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Abstract

We consider the problem of estimating the surface area
of an unknown n-dimensional set F given membership
oracle access. In contrast to previous work, we do
not assume that F is convex, and in fact make no
assumptions at all about F . By necessity this means
that we work in the property testing model; we seek an
algorithm which, given parameters A and ϵ, satisfies:

• if surf(F ) ≤ A then the algorithm accepts (whp);

• if F is not ϵ-close to some set G with surf(G) ≤ κA,
then the algorithm rejects (whp).

We call κ ≥ 1 the “approximation factor” of the testing
algorithm.

The n = 1 case (in which “surf(F ) = 2m” means
F is a disjoint union of m intervals) was introduced by
Kearns and Ron [KR98], who solved the problem with
κ = 1/ϵ and O(1/ϵ) oracle queries. Later, Balcan et
al. [BBBY12] solved it with with κ = 1 and O(1/ϵ4)
queries.

We give the first result for higher dimensions n.
Perhaps surprisingly, our algorithm completely evades
the “curse of dimensionality”: for any n and any κ >
4
π ≈ 1.27 we give a test that uses O(1/ϵ) queries.
For small n we have improved bounds. For n = 1
we can achieve κ = 1 with O(1/ϵ3.5) queries (slightly
improving [BBBY12]), or any κ > 1 with O(1/ϵ) queries
(improving [KR98]). For n = 2, 3 we obtain κ ≈
1.08, 1.125 respectively, with O(1/ϵ) queries. Getting
an arbitrary κ > 1 for n > 1 remains an open problem.
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Finally, motivated by the learning results
from [KOS08], we extend our techniques to obtain a
similar tester for Gaussian surface area for any n, with
query complexity O(1/ϵ) and any approximation factor
κ > 4

π ≈ 1.27.

1 Introduction

We consider a fundamental geometric problem — esti-
mating the surface area of a set F ⊆ Rn given point-
query access. This problem arises in several practical
scientific areas under the name stereology, as well as
in the fields of statistics and computer graphics/vision,
e.g., [CFRC07, LYZ+10, YC96, Ras03].

In the special case that F is promised to be convex,
the problem is closely related to the well-known task
in theoretical computer science of estimating volume
given membership oracle access (and a point inside F ).
The task of estimating surface area of convex sets was
stated as an open problem in the monumental work of
Grötschel et al. [GLS88]. It was apparently first solved

by Belkin et al. [BNN06]; they showed that an Õ(n8.5)-
query algorithm could be deduced from the work of Dyer
et al. [DGH98], and also gave an Õ(n4)-query algorithm.

In this work we consider arbitrary sets F ⊆ Rn

and do not make any assumptions of convexity. By
necessity, this means that we must relax our goals
slightly. For example, given a nice convex set such as
a sphere, one can add a very thin tentacle to it with
negligible volume but arbitrarily large surface area. No
algorithm with only oracle access to the set can hope
to find (let alone estimate the surface area of) this
tentacle, even given a starting point inside the initial
convex set. Relatedly, one can take a nice convex set
and make part of its boundary “wiggle violently” at
a very small scale, increasing its surface area by an
arbitrary amount in a way that is undetectable to oracle
algorithms. Thus, without the convexity assumption,
we must allow ourselves the flexibility of disregarding
or smoothing out tiny-volume pieces of the set. This
leads us naturally to work in the model of property
testing [RS96, BLR93, GGR98].



1.1 Property testing The natural framing of sur-
face area estimation in the property testing model is as
follows. An algorithm is given black-box query access
to a set F ⊆ Rn, meaning it can query any point x ∈ Rn

and learn whether or not x ∈ F . The algorithm is al-
so given as input two parameters: a surface area upper
bound A and an error tolerance ϵ > 0. We use surf(F )
denote the surface area of the set F . The algorithm —
which is allowed to be randomized —makes queries to F
and then, must either “accept” or “reject”. The goal for
it is to accept (with high probability) if F ’s surface area
satisfies surf(F ) ≤ A and reject (with high probabili-
ty) if F is “ϵ-far” from having surf(F ) ≤ A. Roughly
speaking, the second condition means that if F is ac-
cepted with non-negligible probability, then it can be
made to have surface area at most A after altering at
most ϵ volume. (Presumably, this entails deleting some
small parts of F , or smoothing out some small crinkles.)
One is typically less concerned with the actual running
time of the testing algorithm than its query complexity,
though, in fact, the testing algorithms in this paper are
extremely efficient (running in time linear in the number
of queries).

We will also allow one more relaxation to the usual
property testing framework: a slight gap between the
“completeness” and “soundness”. Specifically, we will
only require the testing algorithm to reject with high
probability if F is ϵ-far from having surf(F ) ≤ κ · A.
We call κ ≥ 1 the “approximation factor”. This extra
flexibility (introduced already in the first work on the
topic [KR98]) lets us achieve substantial query savings
in n = 1 dimension and is necessary for our proof
technique in higher dimensions.

To make the property testing definitions precise we
need a notion of volume or probability density on Rn.
In this paper we consider two different possibilities.
For the main part of the paper we will assume that
the set F has been translated and scaled so that it
lies inside the unit cube (0, 1)n. Lebesgue measure on
(0, 1)n is a probability measure and it gives us a natural
notion of two sets F,G ⊆ (0, 1)n being ϵ-close, that
the volume of their symmetric difference be at most ϵ:
vol(F△G) ≤ ϵ.

