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ABSTRACT
Strategic behaviour from sellers on e-commerce websites, such as
faking transactions and manipulating the recommendation scores
through artificial reviews, have been among the most notorious
obstacles that prevent websites from maximizing the efficiency of
their recommendations. Previous approaches have focused almost
exclusively on machine learning-related techniques to detect and
penalize such behaviour. In this paper, we tackle the problem from
a different perspective, using the approach of the field of mecha-
nism design. We put forward a game model tailored for the setting
at hand and aim to construct truthful mechanisms, i.e. mechanisms
that do not provide incentives for dishonest reputation-augmenting
actions, that guarantee good recommendations in the worst-case.
For the setting with two agents, we propose a truthful mechanism
that is optimal in terms of social efficiency. For the general case
of m agents, we prove both lower and upper bound results on the
effciency of truthful mechanisms and propose truthful mechanisms
that yield significantly better results, when compared to an existing
mechanism from a leading e-commerce site on real data.

CCS Concepts
•Information systems → Recommender systems; •Theory of
computation→Algorithmic mechanism design; •Applied com-
puting→ E-commerce infrastructure;

Keywords
Mechanism design; Reputation systems; Approximation

1. INTRODUCTION
When a buyer signs in an e-commerce website (e.g., Amazon

or eBay or Taobao), the website returns a list of recommended
product-seller pairs that the buyer might be interested in. This rec-
ommendation is usually personalized, i.e. it is based on several fac-
tors related to the buyer, such as the buyer’s demographic and past
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browsing or purchase history. The appropriate choice of product-
seller pair to be suggested to a buyer of certain characteristics is
selected by a ranking algorithm, which can be thought of as a sys-
tematic way to allocate the whole amount of buyer impressions. It
is in the platform’s best interest to allocate the buyer impressions in
a way that yields high click-through rates (CTRs) and high click-
conversion rates (CVRs), typically by giving better display slots
(i.e., higher rankings on the webpage) to sellers with higher rep-
utation, more historical transactions or those that best match the
buyer’s characteristics. As a result, all these websites incorporate
a reputation system (e.g. see [6]) in their designs, that records
the sellers’ reputation and historical transactions and rewards those
with higher scores via their ranking algorithms. We will refer to
such scores as recommendation scores. A well-designed reputation
system encourages sellers to increase their quality of service, and
in turn attracts more businesses [18].

It takes time and effort for sellers to build up their reputation; in
Amazon for example, some trusted, well-known sellers have accu-
mulated more than one million reviews with positive scores as high
as 97%. As a result, as it is also observed often in the industry,
dishonest sellers may take a “shortcut” and hire buyers to conduct
fake transactions with them as a fast way to accumulate positive
feedback and increase their reputation scores and number of histor-
ical transactions. The severity of the problem is also highlighted by
Amazon’s recent lawsuit against sellers that were allegedly using
fake reviews to boost their profits.

In fact, there has even been an emerging underground industry
that provides sophisticated solutions for the sellers who want to
quickly boost their reputations. Xu et al. [20] refer to such enter-
prises as seller-reputation-escalation (SRE) markets.

Current approaches, which are reflected in most of the existing
literature [11, 4, 21] aim to tackle the problem by training machine
learning predictive models using features of the review texts, to de-
tect and punish fake reviews. However, Ott et al. [15] show that
such deceptive statements are not easily identified either by learn-
ing algorithms or even by human readers. For example, Amazon
recently sued more than one thousand sellers for conducting fake
transactions, each of which was involved in several purchases; it is
easily conceivable that this is only a small fraction of the number of
sellers that employ such reputation-augmenting strategies. Also, in
the current design of Taobao, the world’s largest e-commerce web-
site in terms of gross volume, according to a third party estimation
(which is reinforced by inference from data) even after applying
such a manipulation-detection engine, there is still more than 10%
of the total Taobao orders that are fake. Finally, such detection
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methods also suffer from the possibility of penalizing honest sell-
ers, decreasing their overall experience of using the website as a
platform for their transactions.

