradicts the fact that
m ≤ γ |Y | < 0.000005 |Y |.

3.4 Proof of Lemma 4
In this section we first state and prove the LOSI. It is

essentially an involved combinatorial argument that deduces
a global behavior from an observed local behavior. We then
prove Lemma 4, which is an application of the LOSI to our
setting.

8Technically speaking, we also have to encode the cardinal-
ity |Z| itself, which takes another log u bits. This does not
change the computation significantly, so we ignore it.

453

Lemma 6. [Lemma Of Surprising Intersections (LOSI)] Let
k be an integer, and let p ≥ 2−k/40000. Let F = {S1, . . . , Su}
be a family of sets. Suppose that when we choose Y ⊆ [u],
|Y | = k, out of all size-k sets uniformly at random, with
probability p the following holds:

there exists a set S such that:
(i) |S| ≤ 0.91k, and

(ii) |{y ∈ Y | Sy ∩ S 6= ∅}| ≥ 0.99k .
(1)

Then it follows that when we pick a family Z of k random
sets from the collection, their union intersects Ω(1)-fraction
of the sets in expectation,9 that is,

EZ⊆U,|Z|=k[|{x ∈ U | ∃z ∈ Z, Sx ∩ Sz 6= ∅}|] ≥ Ω(u) .

The LOSI is tight, up to constants, in most of its pa-
rameters. In particular, it is not true that one can always
choose Z to be of cardinality much smaller than k. To
get one example for this, construct a family F such that
S1 = S2 = . . . = S106u/k = {1}, S106u/k+1 = S106u/k+2 =
. . . = S2·106u/k = {2}, and so on. Then the condition of the
LOSI holds, but to get the conclusion of the LOSI, Z really
needs to be of size Ω(k).

What makes the LOSI non-trivial to prove is the fact that
p can be exponentially small in k. If p was constant then
the LOSI would be easy to prove using a simple averaging
argument, similar to the proof of the simple LOSI in Section
2; but since p can be exponentially small we need to carefully
use a concentration bound, which makes the LOSI somewhat
more complicated to prove.

Proof. (of Lemma 6). We first define an intersection
graph that captures the combinatorial intersection structure
of the family. The graph is G = GF = (U, E), where two
vertices x, y ∈ U are connected by an edge if Sx∩Sy 6= ∅. We
now see that to prove the LOSI we just need to prove that
a random set Z of k vertices will have EZ [|NG(Z)|] ≥ Ω(u),
where NG(Z) is the set of vertices in G that have at least
one neighbor in Z. In the sequel, whenever we say k-set we
mean “a set of cardinality k”.

For a subset Z ⊆ U , let G[Z] denote the induced sub-
graph of G on Z, let MAX-IS(G[Z]) denote the size of a
maximum independent set in G[Z], and let degG(x) denote
the degree of vertex x in G. We first show that if for a spe-
cific Y condition (1) holds, then MAX-IS(G[Y]) ≤ 0.96k.
To see this, observe that from (1) and from the pigeonhole
principle, it follows that there exist y, y′ such that Sy and
Sy′ contain a common element from S. Thus y and y′ are
connected by an edge in the graph. Eliminate these two
vertices, and repeat this argument. We can repeat the ar-
gument at least (0.99k − 0.91k)/2 = 0.04k times, therefore
there is a matching in G[Y] of cardinality 0.04k, and there-
fore MAX-IS(G[Y]) ≤ 0.96k.

The condition (1) holds for a random k-set Y with prob-
ability p, so for a randomly selected k-set Y , it holds that
PrY [MAX-IS(G[Y]) ≤ 0.96k] ≥ p. We thus see that many
induced subgraphs do not have large independent sets. By
applying Lemma 7 (whose statement and proof will be given

9Notice that both the condition of the LOSI and the con-
clusion of the LOSI are deterministic statements, that use
probability only to replace counting. We could formulate it
as an entirely deterministic statement that uses no proba-
bilistic notions. It is important to note that the LOSI is a
combinatorial statement, not a probabilistic one.

shortly), we get that |{x ∈ U | deg(x) ≤ u/100k}| ≤ 0.99.
And then by applying Lemma 8 (whose statement and proof
we also give shortly), we get exactly the conclusion of the
LOSI.