We advise the reader that this setting is probably
the most natural in the practical case of low dimensions;
e.g., n = 2 or 3. In high dimensions, the assumption
that F ⊆ (0, 1)n may cause the error tolerance ϵ to
have a rather large effect. For example, any sphere
F ⊆ (0, 1)n has volume 2−Θ(n) and can therefore be
considered “negligible” (unless ϵ ≤ 2−Θ(n)). This seems
like an unavoidable aspect of working in the property
testing model. Indeed, for high dimensions n, we feel
that our second setting, Gaussian space, is more natural.

Gaussian surface area. Property testing is of-
ten viewed as a precursor to Computational Learning
(see [Ron08]) and indeed an important motivation for
our paper arises from the learning results of Klivans et
al. [KOS08]. In this case, the standard n-dimensional
Gaussian measure is used to define the volume (and
surface area) of sets in Rn. Analogous to the previ-
ous setting, the distance between two sets F,G ⊆ Rn

is defined as the Gaussian volume of F△G. In this
setting, Klivans et. al. gave an nO(A2)-time agnostic
learning algorithm under the Gaussian distribution for
the class of sets with Gaussian surface area at most A.
Our Gaussian surface area tester fits very nicely in the
“testing before learning” framework. The soundness of
our tester guarantees that any set F that the tester ac-
cepts (with high probability), is ϵ-close to having Gaus-
sian surface area at most κ ·A. The deficiency of being
ϵ-close that comes with property testing is taken care
of by the agnostic aspect of the [KOS08] learning algo-
rithm, and the approximation factor κ does not make
any real difference to the learning algorithm’s run-time
of nO(A2).

1.2 Prior and related work The framework of
property testing has seen a tremendous amount of work,
see, e.g., [Ron08, RS11]; especially in the areas of
algebraic properties, e.g., [BLR93, DLM+08, AKK+05],
graph properties, e.g., [GGR98, AFNS09], and discrete
function properties, e.g., [Bla09, BO10]. For testing in
the context of geometric properties see, e.g., the work
of Czumaj et al. [CSZ00, CS01].

As far as we are aware, the specific problem studied
in this paper — property testing surface area — has
been studied previously only in n = 1 dimension. In
this case, the “surface area” of an open set F ⊆ [0, 1]
is the number of points on its boundary; hence the
problem is equivalent to testing whether F is a union
of at most A/2 intervals. In this form, the problem
was first proposed by Kearns and Ron [KR98]. They
gave a tester solving the problem with excellent query
complexity, O(1/ϵ), but a rather large approximation
factor, κ = 1/ϵ. The problem was taken up again by
Balcan et al. in 2012 [BBBY12]. They gave a tester
with query complexity O(1/ϵ4) and no approximation
factor — i.e., κ = 1. Actually, their tester naturally
achieves κ = 1+ ϵ, but they proved the following simple
fact (specific to 1 dimension) which allowed them to
reduce κ to exactly 1:

Fact 1.1. ([BBBY12]) Any F ⊂ (0, 1) which is the
union of at most m(1+ ϵ) intervals is ϵ-close to a union
of at most m intervals.



1.3 Our results We give the first efficient property
testing algorithm for surface area in any dimension
n > 1. Our testing algorithm is highly efficient —
needs just O(1/ϵ) queries (and running time) — and
achieves a small constant approximation factor κ for
every dimension n, both in the standard Euclidean
and Gaussian settings. We find it somewhat surprising
that the “curse of dimensionality” can be completely
avoided, especially in the standard Euclidean setting.

To state our results, let’s first define the approxi-
mation factor κn we achieve in dimension n:

Definition 1.1. For n ∈ N+ and Γ, the standard
Gamma function, define

κn =
4

π

n

n+ 1

Γ(n/2 + 1)Γ(n/2)

Γ(n/2 + 1/2)2
= 2(n+1)

[(
n

n/2−1/2

)
2n

]2
,

so κ1 = 1, κ2 = 32
3π2 ≈ 1.08, κ3 = 9

8 = 1.125, etc.

Fact 1.2. κn increases to a limit of 4
π ≈ 1.27 as

n→ ∞.

Proof. The fact that κn → 4
π is a straightforward

consequence of Stirling’s formula. Thus it remains to
show that rn = κn/κn+1 ≤ 1 for all n. Since rn → 1 as
n → ∞ it suffices to show that rn+2/rn ≥ 1 for all n.

But by direct computation, rn+2/rn = (n+4)(n+2)3

(n+1)(n+3)3 ,

which is easily shown to decrease to 1.

We can now state our main theorem for n-
dimensional Euclidean surface area. For technical sim-
plicity (to avoid edge effects) we work in the unit torus
Tn = Rn/Zn rather than the unit cube (0, 1)n.

Theorem 1.1. There is a randomized testing algorithm
with the following properties. Given black-box query
access to a set F ⊆ Tn with piecewise-C1 boundary,
as well as parameters A > 0, 0 < ϵ < 1/2, and

0 < η < 1/2, the algorithm makes O( 1/η
2.5

ϵ ) queries and
then either “accepts” or “rejects”. The tester satisfies:

• (Completeness.) If surf(F ) ≤ A, then the tester
accepts with probability at least 9/10.

