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Abstract. We study the non-equilibrium dynamics and equilibration in a
dissipative quantum many-body system—a chain of ions with two points of the
chain driven by a thermal bath under different temperatures. Instead of a simple
linear temperature gradient (characterized by the local motional excitation) as
one expects from a typical classical heat diffusion process, the temperature
distribution in the ion chain shows surprisingly rich patterns, which depend on
the rate of ion coupling to the bath, the location of driven ions and the dissipation
rates of the other ions in the chain. By simulating the temperature evolution, we
show that these unusual temperature distribution patterns in the ion chain can be
quantitatively tested in experiments within a realistic time scale.
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1. Introduction

Many-body non-equilibrium dynamics has attracted significant interest in recent years, in
particular in connection with atomic experiments, where far-from-equilibrium phenomena
can be conveniently investigated due to the long relaxation time of these systems [1, 2].
For instance, the dynamics after a quantum quench have been studied in several model
Hamiltonians [3–6]. The physics becomes even richer if we add engineered dissipation to the
underlying system, which is possible to realize in atomic experiments. Several interesting effects
have been analyzed recently from the interplay between interaction and dissipation in cold
atomic gases [7, 8].

Motivated by this line of research, in this paper we study how the system equilibrates
(approaches a steady state) in a linear ion chain, with two points of the chain driven, respectively,
by a heating and a cooling thermal bath. In a sense, the configuration here is an analogue
of a classical example in thermodynamics—the heat propagation in a bar with its two ends
fixed at different temperatures. To make a comparison, in our ion system we characterize
the ‘local temperature’ for each individual ion with its average motional energy (the mean
phonon number). This characterization is commonly used in quantum optics. We consider
transverse phonon modes in this paper, and the transverse modes are only weakly coupled
in an ion chain, so it makes perfect sense to introduce the concept of local temperature. In
contrast with a simple linear temperature gradient as one sees in a classical bar, we find that the
temperature distribution in a driven ion chain shows very rich behavior in its steady states: firstly,
the temperature distribution depends critically on the ratio between the driving speed and the
interaction rate in the ion chain. In the weak driving region, the temperature distribution is non-
monotonic across the ion chain and shows a mirror effect. In the strong driving region, instead
of a linear temperature distribution, all the ions between the two driven ones are stabilized
to a constant temperature, which is in the middle of the two bath temperatures. Secondly,
we find that the bath that drives the ion with a medium coupling rate plays a more effective
role in determining the temperature of the other ions in the system. When the bath drives
the ion strongly, it has little influence on the temperature of other ions in the chain, which is
pretty counter-intuitive. To see the unusual phenomena predicted in this paper, we discuss the
requirements for an experimental observation and calculate the time dynamics to achieve the
steady-state temperature distribution. The qualitative features of the steady-state temperature
distribution patterns are pretty insensitive to the size of the ion crystal and they show up already
in a pretty small ion chain with fewer than ten ions. The relaxation time to the steady state is
realistic for observation compared with the current experimental time scale.

This paper is organized as follows. In section 2, we provide the theoretical model and the
calculation method. The main results on the temperature distribution patterns under different
circumstances are presented and discussed in section 3. In section 4, we discuss the time
dynamics to achieve the steady-state temperature distribution. Section 5 summarizes our major
findings.

2. The model

We consider a chain of ions along the axial z-direction coupled with the Coulomb interaction
and driven individually by a thermal bath. The thermal bath can be provided, for instance, by
cooling or heating the laser beams shone on each ion. Both the driving rate and the effective bath
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temperature can be tuned by controlling the intensity and the detuning of these laser beams. The
oscillation of the i th ion around its equilibrium position is described by the coordinate and
the momentum operators xi , pi , with the dynamics determined by the Heisenberg–Langevin
equation [9, 10],{

