
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 166.111.142.40

This content was downloaded on 25/11/2014 at 07:05

Please note that terms and conditions apply.

Why the quantitative condition fails to reveal quantum adiabaticity

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 053023

(http://iopscience.iop.org/1367-2630/16/5/053023)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Why the quantitative condition fails to reveal quantum
adiabaticity

Dafa Li1,2 and Man-Hong Yung3,4
1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, Peopleʼs
Republic of China
2 Center for Quantum Information Science and Technology, Tsinghua National Laboratory for
Information Science and Technology (TNList), Beijing 100084, Peopleʼs Republic of China
3 Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua
University, Beijing 100084, Peopleʼs Republic of China
4Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA, USA
E-mail: dli@math.tsinghua.edu.cn and yung.tsinghua@gmail.com

Received 17 December 2013, revised 3 March 2014
Accepted for publication 1 April 2014
Published 9 May 2014

New Journal of Physics 16 (2014) 053023

doi:10.1088/1367-2630/16/5/053023

Abstract
The quantitative adiabatic condition (QAC), or quantitative condition, is a
convenient (a priori) tool for estimating the adiabaticity of quantum evolutions.
However, the range of the applicability of QAC is not well understood. It has
been shown that QAC can become insufficient for guaranteeing the validity of
the adiabatic approximation, but under what conditions the QAC would become
necessary has become controversial. Furthermore, it is believed that the inability
for the QAC to reveal quantum adiabaticity is due to induced resonant transi-
tions. However, it is not clear how to quantify these transitions in general. Here
we present a progress to this problem by finding an exact relation that can reveal
how transition amplitudes are related to QAC directly. As a posteriori condition
for quantum adiabaticity, our result is universally applicable to any (non-
degenerate) quantum system and gives a clear picture on how QAC could
become insufficient or unnecessary for the adiabatic approximation, which is a
problem that has gained considerable interest in the literature in recent years.
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1. Introduction

The quantum adiabatic theorem (QAT) [1, 2] suggests that a physical system initialized in an

eigenstate =( )E t 0n (commonly the ground state) of a certain gapped time-dependent

Hamiltonian H(t), with an eigenvalue En, at time t remains in the same instantaneous eigenstate
(up to a multiplicative phase factor), provided that the Hamiltonian H(t) varies in a continuous
and sufficiently slow way. The adiabatic theorem was first proposed by Born and Fock at the
dawn of quantum mechanics [3], who were motivated by the idea of adiabatic invariants of
Ehrenfest [4]. Born and Fockʼs result is restricted to bounded Hamiltonians with discrete energy
levels, e.g. 1D harmonic oscillators; their result is not applicable to systems with a continuous
spectrum e.g. Hydrogen atom. This restriction was relaxed by Kato in 1950 [5], who found that
in the adiabatic limit, the time evolution of a time-dependent Hamiltonian is equivalent to a
geometric evolution. Katoʼs result is applicable to systems including Hydrogen atom, where the
ground state is unique and has a gap from the excited states that can have degeneracy. Later, the
requirement of the existence of a gap for proving the adiabatic theorem was found to be
unnecessary [6].

This intriguing physical property of quantum adiabaticity finds many interesting
applications, including but not limited to quantum field theory [7], geometric phase [8],
stimulated Raman adiabatic passage [9], energy level crossings in molecules [10, 11], adiabatic
quantum computation [12–18], quantum simulation (see e.g. the review [19]), and other
applications [20].

1.1. Quantitative adiabatic condition

Despite its long history, the study of the QAT is still a very active field of research. Many works
have been performed aiming to achieve a better understanding of the adiabatic theorem. In
particular, the problem of quantifying the slowness of adiabatic evolution has not been
completely solved. Traditionally [1, 2, 14, 21] the so-called (e.g. see [22]) quantitative adiabatic
condition (QAC) or simply quantitative condition (for all ≠m n):

˙

−
≪

( ) ( )
( ) ( )