• (Soundness.) If the tester accepts with probability
at least 1/10, then there is a set G ⊆ Tn with
vol(F△G) ≤ ϵ such that surf(G) ≤ (κn + η) ·A.

Here κn is as given by Definition 1.1.

(We remark also that in the soundness statement, we
can ensure that G is a finite union of polytopes with
dist(x, F ) ≤ O(

√
nηϵ/A) for all x ∈ G.)

Let’s consider Theorem 1.1 in combination with
Fact 1.2. For n = 1, we can achieve any approximation

factor κ > 1 using O(1/ϵ)-queries. This significantly
improves on the result in [KR98]. By taking η = ϵ and
applying Fact 1.1, we can also achieve no approximation
factor (i.e., κ = 1) with an O(1/ϵ3.5)-query tester,
slightly improving the result from [BBBY12]. For
n = 2 we can achieve approximation factor 1.081 using
O(1/ϵ) queries; for n = 3 we can achieve approximation
factor 1.126 using O(1/ϵ) queries. Finally, for general
dimensions n we can achieve any approximation factor
κ > 4

π ≈ 1.27 using O(1/ϵ) queries.

Our result for testing Gaussian surface area is
similar and completely dimension-independent:

Theorem 1.2. There is a randomized testing algorithm
with the following properties. Given black-box query
access to a set F ⊆ Rn with piecewise-C1 boundary,
as well as parameters A > 0, 0 < ϵ < 1/2, and

0 < η < 1/2, the algorithm makes O( 1/η
2.5

ϵ ) queries and
then either “accepts” or “rejects”. The tester satisfies:

• (Completeness.) If surfγ(F ) ≤ A, then the tester
accepts with probability at least 9/10.

• (Soundness.) If the tester accepts with probability
at least 1/10, then there is a set G ⊆ Rn with
volγ(F△G) ≤ ϵ such that surfγ(G) ≤ ( 4π + η) ·A.

Here surfγ(·) denotes Gaussian surface area and volγ(·)
denotes n-dimensional Gaussian probability measure.

We remark that we can’t expect the approximation
factor in the Gaussian setting to be better than the
approximation factor in the Euclidean setting. This
is because for sets F ⊆ Rn very close to the origin,
Gaussian and Euclidean surface area are essentially the
same, up to a scaling factor (namely, the value of the
Gaussian pdf at 0).

1.4 Our methods In this section we give a rough
description of the ideas behind our surface area tester
in Tn. In fact, all of the complexity occurs already in
the case of n = 2 dimensions. We therefore encourage
the reader to keep the special case of n = 2 in mind
(and read “perimeter” for “surface area”, and “area”
for “volume”).

Let’s warm up by considering the problem of testing
volume. This is essentially a trivial problem in the prop-
erty testing framework; a tester can accurately estimate
vol(F ) or volγ(F ) simply by querying many independen-
t random points and computing the empirical fraction
which lie in F . Indeed, here is a simple theorem one can
prove for testing Gaussian volume using just a standard
Chernoff bound1:

1A similar theorem also holds for testing Lebesgue volume.



Theorem 1.3. There is a randomized testing algorithm
GaussianVolumeTest with the following properties.
Given black-box query access to a set F ⊆ Rn as well as
parameters V > 0, 0 < τ < 1/2, the algorithm makes

O( 1/τ
2

V ) queries and then either “accepts” or “rejects”.
Further:

• (Completeness.) If volγ(F ) ≤ V then the tester
accepts with probability at least 99/100.

• (Soundness.) If volγ(F ) > (1+τ)·V then the tester
rejects with probability at least 99/100.

How about surface area? For sets F with nice
enough surface we have surf(F ) = limδ→0

vol(∂F δ/2)
δ ,

where ∂F δ/2 denotes the set of all points within dis-
tance δ/2 of F ’s boundary. This yields a natural idea
for estimating surf(F ): choose a small δ > 0, (try to)
estimate vol(∂F δ/2) by the above sampling approach,
and then divide by δ. Since oracle access to F does not
directly give us oracle access to ∂F δ/2, we can modify
this idea by, say, querying two random points x and y
at roughly a distance of δ to see if one is inside F and
the other outside.

This modification is backed up by an appropriate
version of the Cauchy–Crofton or “Buffon’s Needle”
Theorem (see Theorem 2.1 below), which roughly says
that

(1.1) surf(F ) = c ·
E
[
# of intersections between ∂F and
a random “needle” xy of length δ

]
δ

,

where c = Θ(
√
n) is a dimension-dependent constant.

We can underestimate the expectation in the numerator
by the probability a random length-δ needle intersects
∂F , which in turn can underestimated by

(1.2) Pr
[
two random points x, y at distance δ

satisfy x ∈ F , y ̸∈ F or vice versa

]
.

This probability — which is something like the “noise
sensitivity of F at δ” — can be accurately estimat-
ed by a tester. After dividing by δ/c we get an (un-
der)estimate for the true surface area; if this is at
most A, the tester can accept. Thus we have a tester
whose completeness is ensured by the Buffon’s Needle
Theorem. We remark that the ideas so far are precisely
those used in the n = 1 tester of Balcan et al. [BBBY12].