ẋ i = pi ,

ṗi = −
∑

j Ai j x j − γi pi +
√

2γiζi(t),
(1)

where Ai j denotes the coupling matrix between the ions, γi is the driving rate of the bath
and ζi(t) denotes the corresponding random force from the thermal bath. We consider in this
paper the ions’ motion along the transverse x direction, so the coupling matrix Ai j is given
by Ai i = ω2

x −
∑

j ( 6=i) 1/|z j − zi |
3 and Ai j = 1/|z j − zi |

3 for i 6= j , where ωx is the transverse
trapping frequency and zi denotes the ion equilibrium position along the axial direction. We

take e2/d0 as the energy unit with the ion spacing d0 and ω0 ,
√

e2/(md3
0 ) as the frequency

unit so that every quantity in the matrix Ai j becomes dimensionless. Note that with the control
of an anharmonic trapping potential along the axial direction, one can make the ion spacing
uniform in a scalable trap [11]. For the conventional harmonic axial trap, the ion spacing is not
uniform. In that case, the equilibrium positions zi are determined numerically with the given
trapping potential, and we take d0 as the largest spacing in the ion chain. The temperature
distribution pattern that will be shown in section 3 is insensitive to the details of the axial
trapping potential, and for most of the calculations in the following, we assume that the ion
spacing is uniform for simplicity (with exceptions in section 3 for the consideration of the
time dynamics in a harmonic trap). For an independent Markovian bath, the random force
ζi(t) can be expressed as ζi = −i

√
ωi/2(bi − b†

i ) with the bosonic field operator bi(t) satisfying
〈b†

i (t1)b j(t2)〉 = T B
i δi jδ(t1 − t2), where T B

i is the average phonon number that characterizes the
temperature of the bath, and ωi ,

√
Ai i is the local oscillation frequency of the i th ion by fixing

all other ions in their equilibrium positions. For typical linear ion traps with strong transverse
confinement, we have ωi ≈ ωx (� ωz, the axial frequency). The correlation of ζi(t) is then
given by 〈ζi(t1)ζ j(t j)〉 = ωi(T B

i + 1/2)δi jδ(t1 − t2). In deriving this expression, we have used
the relation 〈b†

i (t1)b
†
i (t2)〉 = 0 and 〈bi(t1)bi(t2)〉 = 0 for a thermal bath.

The Langevin equation (1) can be solved exactly through diagonalization, with the solution
formally expressed as

q(t) = e−�tq(0) +
∫ t

0
dτ e�(τ−t)η(τ), (2)

where

q, (x1, x2, . . . ; p1, p2, . . .)
ᵀ
=

[
{xi}

{pi}

]
, η(t),

[
{0}{√
2γiζi

}]
and

�,

[
0 −I

[Ai j ] [γiδi j ]

]
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is a 2N × 2N matrix, which can be diagonalized as [U−1�U ]αβ = λαδαβ . From this formal
solution, we obtain the variance of the operators xi and pi as

〈q2
µ〉 =

N∑
i=1

2N∑
α,β=1

UµαUµβ

(
e−(λα+λβ )t [〈x2

i (0)〉U−1
βi U−1

αi + 〈p2
i (0)〉U−1

β,i+NU−1
α,i+N ]

+(1 − e−(λα+λβ )t)
2ωiγi(T B

i + 1
2)

λα + λβ

U−1
β,i+NU−1

α,i+N

)
, (3)

where µ = 1, 2, . . . , N correspond to the x-operators and µ = N + 1, N + 2, . . . , 2N
correspond to the p-operators. The ‘temperature’ of each ion is similarly characterized by
the average ‘phonon number’ of its local oscillation, so the temperature of the i th ion as a
function of time t is represented by Ti(t) =

1
2(ωi〈x2

i (t)〉 + 〈p2
i (t)〉/ωi − 1). Here we have used

xi =
1

√
2ωi

(ai + a†
i ), pi = −i

√
ωi
2 (ai − a†

i ) and Ti , 〈a†
i ai〉, where xi is in units of

√
h̄/(mω0). As

long as γi is non-zero for some ions, each eigenvalue λα has a positive real part due to coupling
of all the ions, and the system approaches a steady state as t−→ ∞. The steady-state temperature
for each ion is denoted by T s

i , Ti(t → ∞).