E t E t

E t E t
1, (1)

m n

m n

was meant to quantify the slowness of H(t) (see appendix A for details on the definitions of the
Hamiltonian and eigenvectors). However, QAC was numerically shown to be not a good
indicator for revealing the fidelity of the final state [23]. Furthermore, it has been shown that
QAC is inconsistent with the QAT [24] and insufficient for maintaining the validity of the
adiabatic approximation [22], except for some special cases [25]. The arguments for showing
the inconsistency and insufficiency of QAC were constructed [22] from a comparison between
two systems, A and B, where A was evolved under a Hamiltonian ( )H ta . The Hamiltonian

= − †( ) ( ) ( ) ( )H t U t H t U t (2)b a a a

of system B is related to that of system A through a unitary transformation

∫= − ′ ′( )( ) ( )U t T i H t texp da

t

a0
that corresponds to the exact propagator of ( )H ta . It was

shown that both systems A and B satisfy the QAC, but at most one of them can fulfill the
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adiabatic approximation. This conclusion is consistent with the results performed in an NMR
experiment [26].

1.2. Related studies in the literature

Many studies (e.g. [27–33]) have been made trying to understand the inconsistency raised by
Marzlin and Sanders [24]. It was argued [29–33] that resonant transitions between energy levels
are responsible for the violations of the adiabatic theorem. A refined adiabatic condition has
been found [34], which takes into account the effects of resonant energy-level transitions.

On the other hand, the validity of the adiabatic theorem was analyzed from a perturbative-
expansion approach [35, 36], which provides a diagrammatic representation for adiabatic
dynamics and yields the quantitative condition (in equation (1)) as the first-order
approximation. It was argued [37] that the quantitative condition is insufficient for the
adiabatic approximation when the Hamiltonian varies rapidly but with a small amplitude.
Furthermore, generalizing QAC for open quantum systems [27, 38] and many-body systems
[39] have been achieved. Efforts for finding conditions that can replace QAC were made
[40–42].

Another line of research related to the adiabatic theorem is to estimate or bound the scaling
of the final-state fidelity. Under some general conditions for a gapped Hamiltonian, it was found

[43] that the transition probability scales as ( )O T1 2 for a total evolution time T. When the total

time is fixed, it was shown [44, 45] that both the minimum eigenvalue gap Δ and the length of

the traversed path ∫ ψ≡ ∂ ( )L r rdr0

1
, where r(t) is a time-varying parameter in the

Hamiltonian, are important.

2. Motivation

Instead of questioning the validity of the quantitative condition as an indicator for quantum
adiabaticity, we are interested in the question

‘Under what additional conditions would QAC become necessary?’.
The answer to this question has not been clear [46–48]. Our work is motivated by a recent

development achieved in [46], where QAC is argued to be necessary under certain additional

assumptions related to the adiabatic state ψ ( )tn
adi [8, 46], which is defined by attaching a

time-dependent phase factor (essentially the Berry phase [8]) βe ( )i tn to the energy eigenstate

( )E tn , i.e.,

ψ ≡ β( ) ( )t e E t , (3)( )
n
adi i t

n
n

where

∫ ∫β ≡ − + ˙( ) ( ) ( ) ( )t E x x i E x E x xd d . (4)
n

t

n

t

n n
0 0

The key result obtained in [46] is that (in our notations) the probability amplitude

ψ=( ) ( ) ( )c t E t tm m for the eigenstate ( )E tm at time t is given by the following expression:
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≈
˙

−
β( )

( ) ( )
( ) ( )

c t ie
E t E t

E t E t
, (5)( )

m
i t m n

m n

n

which leads to the conclusion that if the adiabatic approximation is valid, i.e., the probability

amplitude cm for all eigenstates ≠m n are small, ≪( )c t 1m , then the QAC (cf equation (1))

necessarily holds (for a summary of the definitions of various terms, see table (1)).
For comparison, a similar expression (in our notation) was given by Schiff [1] as

≈
˙

−
−−( )

( )
( )

( ) ( )

( ) ( )
c t

E t H E t

i E t E t
e 1 , (6)( )

m

m n

m n

i E E t
2

m n

=
˙

−
−−( )( ) ( )

( ) ( )
i

E t E t

E t E t
e 1 . (7)( )m n

m n

i E E tm n

The derivation from the first line to the second line is provided in appendix B. These two
expressions (in equations (5) and (7)) predict the validity of the adiabatic approximation when
the quantitative condition (cf equation (1)) is satisfied.
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Table 1. Summary of various terms and symbols.