Here are the two structural lemmas we used in the proof:

Lemma 7. Let G = (U, E) be a simple graph such that

PrZ⊆U,|Z|=k[MAX-IS(G[Z]) ≥ 0.97k] ≤ 1− e−k/40000 .

Then |{x ∈ U | deg(x) ≤ u/100k}| ≤ 0.99.

Proof. Let W be the set of vertices in G that have degree
at most u/100k, and let S = U\W .

We prove the contrapositive of the lemma: that if |W | >
0.99u, then

PrZ⊆U,|Z|=k[MAX-IS(G[Z]) ≥ 0.97k] > 1− e−k/40000 .

Consider a random variable which represents one of the
vertices of Z, say the one chosen first. Call this random
variable v. What is the probability that v has at least one
neighbor in Z? It is at most

Pr[v ∈ W] · (k − 1) · 1/100k + Pr[x ∈ S] . (2)

This arises from the fact that if v ∈ W , then it has degree
at most u/100k, and therefore each other vertex in Z has a
probability of at most 1/100k to be v’s neighbor. And we
union bound on this over all k − 1 neighbors.

An easy computation shows that (2) simplifies to ≤ 0.99 ·
(k − 1) · 1/100k + (1 − 0.99) < 0.02. Now write, for each
vertex v in Z, an indicator random variable that is 1 if v
has no neighbors in Z. By linearity of expectation, the ex-
pectation of the sum of these variables is ≥ 0.98k, therefore
E[|MAX-IS(G[Z])|] ≥ 0.98k.

To finish the proof of the lemma, we show that MAX-
IS(G[Z]) is a highly concentrated random variable. To see
this, define a martingale X0, X1, . . . , Xk. X0 is equal to
E[MAX-IS(G[Z])] before any vertex of Z was chosen, thus
X0 is a deterministic value at least 0.98. X1 is equal to
E[MAX-IS(G[Z])] conditioning on the first vertex that is
chosen. X2 is the same value, conditioning on the first
two vertices chosen, and so on. This martingale is thus the
vertex-exposure martingale, where we expose vertices of Z
one by one. It is easy to see that |Xi+1 −Xi| ≤ 1 for all
0 ≤ i < k. Then by Azuma’s inequality, we have that with
probability larger than 1 − e−k/40000 over the choices of Z,
Xk > (0.98− 0.01)k = 0.97k.

We also have the following lemma.

Lemma 8. Let G = (U, E) be a simple graph with the
property that at least a 0.01 fraction of vertices have degrees
at least u/100k. If we pick a subset Z ⊆ U of size k uni-
formly at random, then the expected size of NG(Z) is at least
Ω(u).

Proof. For any v ∈ U whose degree is at least u/100k,
the probability that it has a neighbor in Z is at least 1 −
(1− 1/100k)k ≥ 1− e−1/100. Therefore we have

E[NG(Z)] ≥ 0.01 ·
“
1− e−1/100

”
u ≥ Ω(u).

454

Now we are ready to prove Lemma 4.

Proof. (of Lemma 4). Recall that Y is a set of the last
|Y | = k insertions done, and Y ′ is a set of random elements,
also of cardinality k, chosen from U . Let BEGIN be the time
before inserting Y , and recall that END is the snapshot after
inserting Y and that END’ is the snapshot after inserting Y ′

instead of Y . Let MBEGIN, MEND, MEND′ be the states of the
cache at BEGIN, END and END’ respectively. Likewise, let
DBEGIN, DEND, DEND′ be the states of the disk at BEGIN, END

and END’.
Now, the second item of Lemma 3 gives us the following:

Claim 1. With probability at least 0.999 over
the choices of Y ′, at least a 0.99 fraction of Y ′

will have query paths that intersect C′u under
(MEND′ , DBEGIN).