3. Steady-state temperature distribution

In analogy to the example of heat propagation in a conducting bar, we consider a long ion
chain with the two edge ions driven by different thermal baths with temperatures T B

1 and T B
2

(with T B
1 < T B

2 ), respectively. For simplicity, we assume that the corresponding driving rate
γ1 = γ2 = γ and all ions in the middle experience no dissipation. After all the ions attain the
steady state, the temperature distribution T s

i across the chain is shown in figure 1 for N = 100
ions under different driving rates γ . Apparently, the temperature distribution does not follow
a linear gradient. There are three regions for the distribution of T s

i , depending on the ratio
between the driving rate γ and the ion interaction rate. Note that in our units the interaction
energy between the neighboring ions is of the order of unity. If γ � 1, the dissipation is much
faster than the energy propagation in the chain, and without surprise the two edge ions have
temperatures basically fixed by their corresponding bath temperatures T B

1 and T B
2 . However, it

is surprising that all the other ions in the middle approach almost the same temperature given
by T s

i ' (T B
1 + T B

2 )/2 for i = 2, 3, . . . , 99 in this case. The temperature does not fall down
gradually from the hot end to the cold end, as in the classical heat propagation problem, but
takes a sharp jump right from the driven ion to the next one and then remains constant over
the whole chain. In the opposite limit of weak driving with γ � 1, the phonon propagation
is faster than the bath driving, and all the ions approach the same temperature. It seems that
the temperature distribution in this limit resembles a classical thermal equilibrium; however,
this picture is not true. The example in figure 1 represents an exception instead of a rule
where we put the cooling and heating ions exactly at the symmetric positions of an ion chain.
As we will see in the following, when we shift the position of one of the ions to break the
reflection symmetry, the temperature distribution in the weak driving limit has strange features.
It is not even monotonic across the ion chain, in sharp contrast with the distribution from
the diffusion process. Between these two limiting regions there lies a transition region with
0.01 < γ < 1, where the temperature of the edge ions gradually approaches the corresponding
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Figure 1. The steady-state (t−→ ∞) temperature distribution T s
i (measured

by the mean thermal phonon number) of a uniform ion chain with N = 100,
where the 1st and the last (100th) ions are driven, respectively, by a cooling (at
temperature T B

1 = 2) and a heating (at temperature T B
2 = 10) thermal bath under

different driving rates γ . The temperatures of the driven ions (1st and 100th) are
indicated by the thick curves. The other ions are assumed to be isolated from the
bath, and the transverse trapping frequency is ωx/ω0 = 10.

bath temperature. Note that the temperature of the ions next to the driven ones follows a non-
monotonic curve as one changes γ , although such a variation is pretty small.

To break the position symmetry of the cooling and the heating ions, we fix the cooling
ion still at the edge, but move the heating ion inside the chain. Figure 2(a) shows an example
of the temperature distribution where the heating ion is right at the center of the chain.
When γ � 1, the heating ion separates two plateaus in the temperature distribution: a lower-
temperature region between the heating and the cooling ions and a higher-temperature region
on the other side of the heating ion. As γ decreases, the two plateaus smoothly descend to the
same temperature while the heating ion remains as a peak in the temperature distribution. When
γ � 1, the temperature distribution has a reflection symmetry with respect to the chain center.
A dip in temperature appears on the free edge of the chain (the left side of figure 2(a)), mirroring
the cooling ion on the other side of the chain (the mirror effect). The temperature distribution
is apparently non-monotonic in this case. The mirror effect exists for other positions of the
heating ion. For instance, figure 2(b) shows the temperature distribution where the distance
between the heating and the cooling ions is about one third of the chain length. Both the cooling
and the heating ions have their mirror images in the temperature distribution in the weak driving
limit. The mirror effect can be intuitively understood as follows. In the weak driving limit, the
canonical modes for the ion motion are almost decoupled. The driving rate from the thermal
bath on the edge ions can be decomposed into separate driving rates for each canonical mode,
and each mode relaxes to its steady state. For an ion chain, the eigenfunction of each canonical
mode in the real-space coordinate has a reflection symmetry with respect to the trap center. As a
result, the temperature distribution for the final steady state also shows an (approximate) mirror
symmetry in the weak driving limit.
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Figure 2. The steady-state temperature distribution for N = 101 ions, where the
cooling bath (at T B