Terms Meaning

Quantum adiabatic
theorem

This theorem states that for general physical systems
initialized in an eigenstate (e.g. ground state) with
respect to a time-dependent Hamiltonian, the transition
to other (instantaneous) eigenstate is small provided that
the variation of the Hamiltonian is sufficiently slow.

Quantitative adiabatic
condition (QAC) (or
quantitative
condition)

A condition traditionally considered as a necessary and
sufficient condition for the validity of the adiabatic
approximation (see equation (1)), i.e.,

≪
˙

− 1
( ) ( )
( ) ( )

E t E t

E t E t

m n

m n
.

Adiabatic
approximation

An approximation that replaces the exact state ψ ( )t
with the adiabatic state ψ ( )tn

adi , which leads to

≪( )c t 1m for all ≠m n.

Adiabatic state

ψ ( )tn
adi

Defined by ψ ≡ β( ) ( )t e E t( )
n
adi i t

n
n , where ( )E tn is

the instantaneous eigenstate (with eigenvalue ( )E tn ) of

the Hamiltonian H(t), and

∫ ∫β ≡ − + ˙( ) ( ) ( ) ( )t E x x i E x E x xd d
n

t

n

t

n n0 0
(see

equation (3)).
Difference vector

( )D t
Defined by ψ ψ≡ −( ) ( ) ( )D t t t

n
adi , the difference

between the exact time-evolved state ψ ( )t and the

adiabatic state ψ ( )tn
adi (see equation (8))



However, the result in [46] was not uncontroversial [47, 48]. Zhao and Wu [47] argued
that the contribution of the missing term in the result in [46] is underestimated. Comparat [48]
pointed out that the non-rigorous use of the approximation sign ‘≈’ in [46] leads to an obscure
meaning for quantum adiabaticity. This problem is avoided in our derivation. Tongʼs reply [49]
emphasized the connection with the adiabatic state in his result, but did not resolve the
oppositions completely.

3. Summary of results

We present new results that aim to

1. Settle the existing controversy in the literature [46–49] by deriving an exact expression (cf
equation (9)) for the transition amplitude ( )c tm , which contains correction terms missing in
the previous result (shown in equation (5)), and

2. explore the properties of the correction term (cf equation (22)) for equation (5), which
helps us understand better the connection between QAC and the adiabatic approximation.

Our approach can be formulated conveniently with the use of the difference vector ( )D t ,

which is defined by the difference between the exact state ψ ( )t and the adiabatic states

ψ ( )tn
adi (cf equation (3)):

ψ ψ≡ −( ) ( ) ( )D t t t . (8)
n
adi

3.1. Our main result and its consequences

Our main result contains an exact expression for ( )c tm , namely (compare with equation (5))

=
˙

−
−

−
+

˙

−
β

≡ ≡⎡⎣ ⎤⎦
     

( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
c t ie

E t E t

E t E t
E t

E t D t

E t E t
i

E t D t

E t E t
, (9)( )

( ) ( )

m
i t m n

m n

Q t

n

m

m n

m

m n

R tResult in 46 Correction terms

n

m m

which reduces to the result in [46] (cf equation (5)) when the magnitude ( )R tm of the

correction term is small; for example when both =( )D t 0 and ˙ =( )D t 0. These two

conditions correspond to the key assumptions made in [46]. Furthermore, our result in equation
(9) also indicates a condition (cf equation (25)) more general than the result in [46].

The exact expression in equation (9) implies many new results, which are listed as follows:

• The result of [46] was obtained by assuming that both ( )D t and ˙ ( )D t can be ignored,

i.e., ≈( )D t 0 and ˙ ≈( )D t 0. However [46] did not tell us how small these terms

should be. Our expression gives the quantitative criteria, namely:
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≪
− ˙ ≪ −( ) ( ) ( )
( ) ( ) ( ) ( )D t

E t E t

E t
D t E t E tand . (10)m n

n
m n

• Furthermore, from our expression, we can obtain the same conclusion as in [46] by
requiring a more general condition

˙ − ≪ −( ) ( ) ( ) ( ) ( )i D t E t D t E t E t . (11)n m n

• One of the criticisms on the result of [46] was that one can find a counter example that
violates the quantitative condition but fulfills the adiabatic condition [48]. Our expression
indicates that this situation is possible when our correction term cancels with the first term
in equation (9).