The hope is that this underestimate is close to
the truth if δ is “small enough”. The difficulty is
that a random length-δ needle might pass through F ’s
boundary k ≥ 2 times; and in this case, even though it
should contribute k to the numerator in (1.1), it will
only be counted once (if k is odd) or zero times (if
k is even) in the approximation (1.2). In the “limit”

when δ becomes very small, we expect the needle to
intersect F ’s boundary in either zero or one points, but
how can the tester know how small does δ need to be?
Indeed, the tester does not want to take δ too small,
or else it will take too many samples to estimate (1.2)
empirically. What we hope is that by choosing δ roughly
proportional to ϵ/A, we get a significant underestimate
only when the boundary of F “wiggles at a scale of δ”,
in which case, we can attempt to find a G satisfying
vol(F△G) ≤ ϵ by “smoothing out” such wiggles.

The difficulty is in defining such a G. As
in [BBBY12], we consider a “smoothed-out” version of
F ’s indicator function,

g(x) = Pr

[
y∈F :

for y a random point at distance
roughly δ from x

]
.

(Actually, the “needle length” δ also needs to be ran-
domized to avoid periodicity issues.) Then it appears
natural to declare that G contains all x where g(x) is
close to 1 and that G doesn’t contain any point where
g(x) is close to 0. It remains to decide how to define G
on points x where g(x) is “in the middle”. (These cor-
respond to points that are roughly near the boundary
of F .) It can be shown that vol(F△G) is small no mat-
ter what choice is made for such points; the challenge
is to fill in the gaps in such a way that the resulting G
has small surface area.

In the 1-dimensional case studied in [BBBY12] this
task is very easy: the partial definition of G fixes
some intervals to be contained in G and some intervals
to be excluded from G. At this point, any sensible
method of filling in the gaps yields appropriately small
“surface area” (number of endpoints). In 2 or more
dimensions, though, the problem is more complicated;
indeed it seems very hard to give a construction for
this gap-filling problem. Our solution is to use the
Probabilistic Method; we define G to be a random
super-level set of g, i.e., G = {x : g(x) > t}. It turns
out that if t is chosen from the triangular probability
distribution (rather than the naive choice of the uniform
distribution) then the coarea formula from geometric
integration theorem gives a link between surface area
and noise sensitivity which is enough to establish the
soundness of our tester.

1.5 Organization of the remainder of the paper
In Section 2 we give the technical preliminaries concern-
ing surface area, the Cauchy–Crofton formula, and the
coarea formula. In Section 3 we state our testing algo-
rithm for Tn and prove its completeness. In Section 4 we
prove the soundness of the tester. In Section 5 we give
all the generalizations to the Gaussian case. Finally, we
conclude with some open problems.



2 Technical preliminaries

Notation 1. We write Tn for the torus Rn/Zn. We
write Bn to denote the unit open ball in Rn and let
Sn−1 denote its boundary, the unit sphere in Rn.

We define surface area only for “sets of finite
perimeter”; for the definition of this term we refer
the reader to [AFP00, Section 3.3]. We will use the
following:

Notation 2. Let F ⊆ Tn be a “set of finite perimeter”.
We write surf(F ) for its perimeter (surface area). For
sets F with piecewise-C1 boundary this coincides with
Hn−1(∂F ), where Hn−1 denotes (n − 1)-dimensional
Hausdorff measure. We further remark that any set
of finite perimeter F ⊆ Tn can be approximated by a
sequence of open sets (Fi) each with piecewise-affine
boundary2 such that vol(Fi△F ) → 0, surf(Fi) →
surf(F ).

Our testing algorithm will rely on an alternate
characterization of surface area, namely the following
Cauchy–Crofton or “Buffon’s Needle”-type fact from
integral geometry (see, e.g., [San04, I.8.3, III.15.9]).
Note that in this theorem the intuition is that the needle
length δ is very short, though in fact it can be of any
length.

Theorem 2.1. Assume that F ⊆ Tn is such that ∂F is
a piecewise-C1 surface. For x ∈ Tn and a vector y with
∥y∥ = δ, let N(x, y, F ) denote the “number of times the
needle from x to x + y intersects ∂F”; more precisely,
#{t ∈ [0, 1] : x+ ty ∈ ∂F}. Then

E
x∼Tn,v∼Sn−1

[N(x, δv, F )] = βn · surf(F ) · δ.

Here βn is the dimension-dependent constant whose
definition is given below.

Definition 2.1. The constant βn in Theorem 2.1 is
defined by βn = Ev∼Sn−1 [|v1|]. Note that βn also equals
Ev∼Sn−1 [|⟨v, w⟩|] for any fixed unit vector w.

Fact 2.1. We have β1 = 1, β2 = 2
π , β3 = 1

2 , and in

general βn = Γ(n/2)√
πΓ(n/2+1/2)

∼
√

2
π

√
1
n .

We will need to introduce a notion of “noise sensi-
tivity” for functions on the torus. This notion was also
used by [BBBY12] for their n = 1 testing algorithm.

Definition 2.2. Let f : Tn → R be integrable. For
δ > 0 we define Sδf : Td → R by

Sδf(x) = E
z∼Bn

[f(x+ δz)].

2Or C∞ boundary if desired, assuming n ≥ 2.