1 = 2) remains at the first ion and the heating bath (at T B
2 = 10)

moves to (a) the middle (51st) ion and (b) the 30th ion. The temperatures of the
driven ions are indicated by thick (red) curves along the axis of the driving rate γ .
The other parameters are the same as in figure 1. The temperatures profiles are
highlighted by different thick (green) curves along the ion index axis to represent
γ = 10−3, 10−2, 0.1, 1 and 10. For small γ , note that the temperature profiles in
both (a) and (b) are found to have the mirror effect, i.e. a reflection symmetry of
the distribution with respect to the middle (51st) ion.

In the above calculation, we assumed that γ1 = γ2 for the cooling and the heating ions.
When these two driven ions are put at the edge, the middle ions are at a constant temperature Tm,
which is exactly the average of the two bath temperatures. If the driving rate γ1 6= γ2, we may
expect that the bath that drives the ion more strongly plays a more important role in determining
the temperature Tm of the middle segment ions. This expectation, however, turns out to be not
true. To show that, we map out the middle segment temperature Tm in figure 3 as a function of
γ1 and γ2. The figure shows that γi ≈ 0.1 is the optimal driving rate for which the corresponding
bath has the largest influence on the temperature Tm. At this optimal value, the driving rate
is comparable to the ion interaction rate in terms of the order of magnitude. The middle
segment temperature is close to the temperature of the bath that drives the ion at the optimal
rate. When the driving gets too strong or too weak, the bath plays little role in determining
the temperature of the other ions in the chain. This result has important implications for the
sympathetic cooling [12–14]: instead of fast cooling of the ancilla ions, cooling at a moderate
optimal rate is more efficient in reducing the temperature of the computational ions.
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Figure 3. The middle-ion steady-state temperature T s
m for the configuration

shown in figure 1, as a function of two independent bath driving rates γ1 and γ2.
The dark (light) regions correspond to low (high) temperatures, and the numbers
there indicate different temperature contours. The parameters are the same as
those in figure 1 except that γ1 associated with the cooling bath (at T B

1 = 2) and
γ2 associated with the heating bath (at T B

2 = 10) are varied independently.

So far we have neglected dissipation of the middle segment ions. Now, apart from the
cooling and the heating bath (with temperatures T B

1 and T B
2 , respectively) attached to the two

edge ions, we assume that all the middle ions are coupled to a background bath with temperature
T B

bg (T B
1 < T B

bg < T B
2 ) at a coupling rate γbg. The final temperature distribution of the ions is

shown in figure 4 under different background coupling rates γbg. In this calculation, we fix
γ1 = γ2 = γ = 0.1. For tiny γbg, the temperature distribution shows no noticeable difference
compared with the case of γbg = 0. However, as γbg increases to a moderate value with
γbg/γ ∼ 0.01, the temperature distribution of the middle segment ions has a clear linear spatial
gradient, resembling the linear temperature distribution of a classical bar in the heat diffusion
problem. As γbg further increases and gets close to γ , the temperature of the middle ions is
pinned to the background bath temperatures T B

bg as one expects and the temperature gradient
disappears again in this limit.

4. Temperature evolution

We note that the temperature distributions shown in this paper are insensitive to the size of the
ion system. We have checked the temperature distribution of the ions with the size of the chain
varying from ten to a few hundreds of ions and noted no qualitative change in the distribution
pattern. To experimentally test these unusual temperature distribution patterns, one can start with
a small system of a few ions that are within the reach of the current experimental technology.
The final temperature (the mean phonon number of the ion motion) can be detected, for instance,
by measuring the scattering sidebands of a laser beam through an ion. The asymmetry in the
blue and the red sidebands and their ratio give direct inference of the thermal phonon number
of the ion motion [15–17].
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Figure 4. (a) The steady-state temperature distribution across the ion chain when
the other ions in the chain (except for the two driven ones at the edge) are coupled
to a background thermal bath at a temperature T B

bg = 4 with a coupling rate
γ2 = · · · = γ99 = γbg. (b) The temperature profiles at different γbg (cross-section
view of (a)). We find that the temperature profile for the main part of the chain,
excluding the two edge ions, approaches a linear distribution at an intermediately
small γbg ' 10−2γ .