• In the limiting case where the transition amplitude equals exactly the right hand side of
equation (5), i.e.,

=
˙

−
β( )

( ) ( )
( ) ( )

c t ie
E t E t

E t E t
, (12)( )

m
i t m n

m n

n

we found that this condition is equivalent to

˙ =( ) ( ) ( )i D t E t D t . (13)n

• We also found that the condition of ˙ =( )D t 0 implies that both =( )c t 0m and

=( )D t 0. In other words, for any time-evolving quantum state ψ ( )t , if

ψ ψ˙ = ˙( ) ( )t t
n
adi , then this quantum state must equal ψ ( )tn

adi as well, i.e.,

ψ ψ=( ) ( )t t
n
adi .

Finally, we note that the fact that our main expression is an exact result eliminates
unnecessary debate over the correctness of applying approximation, as happened [47, 50] for
the results of [24] and [46].

3.2. Organization of the report

Before we go into the details, we emphasize that the goal of this work is not to look for a new
condition that can take the role of QAC for adiabatic approximation. Indeed, the QAC is a
convenient a priori condition for estimating the validity of the adiabatic approximation,
although the range of the applicability is not clear. Instead, as a posteriori condition, we aim to
offer a better picture that helps understand why the QAC fails to reveal the adiabatic
approximation—a problem that has gained considerable interest in the literature in recent years.
Although some mathematical steps in our derivation may look tricky, only materials in
elementary quantum mechanics are involved.

The rest of this report is organized as follows:

In section ‘Derivation of the main result’: we provide a detailed step-by-step guide for the
derivation of our main result in equation (9).
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In section ‘Discussion on the main result’: we focus on the properties of the first term and
the corrections terms in equation (9). The necessity of the quantitative condition is
discussed. The implications of our expression are also explored.

In section ‘Illustrative example’: here we consider our results based on the Schwingerʼs
spin-1/2 Hamiltonian. This model is well-studied, and is one of the few time-dependent
models that are exactly solvable, providing us a good testing ground for illustrating our
findings. Furthermore, numerical simulations are performed for this model. The most
interesting case here is probably the result in figure 1(d), where the quantitative condition is
violated but the adiabatic approximation is still valid. This case shows that the adiabatic
condition is not necessary for the adiabatic approximation in general.

4. Derivation of the main result

We are now ready to derive the exact expression in equation (9). To this end, consider for some
≠m n the following expression:

−⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )E t i

t
E t D t

d
d

, (14)m n

which can be separated into two different terms, i.e.,

ψ ψ− − −

= − = ˙β

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

     
( ) ( ) ( ) ( ) ( ) ( )E t i

t
E t t E t i

t
E t t

d
d

d
d

, (15)

( )( ) ( ) ( ) ( ) ( )( )

m n

E t E t c t

m n n
adi

ie E t E tm n m
i n t

m n

from the definition (cf equation (8)) of the difference vector ( )D t . These two terms can be

simplified as follows:

First term the first term is equal to

−( )( ) ( ) ( )E t E t c t , (16)m n m

which comes from the Schrödinger equation that makes

ψ ψ˙ =( ) ( ) ( ) ( ) ( )i E t t E t H t t , (17)m m

followed by the Hermitian property, =† ( ) ( )H t H t , of H(t) that gives

=( ) ( ) ( ) ( )E t H t E t E t , (18)m m m

and the definition of the transition amplitude ψ=( ) ( ) ( )c t E t tm m .

Second term note that we have the orthogonal condition where

ψ = =( ) ( ) ( ) ( )E t t E t E t 0 (19)m n
adi

m n

for all eigenstates ≠m n. The second term therefore contains only the first part

ψ( ) ( )i E t tm t n
adid

d
, which is equal to ˙β ( ) ( )ie E t E t( )i t

m n
n from the definition (cf equation

(3)) of the adiabatic state ψ ( )tn
adi .
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In summary, we now have the following relation:

− = − − ˙β⎜ ⎟⎛
⎝

⎞
⎠ ( )E i

t
E D E E c ie E E

d
d

. (20)m n m n m
i

m n
n

Next, through a simple rearrangement of the terms in this relation, we obtained the exact
expression of ( )c tm advertised earlier in equation (9).
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Figure 1. Time variations of the amplitude ( ) ( )c t Q t,2 2 , and ( )R t2 of the terms in

equation (9). (a)–(c) correspond to the cases with slow (ω ω = 0.10 ) driving fields.
(d)–(f) are showing the cases with fast (ω ω = 100 ) driving fields.