When f has range ±1 (i.e., f is the ±1-indicator of a
measurable subset of Tn) we also define

NSδ[f ] = E
x∼Tn

[ 12−
1
2f(x)·Sδf(x)] = Pr

x∼Tn,z∼Bn
[f(x) ̸= f(x+δz)].

In the soundness analysis of our algorithm we will
consider the superlevel sets of a certain Lipschitz func-
tion g; i.e., g>t = {x : g(x) > t}. The coarea formula
connects the expected value of the surface area of super-
level sets and the gradient of the function g. Citations
for the following form of the theorem include [AFP00,
Theorem 2.93], [EG92, Section 3.4.3].3

Theorem 2.2. Let g : Tn → R be Lipschitz and let
ψ : Rn → [0,∞) be bounded. Then

∫
Tn

ψ(x)|∇g(x)| dx =

∫ ∞

−∞

(∫
g−1(t)

ψ(x) dHn−1(x)

)
dt.

Corollary 2.1. Let g : Tn → R be Lipschitz and let
ϕ be a bounded probability density function on R. Then

E
x∼Tn

[ϕ(g(x))|∇g(x)|] = E
t∼ϕ

[surf(g>t)].

Here g>t = {x ∈ Tn : g(x) > t}, and this is a “set of
finite perimeter” with probability 1.

Proof. Apply Theorem 2.2 with ψ = ϕ◦g. On the right-
hand side we get

∫ ∞

−∞

(∫
g−1(t)

ϕ(t) dHn−1(x)

)
dt = E

t∼ϕ
[Hn−1({x : g(x) = t})].

But it is known for Lipschitz g that for almost all t
the set g>t is of finite perimeter, having surface area
equal to Hn−1({x : g(x) = t}) (see [AFP00, Theorem
3.40], [Mag12, Theorem 18.1], [EG92, Section 5.5]).

3 The algorithm and its completeness

We begin with the algorithm that gives us our main
theorem (Theorem 1.1).

3These state the result when the domain of g is an open subset
of Rn, rather than Tn. However the result continues to hold for
Tn.



Given black-box membership access to F ⊆ Tn,
as well as parameters A > 0 and 0 < ϵ, η < 1/2:

1. Define δ =
√
η

βn·Aϵ.

(In fact, any δ = Θ(
√
n
√
η

A ϵ) would be acceptable.)

2. Let ÑSδ[f ] be an empirical estimate of NSδ[f ]
computed using t = C

η2.5ϵ samples.

(Here C is a large universal constant to be
specified later.)

3. Accept if and only if

ÑSδ[f ] ≤ n
n+1 · βn ·A · δ · (1 + η)

(equivalently, n
n+1 · √η · ϵ · (1 + η)).

We now prove the completeness of this tester:

Theorem 3.1. (Completeness) Let F ⊆ Tn be such
that ∂F is a piecewise-C1 surface. Assume that
surf(F ) ≤ A. Then the tester accepts with probability
at least 9/10.

Proof. Let r be the random variable distributed as the
length of a random vector z ∼ Bn. It is well known and
easy to verify that E[r] = n

n+1 . Now

NSδ[f ] = E
r

[
Pr

x∼Td,v∼Sd−1
[f(x) ̸= f(x+ δrv)]

]
≤ E

r

[
E
x,v

[N(x, δrv, F )]

]
,

where N(x, δrv, F ) is as in Theorem 2.1. Here we used
the fact that if a needle’s endpoints are on opposite
sides of F then the needle must cross ∂F at least once.
Applying Theorem 2.1 we get

NSδ[f ] ≤ E
r
[βn · surf(F ) · δr] = βn · surf(F ) · δ · n

n+ 1

≤ n

n+ 1
· βn ·A · δ =: µ.

It remains to show that the empirical estimate ÑSδ[f ]
will not exceed this by a factor of more than (1 + η)
except with probability at most 1/10. Noting that
µ = Θ(

√
ηϵ), a standard Chernoff bound implies that

Pr[ÑSδ[f ] > µ(1+η)] ≤ exp(−µtη2/3) = exp(−Θ(η2.5ϵt)) ≤ 1/10

provided the constant C in t’s definition is sufficiently
large.

4 Soundness

The goal of this section is to prove the soundness portion
of Theorem 1.1. The first step is to analyze the Lipschitz
constant of Sδf .

Proposition 4.1. Let f : Tn → [−1, 1] be measurable
and let δ > 0. Then g = Sδf is (Ln/δ)-Lipschitz, where
L1 = 1, L2 = 4

π , L3 = 3
2 , and in general

Ln = 2
vol(Bn−1)

vol(Bn)
=

2√
π

Γ(n/2 + 1)

Γ(n/2 + 1/2)
=
√

2
π

√
n+O( 1√

n
).

Proof. Let x, y ∈ Tn be at distance λ ≤ 1
2diam(Tn).

Let Dx be the probability density on Tn of x+z, where
z ∼ Bn; similarly define Dy. Since g(x) (respectively,
g(y)) is the average of f underDx (respectively, Dy) and
since f ’s range is [−1, 1], it follows that |g(x)− g(y)| ≤
2dTV(Dx, Dy). By the data processing inequality this
bound can only increase if we interpret Dx as being
the uniform distribution on the Euclidean ball Bx =
x+Bn ⊂ Rn (and similarly for Dy), rather than taking
the distribution mod Zn. Thus

|g(x)− g(y)| ≤ 2
vol(Bx \By)

vol(Bx)
.