To prove Lemma 4 it is enough to prove that
˛̨
˛̨
˛̨

8
<
:x ∈ U

˛̨
qEND(x)

\
0
@ [

y∈Y ′
q(M

END′ ,DBEGIN)(y)
[

C
u

1
A 6= ∅

9
=
;

˛̨
˛̨
˛̨ ≥ Ω(u) .

(3)

Call x good if it is in the left-hand side of (3).
Consider some x ∈ U . If qEND(x) intersects Cu then x

is counted in the left-hand side of equation (3). Other-
wise, qEND(x) = q(MEND,DBEGIN)(x). We will now show how
to use the LOSI to prove that for the family of queries
{q(MEND,DBEGIN)(x)}x, a constant fraction of them touches a
small set of cells. That will prove (3). From now we con-
centrate on {q(MEND,DBEGIN)(x)}x.

Now, recall that the set Y ′ is chosen uniformly at random.
Therefore, we just need to show that {q(MEND,DBEGIN)(x)}y∈Y ′

satisfies the condition of the LOSI with probability ≥ p.
Claim 1 tells us that {q(MEND′ ,DBEGIN)(x)}y∈Y ′ satisfies the con-
dition of the LOSI with probability ≥ 0.999. Thus, we
just need to estimate the probability that MEND′ = MEND.
The probability of this is at least 1/2m, since MEND′ and
MEND are both drawn from the same distribution over a
universe of cardinality 2m. Therefore, the probability that
{q(MEND′ ,DBEGIN)(x)}y∈Y ′ satisfies the condition of the LOSI is
0.999/2m > p, and we are done.

4. CONCLUSIONS
In this paper we have resolved the complexity of dynamic

membership in the external memory model, for the regime
where tu is just below 1. Consider the case b ≥ log1+ε u for
some large enough constant ε > 0. For this case, our bounds

are roughly tight all the way down to tu = O
“

log(n/m)

b1−ε′

”

for some constant ε′ > 1/(1 + ε). Namely, the lower bound
shows that for such values of b, tq ≥ Ω(logb(n/m)) whenever
tu ≤ 0.9, and the upper bound shows that for such b, we

can achieve tq = O(logb(n/m)) and tu = O
“

log(n/m)

b1−ε′

”
for

some constant ε′ > 1/(1 + ε). (For the upper bound part,
see Section 1.3). For tu smaller than this, the lower bound
does not match the known upper bounds, and better lower
bounds might be possible.

There are still a few regimes where our results are not
tight:

1. For tu = 1−o(1), it is interesting to see what our lower
bound technique gives and whether that it tight.

2. For b which is smaller than log1+ε u for every ε > 0,
our lower bound is loose (in fact, for b = 1 it seems
extremely loose) partly due to inherent limitations of
the LOSI, and partly because we did not concentrate
on such b. It is interesting whether the bound can
be made tighter, and whether a variant of the LOSI
suffices or another technique is needed.

3. For tu = O
`

log u
b

´
, we believe that the right behavior

of the query time is something like tq ≥ Ω(n/m) or
maybe tq ≥ Ω(n/bm). It seems interesting to try to
prove this, but it is does not seem that the cell probe
lower bound community has sufficiently advanced tech-
nology to achieve this. (Also see discussion in Section
1.3).

The first item in this list seems like it only requires playing
around with the current result. The last two items, however,
seem to not only require new ideas, but to be close to the
boundaries of current lower bound technology. We are espe-
cially interested in the last one.

5. ACKNOWLEDGMENTS
The authors would like to thank Mihai Patrascu, Ke Yi

and Zeyuan Allen Zhu for helpful discussions. We would like
to thank the STOC reviewers for their insightful reviews.

6. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. External Memory Data Structures. Kluwer
Academic Publishers, 2002.

[3] L. Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica,
37(1):1–24, 2003.