5. Discussion on the main result

The first term,

≡
˙

−
β( )

( ) ( )
( ) ( )

Q t ie
E t E t

E t E t
, (21)( )

m
i t m n

m n

n

on the right hand side of equation (9) is closely related to the QAC (cf equation (1)) and was
obtained in [46], which asserted that the QAC (cf equation (1)) is necessary subject to the

condition that both ‘ ≈( )D t 0’ and ‘ ˙ ≈( )D t 0’. However, our result in equation (9) not

only quantifies (cf equation (23)) the size of ( )D t and Ḋ for the validity of QAC (which is

needed to justify the result in [46]), but also reveals a more general condition (cf equation (25))
that can lead to the same conclusion for the validity of the QAC.

The second term,

≡ −
−

+
˙

−
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

R t E t
E t D t

E t E t
i

E t D t

E t E t
, (22)m n

m

m n

m

m n

represents the correction to the result obtained in [46]. Remarkably, provided that the absolute

value of ( )R tm is small compared with unity, i.e., ≪( )R t 1m , the QAC in equation (1) is

necessary for the validity of the adiabatic approximation.

5.1. On the necessity of QAC

Having derived our main expression shown in equation (9), we are now ready to explore further
the consequences of this expression. Here we consider the conditions that make the QAC (cf
equation (1)) become necessary when the adiabatic approximation is valid, i.e., ≪c 1m for all

≠m n. We shall answer the following question: ‘under what conditions does the correction
term ( )R tm in equation (9) vanish?’

First of all, the correction term contains both ( )D t and ˙ ( )D t . Clearly, the QAC is

necessary for the adiabatic approximation, provided that the vector norms (or the projection to

( )E tm ) of both ( )D t and ˙ ( )D t are small, compared with −( )( ) ( ) ( )E t E t E tm n n and

−( ) ( )E t E tm n respectively, i.e.,

≪
− ˙ ≪ −D

E E

E
D E E& . (23)m n

n
m n

In fact, in [46] it was explicitly assumed that both ‘ ≈( )D t 0’ and ‘ ˙ ≈( )D t 0’ in

order to obtain the result in equation (5) (see equations (7) and (9) of [46]). Here the conditions

in equation (23) provide a quantitative meaning about the approximations ‘ ≈( )D t 0’ and ‘

˙ ≈( )D t 0’ employed in [46], and help clarify the ambiguity that caused the controversy

[47, 48].
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5.2. Generalization

Of course, the necessity of QAC (cf equation (5)) is valid as long as the correction term ( )R tm

becomes sufficiently small. Requiring both ‘ ≈( )D t 0’ and ‘ ˙ ≈( )D t 0’ as in [46] is just

one possibility. Generally, from equation (22), it is sufficient to require the vector norm of the
linear combination

˙ −( ) ( ) ( )i D t E t D t , (24)n

to be small compared with the absolute value of the energy gap −( ) ( )E t E tm n , i.e.,

˙ − ≪ −( ) ( ) ( ) ( ) ( )i D t E t D t E t E t , (25)n m n

which covers more possibilities other than just requiring ‘ ≈( )D t 0’ and ‘ ˙ ≈( )D t 0’. In

other words, as long as the condition in equation (25) holds, the QAC (cf equation (1)) implies

the adiabatic approximation where ≪( )c t 1m for all ≠m n, and vice versa.