To estimate this, without loss of generality let x be the
origin and let y = (−λ, 0, . . . , 0). By simple geometric
considerations we have

vol(Bx \By)

vol(Bx)
=

vol(Bx ∩W )

vol(Bx)
,

where W = {z ∈ Rn : |z1| ≤ λ
2 }; note that this still

holds even if δ > 2λ (in which case Bx \ By = Bx). In
turn we can upper-bound vol(Bx ∩W ) by the volume
of a cylinder of width λ and base equal to the (n − 1)-
dimensional radius-δ ball {z ∈ Bx : z1 = 0}. Thus we
deduce

|g(x)− g(y)| ≤ 2
λ · δn−1vol(Bn−1)

δnvol(Bn)
= λ · Ln

δ
,

as needed.

The key lemma we’ll need to establish the soundness
is the following:

Lemma 4.1. Let f : Tn → {−1, 1} be the indicator of
a measurable set F ⊆ Tn with smooth boundary. Then
for any 0 < η < 1

2 , there exists a set G ⊆ Tn satisfying

surf(G) ≤ 2Ln · 1
δ ·NSδ[f ] · (1 + 2η),

vol(F△G) ≤ 2√
η ·NSδ[f ].

Here Ln is as in Proposition 4.1.

Proof. We use the probabilistic method. Let g = Sδf ,
which by Proposition 4.1 is (Ln/δ)-Lipschitz. The
essential idea (which doesn’t quite work) is to let t
be the random variable drawn from the triangular



distribution on [−1, 1] with pdf ϕ(t) = 1 − |t|, and
define G to be the set g>t = {x ∈ Tn : g(x) >
t}. As the reader will see shortly, by applying the
coarea formula Corollary 2.1 we would get E[surf(G)] ≤
2Ln · 1

δ · NSδ[f ], and it is also not hard to show
that E[vol(F△G)] ≤ O(NSδ[f ]). Thus in expectation
G satisfies the desired properties (with the volume
difference being even smaller than claimed). The catch
is that we need both to hold simultaneously. It is
possible to achieve both with a factor-O( 1η ) loss on

vol(F△G) using Markov’s inequality. However it is
more effective to slightly change the distribution on t.
To be precise, we truncate t to the interval [−1+

√
η, 1−√

η]; i.e., we let it be drawn according to the following
probability density:

ϕη(t) =

{
1−|t|
1−η for − 1 +

√
η ≤ t ≤ 1−√

η

0 else.

Now defining G = g>t and applying the coarea formula
Corollary 2.1 we obtain

E
t∼ϕη

[surf(G)] = E
x∼Tn

[ϕη(g(x))|∇g(x)|]

≤ (Ln/δ) · E
x∼Tn

[ϕη(g(x))]
(g is (Ln/δ)-Lipschitz)

≤ (Ln/δ) · E
x∼Tn

[
1− |g(x)|
1− η

](definition of ϕη)

< (Ln/δ) · (1 + 2η) · E
x∼Tn

[1− f(x)g(x)]
(0 < η < 1/2, f(x) ∈ {−1, 1})

= (Ln/δ) · (1 + 2η) · 2NSδ[f ].

Thus G satisfies the claimed surface area bound in ex-
pectation. We will complete the proof by showing that
G satisfies the claimed volume bound with probabili-
ty 1; this shows there exists a set of finite perimeter G
satisfying both bounds.

Note that every outcome of t ∼ ϕη satisfies |t| ≤
1 − √

η. Thus whenever x ∈ F△G — i.e., f(x) ̸=
sgn(g(x)− t) — we have

f(x)g(x) ≤ 1−√
η 1

2 − 1
2f(x)g(x) ≥

1
2

√
η.

We deduce that with probability 1 over the choice of G,

1x∈F△G ≤ 2√
η (

1
2 − 1

2f(x)g(x)) for all x ∈ Tn.

Taking expectations over x ∈ Tn completes the proof.

We can now complete the proof of soundness of our
tester.

Theorem 4.1. (Soundness) Suppose that the tester
accepts with probability at least 1/10. Then there exists
a set G ⊆ Tn (which is, in fact, a finite union of
polytopes) such that:

surf(G) ≤ (κn +O(η)) ·A,
vol(F△G) ≤ O(ϵ),

where

κn = 2 · n

n+ 1
· Ln · βn = 2(n+ 1)

[(
n

n/2−1/2

)
2n

]2
and the O(·)’s hide small universal constants.

Proof. By a Chernoff bound very similar to the one in
the completeness Theorem 3.1, if NSδ[f ] fails to satisfy
(4.3)
NSδ[f ] ≤ n

n+1 ·βn ·A · δ · (1+2η) = n
n+1 ·

√
η · ϵ · (1+2η)

then the tester rejects with probability at least 9/10.
Thus (4.3) must hold, whence applying Theorem 4.1 lets
us deduce that there exists a set of finite perimeter G
satisfying:

surf(G) ≤ 2Ln · n
n+1 · βn ·A · (1 +O(η)) = (κn +O(η)) ·A,

vol(F△G) ≤ 2√
η · n

n+1 · √η · ϵ · (1 + 2η) ≤ O(ϵ).