[4] L. Arge, M. Bender, E. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority-queue and
graph algorithms. In Proc. ACM Symposium on
Theory of Computing, pages 268–276, 2002.

[5] P. Beame and F. E. Fich. Optimal bounds for the
predecessor problem and related problems. Journal of
Computer and System Sciences, 65(1):38–72, 2002.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[7] G. S. Brodal and R. Fagerberg. Lower bounds for
external memory dictionaries. In Proc. ACM-SIAM
Symposium on Discrete Algorithms, pages 546–554,
2003.

[8] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: upper and lower bounds. SIAM
Journal on Computing, 23:738–761, 1994.

[9] R. Fadel, K. V. Jakobsen, J. Katajainen, and
J. Teuhola. Heaps and heapsort on secondary storage.
Theoretical Computer Science, 220(2):345–362, 1999.

[10] R. Fagin, J. Nievergelt, N. Pippenger, and H. Strong.
Extendible hashing—a fast access method for dynamic
files. ACM Transactions on Database Systems,
4(3):315–344, 1979.

455

[11] A. Golynski. Cell probe lower bounds for succinct data
structures. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, pages 625–634, 2009.

[12] M. S. Jensen and R. Pagh. Optimality in external
memory hashing. Algorithmica, 52(3):403–411, 2008.

[13] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley,
Reading MA, second edition, 1998.

[14] P. A. Larson. Performance analysis of linear hashing
with partial expansions. In ACM Transactions on
Database Systems, 1982.

[15] W. Litwin. Linear hashing: a new tool for file and
table addressing. In Proc. International Conference on
Very Large Databases, pages 212–223, 1980.

[16] K. Mehlhorn, S. Naher, and M. Rauch. On the
complexity of a game related to the dictionary
problem. In Proc. IEEE Symposium on Foundations of
Computer Science, pages 546–548, 1989.

[17] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. In Journal of Computer and System
Sciences, 1998.

[18] C. W. Mortensen, R. Pagh, and M. Pǎtraşcu. On
dynamic range reporting in one dimension. In Proc.
ACM Symposium on Theory of Computing, pages
104–111, 2005.

[19] R. Pagh. Basic External Memory Data Structures.

[20] R. Pagh. On the cell probe complexity of membership
and perfect hashing. In Proc. ACM Symposium on
Theory of Computing, pages 425–432, 2001.

[21] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

[22] M. Pǎtraşcu. Personal communication.

[23] M. Pǎtraşcu. Lower bound techniques for data
structures. In PhD Thesis, 2008.

[24] M. Pǎtraşcu and E. D. Demaine. Tight bounds for the
partial-sums problem. In Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms, pages 20–29, 2004.

[25] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for
predecessor search. In Proc. ACM Symposium on
Theory of Computing, 2006.

[26] M. Pǎtraşcu and E. Viola. Cell-probe lower bounds for
succinct partial sums. In Proc. ACM-SIAM
Symposium on Discrete Algorithms, pages 117–122,
2010.

[27] P. Sen. Lower bounds for predecessor searching in the
cell probe model. In IEEE Conference on
Computational Complexity, 2003.

[28] R. Sundar. A lower bound for the dictionary problem
under a hashing model. In Proc. IEEE Symposium on
Foundations of Computer Science, pages 612–621,
1991.

[29] J. S. Vitter. Algorithms and Data Structures for
External Memory. Now Publishers, 2008.

[30] Z. Wei, K. Yi, and Q. Zhang. Dynamic external
hashing: The limit of buffering. In Proc. ACM
Symposium on Parallelism in Algorithms and
Architectures, 2009.

[31] A. C. Yao. Should tables be sorted? Journal of the
ACM, 28(3):615–628, 1981.

[32] K. Yi. Personal communication.
[33] K. Yi and Q. Zhang. On the cell probe complexity of

dynamic membership. In Proc. ACM-SIAM
Symposium on Discrete Algorithms, 2010.

[34] Z. A. Zhu. Personal communication.

456