5.3. Properties of the correction term

In the following, we shall show that the condition requiring the correction term to vanish, i.e.,
=( )R t 0m , implies the following result: for each ≠m n, the probability amplitude

ψ=( ) ( ) ( )c t E t tm m is given by the following expression (cf equation (5)):

=
˙

−
β( )

( ) ( )
( ) ( )

c t ie
E t E t

E t E t
, (26)( )

m
i t m n

m n

n

if and only if

˙ = −( ) ( )D t iE D t . (27)n

In other words, the probability amplitude ( )c tm is given exactly by the expression in equation
(5), with the approximation sign changed to the equal sign in equation (26)). Furthermore, from
equation (9), it is equivalent to show the following relationship:

= ⇔ ˙ =( ) ( ) ( ) ( )R t i D t E t D t0 . (28)m n

Proof. The proof for the backward direction, i.e.,

˙ = ⇒ =( ) ( ) ( ) ( )i D t E t D t R t 0, (29)n m

is trivial from the definition of ( )R tm (cf equation (22)). Therefore, we shall focus on the
forward direction, i.e.,

= ⇒ ˙ =( ) ( ) ( ) ( )R t i D t E t D t0 , (30)m n

of the proof.
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Step 1 : From the definition of ( )R tm (cf equation (22)), for each ≠m n, we have

− ˙ =( )( ) ( ) ( ) ( )E t E t D t i D t 0, (31)m n

which implies that the vector − ˙( ) ( ) ( )E t D t i D tn is orthogonal to all the basis vectors

( )E tm . In other words, this vector belongs to the subspace spanned by the vector ( )E tn only.

Step 2 : Consequently, we can write

λ− ˙ =( ) ( ) ( ) ( )E t D t i D t E t , (32)n n

for some complex number λ. Since the eigenstate is assumed to be normalized

=( ) ( )E t E t 1,n n we can also write

λ− ˙ =( ) ( ) ( ) ( ) ( )E t E t D t i E t D t . (33)n n n

Next, we shall show that λ can only be zero, i.e., λ = 0.

Step 3 : Let us consider from the definition of the difference vector ( )D t (cf equation

(8)), which gives

ψ ψ˙ = ˙ − ˙
ψ=− =−

=−

β
     
  

( ) ( ) ( ) ( ) ( ) ( )E t D t E t t E t t . (34)

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

n n

iE t E t t

n n
adi

ie E t

iE t E t D t

n n
i n t

n

n n

From the Schrödinger equation,

ψ ψ˙ = −( ) ( ) ( ) ( ) ( )E t t i E t H t t , (35)n n

and from the Hermitian property of H(t), the first term on the right of equation (34) becomes

ψ ψ˙ = −( ) ( ) ( ) ( ) ( )E t t iE t E t t . (36)n n n

On the other hand, from the definition of the adiabatic state ψ ( )tn
adi in equation (3), we

have

ψ̇ = ˙ − + ˙β β ( )( ) ( ) ( ) ( ) ( ) ( )t e E t e iE t E t E t E t , (37)( ) ( )
n
adi i t

n
i t

n n n n
n n

which implies that the second term on the right of equation (34) becomes

ψ̇ = − β( ) ( ) ( )E t t ie E t . (38)( )
n n

adi i t
n

n

Combing these results, we finally have

˙ = −( ) ( ) ( ) ( ) ( )E t D t iE t E t D t (39)n n n

(note that ψ= − β( ) ( ) ( ) ( )E t D t E t t e ( )
n n

i tn from the definition of ( )D t ). This means

that λ is exactly equal to zero, λ = 0, which further implies that

˙ =( ) ( ) ( )i D t E t D t , (40)n

and completes the proof. □
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5.4. Consequences of _D (t )
�� � ¼ 0

We have shown that whenever we set both =( )D t 0 and ˙ =( )D t 0 (which are also a

solution to equation (27)), then we can recover the result in [46] (cf equation (5) and equation

(26)). Here we show a stronger result, namely the condition of ˙ =( )D t 0 implies that the

system can only be in the eigenstate (ground state) ( )E tn i.e., all =c 0m for ≠m n.