To probe the properties of the steady states, we need to know the time scale to approach
these steady states. Figure 5 shows the relaxation dynamics for 20 ions in either a harmonic or
an anharmonic uniform trap [11]. For a uniform trap (in figure 5(a)), the calculation shows that
there are two time scales in the equilibration. First, with a time scale t1 ∼ 1/γ , the temperature
of the two edge ions quickly approaches the corresponding bath temperature. During this step,
the temperature of the middle segment ions only changes slightly, and the change gets smaller
as one moves away from the driven ions. After that, a longer time scale t2 sets in, representing
the interaction-driven equilibration process. All the ions gradually approach the steady-state
temperature. Note that the temperature of the edge ions (as well as the other ions that are close to
the two driven ones) does not follow a monotonic evolution curve. Instead, it first comes pretty
close to the corresponding bath temperature and then is dragged back toward its steady-state
value. The value of the second time scale t2 increases with the system size (roughly linearly) and
t2 ∼ 40/γ for 20 ions. For an ytterbium ion (171Yb+) chain with spacing 10 µm, t2 is about 3 ms,
which is a pretty reasonable time scale for experiments. For a harmonic trap (in figure 5(b)),
the basic feature is similar except that the second time scale t2 becomes site dependent.
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Figure 5. The temperature relaxation dynamics for an ion chain with N = 20
in (a) a uniform anharmonic trap, (b) a harmonic non-uniform trap and (c) a
harmonic trap with a background coupling rate γbg/γ = 10−3 and a background
temperature T B

bg = 4. The 1st and the 20th ions are driven, respectively, by a
cooling (at T B

1 = 2) and a heating (at T B
2 = 10) bath, with the same driving

rate γ1 = γ2 = γ = 0.1, as indicated by the thick (red) curves. The initial
temperature is assumed to be Ti(t = 0) = 5 for all ions. The transverse frequency

ωx = 10 in units of
√

e2/(md3
0 ), where d0 is the largest spacing in the ion chain

(between the 1st and 2nd ions or between the 19th and 20th ions) for the
harmonic cases. In terms of real numbers, with a typical choice of d0 = 10 µm
for 20 ytterbium ions in a harmonic trap, the trapping frequencies for the
transverse and the axial traps are given, respectively, by ωx ≈ 2π × 1.4 MHz and
ωz ≈ 2π × 76.5 kHz, and the driving rate γ ≈ 14 kHz.

The edge ions and their neighbors approach the corresponding steady-state temperature with a
time scale that is comparable to the case of a uniform chain. However, as one moves away from
the edge, the equilibration time gets much greater with an exponential increase. For the middle
ion, the equilibration is not finished yet with t ∼ 1010/γ . With such an extremely long time
scale, of course, one cannot neglect the small dissipation of the other ions to the background
bath. If we take into account a small background dissipation, e.g. with a rate γbg/γ ∼ 10−3
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as shown in figure 5(c), the long tail in the temperature evolution is completely gone for the
harmonic trap. Now, the temperature of all the ions approaches their steady values within a time
scale that is comparable to the uniform case, although the steady-state temperature of the middle
segment ions is dragged down a bit toward the background bath temperature.

5. Conclusion

In summary, we have shown that the steady-state temperature distribution of a driven ion chain
shows surprisingly rich patterns. Many of the features of these patterns are unexpected, and are
in sharp contrast with the simple linear temperature gradient as one sees in the classical heat
diffusion problem. Our calculation is based on exact numerical methods without any unreliable
approximations, so we believe that all the unusual temperature distribution patterns revealed by
this calculation will show up in experiments, although we still lack an intuitive explanation of
some of these features. We also investigate the relaxation dynamics and the time scale to reach
the steady state, and show that these patterns should be observable within a realistic time scale
in a small system that is within the current experimental reach.
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