Remark 1. One can approximate the set G in the proof
above, arbitrarily well by a set with piecewise-affine
boundary, if desired (see remarks in Notation 2). Also,
for any x ∈ G, as g(x) = Sδf(x) ≥ 1−√

η, if x /∈ F , at
least

√
η/2 fraction of its δ-neighborhood will lie in F .

Thus, in this case, dist(x, F ) = O(
√
nηϵ/A).

5 Testing Gaussian surface area

In this section we show how to modify our arguments to
obtain similar results for testing Gaussian surface area.
We need analogous definitions of surface area of sets and
the coarea formula in the Gaussian case; here the reader
is referred to [CK01] for more details.

Notation 3. Let F ⊆ Rn be a set with finite Gaus-
sian perimeter. We write volγ(F ) for its Gaussian
volume and surfγ(F ) for its Gaussian perimeter (sur-
face area). For sets F with piecewise-C1 boundary,
surfγ(F ) coincides with Hn−1

γ (∂F ), where Hn−1
γ de-

notes the (n − 1)-dimensional Hausdorff measure com-
puted using n-dimensional Gaussian volume as the ref-
erence measure.

Theorem 5.1. (Coarea Formula) Let g, ψ : Rn →
R be bounded functions. In addition, assume that g is
Lipschitz. Then∫
Rn

ψ(x)|∇g(x)| dγn =

∫ ∞

−∞

(∫
g−1(t)

ψ(x) dHn−1
γ (x)

)
dt,



where γn is the n-dimensional Gaussian measure.

Corollary 5.1. Let g : Rn → R be a bounded Lips-
chitz function and let ϕ be a bounded probability density
function on R. Then

E
x∼γn

[ϕ(g(x))|∇g(x)|] = E
t∼ϕ

[surfγ(g
>t)].

Here g>t is a “set of finite Gaussian perimeter” with
probability 1.

Next we need the appropriate notion of “noise sen-
sitivity”, which is defined using the Ornstein–Uhlenbeck
operator:

Definition 5.1. Let f : Rn → R be integrable under
Gaussian measure. For 0 < δ < π/2 we define GSδf :
Rn → R by

GSδf(x) = E
z∼γn

[f((cos δ)x+ (sin δ)z)].

In case f has range ±1 we also define

GNSδ[f ] = E
x∼γn

[ 12 − 1
2f(x)GSδf(x)]

= Pr
x,z∼γn

[f(x) ̸= f((cos δ)x+ (sin δ)z)].

This can be connected to Gaussian surface area,
in a manner similar to the Buffon’s Needle Theo-
rem 2.1, using the following one-sided inequality due
to Ledoux [Led94]:4

Theorem 5.2. Let F ⊆ Rn have piecewise-C1 bound-

ary. Then GNSδ[f ] ≤
√

2
π · δ · surfγ(F ).

Next we give our testing algorithm. The high level
idea of the tester is the same as in the Euclidean case
before, but requires a minor adjustment in case the
desired value for δ isn’t less than π/2. This minor
adjustment uses the GaussianVolumeTest algorithm
from Theorem 1.3.

4Also credited by Ledoux to Pisier [Pis86]. Ledoux only
proved the theorem for sets with C∞ boundary; however it

holds for general Borel sets F when surface area is defined as
Hn−1

γ (∂F ) [KOS08, Footnote 1], and this coincides with surfγ(F )
when F has piecewise-C1 boundary [CK01].

Given black-box membership access to F ⊆ Rn, as well as
parameters A > 0 and 0 < ϵ, η < 1/2:

1. Define δ =
√
η

A ϵ.

2. If δ ≥ π/2 then execute
GaussianVolumeTest(F, V = 2

3ϵ, τ = 1
2 ),

GaussianVolumeTest(F c, V = 2
3ϵ, τ = 1

2 ),
and accept if either accepts. Otherwise. . .

3. Let ˜GNSδ[f ] be an empirical estimate of GNSδ[f ]
computed using t = C

η2.5ϵ samples.

(Here C is a large universal constant to be specified later.)

4. Accept if and only if ˜GNSδ[f ] ≤
√

2
π · δ ·A · (1 + η)

(equivalently,
√

2
π · √η · ϵ · (1 + η)).

We remark that the GaussianVolumeTest
algorithm only uses O(1/ϵ) queries, so the test still

needs O( 1/η
2.5

ϵ ) queries in total.

We now analyze our tester. Let’s first dispense with
the case of δ ≥ π/2; i.e., A ≤ (2/π)

√
ηϵ.

Lemma 5.1. Suppose that δ ≥ π/2. Then the tester
accepts with probability at least 9/10 if surfγ(F ) ≤
A. If the tester accepts with probability at least 1/10,
then, there exists G ⊆ Rn with surfγ(G) ≤ A and
volγ(F△G) ≤ ϵ.

Proof. The second statement (“soundness”) is almost
trivial. If the tester accepts with probability at least
1/10 then at least one of GaussianVolumeTest(F ),
GaussianVolumeTest(F c), must accept with prob-
ability at least 1/20. By the soundness of Gaus-
sianVolumeTest, this means that either volγ(F ) ≤
2
3ϵ · (1 +

1
2 ) = ϵ or else volγ(F ) ≥ 1 − ϵ. In the former

case we may take G = ∅; in the latter case we may take
G = Rn. Both of these sets have surf(G) = 0 ≤ A.