More precisely, for all ≠m n and ≠( )E t 0i ,

˙ = ⇒ = =( ) ( ) ( )D t D t c t0 0 & 0. (41)m

Proof. First of all, from equation (8), we can write

= +
˙

β( )
( ) ( )

( )
c t e

i E t D t

E t
. (42)( )

n
i t n

n

n

Now setting ˙ =( )D t 0 implies

ψ= = β( ) ( ) ( )c t E t t e . (43)( )
n n

i tn

Since the time-evolving state is normalized, i.e., ψ =( )t 1, it means that all =c 0m for

≠m n, and

ψ ψ= ≡β( ) ( ) ( )t e E t t (44)( )i t
n n

adin

(i.e., =( )D t 0). □

From equation (9), these results also imply that ˙ =( ) ( )E t E t 0m n for ≠m n whenever

˙ =( )D t 0.

6. Illustrative example

Here we explore the behavior of various terms in our main result (cf equation (9)), with a simple
but illustrative example, namely Schwingerʼs spin-half Hamiltonian [51],

σ
ω

σ θ ω σ θ ω σ θ= ⃗ · ⃗ ≡ + +
 ( )( ) ( )H t B t t t
2

sin cos sin sin cos , (45)x y z
0

or in the matrix form:

ω θ θ
θ θ

=
−

ω

ω

−⎛
⎝⎜

⎞
⎠⎟

( )H t e
e2

cos sin
sin cos

. (46)S

i t

i t

0

This Hamiltonian describes a time-dependent field (with a frequency ω) rotating around the z-
axis (at an angle θ), where the field strength is characterized by ω0. The exact solution can be
found analytically (e.g. see [32, 46, 51]), which is also summarized in table 2.
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6.1. Calculations of Q2 (t ) and R2 (t )

The quantity ( )Q t2 ,

≡
˙

−
β( )

( ) ( )
( ) ( )

Q t ie
E t E t

E t E t
, (47)( )i t

2

2 1

2 1

1

is the two-level case (cf equation (21)) of the first term on the right hand side of equation (9).
First of all, using the results listed in table 2, we have

ω θ˙ =( ) ( )E t E t i
2

cos . (48)1 1

This gives the expression for β ( )t1
:

β
ω ω θ= −( )t t t

2 2
cos . (49)

1
0

Similarly, the cross-term is

ω θ˙ = −( ) ( )E t E t
i

2
sin . (50)2 1

Therefore, we have an exact expression for ( )Q t2 :

ω ω θ= β( ) ( )Q t e 2 sin . (51)( )i t
2 0

1

On the other hand, the quantity ( )R t2 is the two-level case of the correction to the result

obtained in [46]. It can be calculated with the knowledge of ( )c t2 and ( )Q t2 , i.e.,

= −( ) ( ) ( )R t c t Q t2 2 2 , which is

ω θ ω ω ω= ˜ ˜ − β⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )R t i

t
esin sin

2
2 . (52)( )i t

2 0
1
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Table 2. Schwingerʼs spin-half Hamiltonian.

Terms Expression

Hamiltonian: σ ω σ ω θ σ θ= + +ω ( )( )( )H t t tcos sin sin cosS x y z2
0

Eigenvalues: ω= −( )E t 21 0 and ω=( )E t 22 0

Eigenvectors: θ θ= −ω ω−( )( ) ( ) ( )E t e esin 2 , cos 2i t i t T

1
2 2 ,

θ θ= ω ω−( )( ) ( ) ( )E t e ecos 2 , sin 2i t i t T

2
2 2 .

Initial state: ψ = = =( ) ( )t E t0 01

Time evolution: ψ = +( ) ( ) ( ) ( )t c t E t c E t1 1 2 2 , where

ω ω ω ω θ ω= ˜ + ˜ − ˜( )( ) ( ) ( )c t t i tcos 2 sin 2 cos1 0 ,

ω ω θ ω= ˜ ˜( ) ( ) ( )c t i tsin sin 22 ,

ω ω ω ω ω θ˜ = + − 2 cos0
2 2

0 .



6.2. Numerical results

The time variations of the amplitude ( )c t2 , ( )Q t2 , and ( )R t2 are shown in figure 1 for cases

subject to slow (ω ω = 0.10 ) and fast (ω ω = 100 ) driving fields. With slow driving fields

(figures 1(a)–(c)), the system stays close ( ≪c 12 ) to the instantaneous ground state ( )E t1 of

the total Hamiltonian ( )H tS as expected, independent of the value of θ. For fast driving fields
(figures 1(d)–(f)), the system can stay close to the instantaneous ground state only when θ is
small. Particularly, the case in figure 1(d) is related to the debate [47–49] on the result of [46],
where it was suggested [48] that one can have the adiabatic approximation ( ≪c 12 for all

times) without QAC (i.e., ( )Q t2 is not small). Our result clearly indicates that in this case, the

( )R t2 term cancels the ( )Q t2 term to make the ( )c t2 term small, as expected from equation (9).

In other words, we have identified a case where the adiabatic approximation holds, but ( )Q t2 is
not small, which means that QAC is not necessary.

7. Conclusion

In summary, we have presented an exact expression for the probability amplitude (cf
equation (9)) that identifies the missing corrections of the previous result in the literature [46].
From this expression, we are able to quantify the condition (cf equation (27)) for the traditional
QAC to become a valid necessary condition for the adiabatic approximation. As an illustrating
example, a numerical analysis on Schwingerʼs Hamiltonian is performed to demonstrate the role
of the correction term for maintaining quantum adiabaticity. These results provide a
complementary understanding of the reasons for the breakdown of QAC in various scenarios.

In particular, the fact that we did not apply any approximation to our main result gives us a
transparent picture for settling a debate [46–49], which involves the question ‘under what
additional conditions would QAC become necessary?’. Our result provides a quantitative
answer to this question, namely, as long as the vector norms of both D and Ḋ are also
sufficiently small (cf equation (10)), which were approximated to be zero in Tongʼs paper [46].
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Appendix A. Hamiltonian and eigenvectors

We consider a time-dependent Hamiltonian H(t) which drives the evolution of an N-
dimensional quantum system. For an integer ∈ …{ }i N1, 2, 3, , , let the real number ( )E ti and
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the vector ( )E ti represent the instantaneous eigenvalues and orthonormal eigenstates of the

Hamiltonian H(t) respectively, i.e.,

=( ) ( ) ( ) ( )H t E t E t E t . (A.1)i i i

As usual, the evolution of the quantum state ψ ( )t at any time t is governed by the

Schrödinger equation,

ψ ψ˙ =( ) ( ) ( )i t H t t . (A.2)

Here we assume that the system is initialized at t = 0 in one of the eigenstates, i.e.,

ψ =( ) ( )E0 0 , (A.3)n

including the ground state. Furthermore, the time-dependent state ψ ( )t can be expanded by

the completely orthogonal set { }( )E ti of the energy eigenbasis as

∑ψ =( ) ( ) ( )t c t E t , (A.4)
i

i i

where ψ=( ) ( ) ( )c t E t ti i is the expansion coefficient with norm less than one, i.e.,

⩽( )c t 1i , since the whole quantum state is assumed to be normalized, i.e., ψ =( )t 1.

Appendix B. Transformation of Schiffʼs expression

In the book of Schiff [1], the following expression (in our notation) was given:

≈
˙

−
−−( )

( )
( )

( ) ( )
( ) ( )

c t
E t H E t

i E t E t
e 1 . (B.1)( )

m

m n

m n

i E E t
2

m n

We are going to transform it to another form.
First, note that

=( ) ( )E t E t 0 (B.2)m n

for all ≠m n. Therefore, the result

=( ) ( )
t

E t E t
d
d

0 (B.3)m n

implies that

˙ = − ˙( ) ( ) ( ) ( )E t E t E t E t . (B.4)m n m n

Second, since it is also true that

=( ) ( )E t H E t 0 (B.5)m n
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for all ≠m n, we have

=( ) ( ) ( )
t

E t H t E t
d
d

0, (B.6)m n

which implies that

˙ + ˙ + ˙ =( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E t H t E t E t H E t E t H t E t 0, (B.7)m n m n m n

and hence

˙ + ˙ + ˙ =( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E t E t E t E t H E t E t E t E t 0. (B.8)n m n m n m m n

Combining these results, we have

˙

−
= − ˙( ) ( )

( ) ( ) ( ) ( )
E t H E t

E t E t
E t E t , (B.9)

m n

m n
m n

which changes Schiffʼs expression as

≈
˙

−
−−( )( )

( ) ( )
( ) ( )

c t i
E t E t

E t E t
e 1 . (B.10)( )

m

m n

m n

i E E tm n
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