Regarding the first statement of the theorem (“com-
pleteness”), suppose surf(F ) ≤ A, and thus surf(F ) ≤
(2/π)

√
ηϵ ≤

√
2

π ϵ. Just from the Gaussian isoperimetric
inequality [Tsi76, Bor75] it holds that

surfγ(F ) ≥ 2
√

2
π · volγ(F ) · volγ(F c)

(see [Led94, (8.25)]). Thus we conclude

volγ(F ) · volγ(F c) ≤ 1
2
√
π
ϵ ≤ 1

3ϵ

and as volγ(F ) + volγ(F
c) = 1,therefore either

volγ(F ) ≥ 1
2 or volγ(F

c) ≥ 1
2 ,hence either volγ(F ) ≤ 2

3ϵ
or volγ(F

c) ≤ 2
3ϵ. In either case, the tester will accept



with probability at least 99/100 ≥ 9/10, by the com-
pleteness of GaussianVolumeTest.

In the remainder of this section we analyze the
tester under the assumption that δ < π/2. We
begin by showing that completeness follows easily from
Theorem 5.2.

Theorem 5.3. (Completeness) Let F ⊆ Rn be such
that ∂F is a piecewise-C1 surface. Assume that
surfγ(F ) ≤ A. Then the tester accepts with probabil-
ity at least 9/10.

Proof. By Theorem 5.2, GNSδ[f ] ≤
√

2
π · δ · A =: µ.

Since µ = Θ(
√
ηϵ), the claim now follows exactly as in

Theorem 3.1.

It remains to show the soundness of the tester. As
before, we begin with analyzing the Lipschitz constant
of GSδ[f ].

Proposition 5.1. Let f : Rn → [−1, 1] be measurable

and let 0 < δ < π/2. Then h = GSδf is (
√

2
π cot δ)-

Lipschitz.

Proof. Let x, y ∈ Rn be at distance λ. Let Dx be
the probability density of (cos δ)x + (sin δ)z, where
z ∼ γn, and similarly define Dy. As in the proof of
Proposition 4.1, it suffices to show

dTV(Dx, Dy) ≤ 1√
2π

(cot δ)λ.

Now Dx and Dy are n-dimensional Gaussian distri-
butions, with standard deviation sin δ in each direc-
tion and means at distance (cos δ)λ. Without loss of
generality we may assume x is the origin and y is
(−(cos δ)λ, 0, . . . , 0). Then the event achieving the total
variation distance between Dx and Dy is the halfspace
H = {z ∈ Rn : z1 ≥ − 1

2 (cos δ)λ}, and

Pr
Dx

[H]−Pr
Dy

[H] = Pr
z∼γ1

[−1
2 (cos δ)λ ≤ (sin θ)z

< 1
2 (cos δ)λ] ≤

1√
2π sin δ

· (cos δ)λ

= 1√
2π

(cot δ)λ,

since the pdf of a 1-dimensional Gaussian with standard
deviation sin δ is bounded above by 1√

2π sin δ
. This

completes the proof.

Next, we have the following lemma which is cru-
cial for the soundness analysis. Its proof is identical to
the proof of Lemma 4.1, using Corollary 5.1 in place of
Corollary 2.1 and Proposition 5.1 in place of Proposi-
tion 4.1.

Lemma 5.2. Let f : Rn → {−1, 1} be the indicator of a
measurable set F ⊆ Rn. Then for any 0 < η < 1

2 , there
exists a set G ⊆ Rn satisfying

surfγ(G) ≤ 2
√

2
π cot δ ·GNSδ[f ] · (1 + 2η),

volγ(F△G) ≤ 2√
η ·GNSδ[f ].

We can now present the analysis of soundness of our
Gaussian surface area tester, with approximation factor
κ = 4

π +O(η):

Theorem 5.4. (Soundness) Suppose that the tester
accepts with probability at least 1/10. Then there exists
a set G ⊆ Rn such that:

surfγ(G) ≤ ( 4π +O(η)) ·A,
volγ(F△G) ≤ O(ϵ),

where the O(·)’s hide small universal constants.

Proof. The proof is identical to that of Theorem 4.1
except for the numerical calculations. By a Chernoff
bound we must have

(5.4) NSδ[f ] ≤
√

2
π ·δ·A·(1+2η) =

√
2
π ·
√
η·ϵ·(1+2η).

Applying Theorem 5.2 now gives us G with
volγ(F△G) ≤ O(ϵ) and

surfγ(G) ≤
4

π
· δ

tan δ
·A · (1 + 2η)2,

which completes the proof because δ
tan δ ≤ 1 for 0 < δ <

π/2.

6 Conclusion

In this paper, we have given property testing algorithms
which test surface area up to any approximation factor
κ > 4

π using O(1/ϵ) queries. It works for both Euclidean
and Gaussian settings, with query complexity and the
approximation factor independent of the dimension.
A straightforward open question is whether one can
achieve approximation factor κ arbitrarily close to 1
in dimensions n > 1 (perhaps at the cost of slightly
increasing the query complexity). It is possible that our
algorithm already achieves this and that it’s only our
analysis which is deficient. Alternatively, one may seek
a lower bound — for example, is it possible that testing
surface area in T2 to approximation factor 1.01 requires
ω(1/ϵ) or even (1/ϵ)ω(1) queries?
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