A mechanism design approach
In this paper, we aim to tackle this problem from a different per-
spective, using the tools from the fields of game theory and more
specifically, mechanism design. Game theory is predictive in the
sense that it is concerned with what the selfish or rational actions
of the people involved in a system will lead to. For our problem,
the participants or agents are the sellers who aim to boost their rec-
ommendation scores. The field of mechanism design, which has
its roots in the pioneering works of Maskin [9] and Myerson [13]
is preventive, in the sense that the rules of the system are designed
appropriately, in such a way that selfish behaviour is either com-
pletely discouraged or at the very least, it is handled carefully and
without severe consequences.

We model the problem described above as a variant of the re-
source allocation setting [Chapters 10,11 from [17]] where the de-
signer (i.e., the platform) has to allocate one unit of a single di-
visible good. This unit can be interpreted as the number of total
impressions of buyers with certain characteristics that have to be
allocated among sellers,1 or the probability that a seller is recom-
mended to a single buyer when the buyer visits the website, or even
the fraction of time for which the seller will be suggested to the
appropriate buyers over a specified period of time. For example,
given the first interpretation, if a seller receives an allocation of
1/3, it means that he will receive 1/3 of the total recommendation
slots for buyers of a certain kind.

In traditional mechanism design settings, each agent has an as-
sociated type, which conveys information about the preferences of
the agent and is reported to the mechanism designer, which then
runs the allocation rule or the mechanism with the types as inputs.
The type does not necessarily contain the true preferences of the
agent; if a rational agent can force a better outcome by feigning
a fake reported preference, he will do so. Central to the field of
mechanism design is the notion of truthfulness, i.e. a guarantee that
under any circumstances and regardless of the choices of the other
participants, an agent will never have an incentive to report any-
thing but his true type. The preferences of the agents are measured
through utility functions [20] and a truthful mechanism ensures that
an agent receives the highest possible utility by telling the truth. In
fact, ensured by the well-known revelation principle [12], it is with-
out loss of generality to consider only truthful mechanisms.2 This
is also the reason why we can restrict attention to truthful mecha-
nism design throughout the paper.

Our setting is slightly different from the traditional model, in the
sense that the types of the agents are the recommendation scores,
which are maintained by the system and are established through the
process of carrying out transactions and obtaining positive feed-
back. One key feature of our model is the cost of manipulation for
the sellers. Each seller can “report” any possible type, however,
he suffers from a cost by misreporting, which is the cost of hiring
people to write fake reviews or using services like the SRE mar-

1We model the total number of impressions as a continuous unit
rather than an integer. Considering that in most e-commerce web-
sites, this number is rather large, this is not an unrealistic assump-
tion; in fact our guarantees will hold approximately with very small
approximation error for any large number of discrete impressions.
2The revelation principle states that any objective implementable
in dominant strategies can be implemented by a truthful mecha-
nism. Other commonly used names for truthfulness are incentive-
compatibility or staregy-proofness.

ket mentioned earlier or even the probability of getting caught and
being penalized. We model the cost function to be explicitly cor-
related with the distance of manipulation (reported type minus the
true type) as well as the current value of the true type. It is natural
to assume that the higher one’s current reputation, the harder the
manipulation, especially since it involves the risk of detection; be-
ing severely penalized or being removed from the market might be
catastrophic for a highly-respected seller.

A seller’s utility is the difference between how much he values
the current allocation and his cost if he chooses to manipulate. We
note here that while our utility functions are quasi-linear in the cost,
they are different from standard quasi-linear utilities in most of the
work in mechanism design; the payment function in the standard
quasi-linear settings is imposed exogenously by the mechanism in
order to produce good incentives (like the well-known VCG mech-
anism [19, 3, 1]) whereas here, the cost function is associated with
the manipulation only and the allocating mechanisms do not use
payments. In that sense, we can view our approach as following
the agenta of approximate mechanism design without money put
forward by Procaccia and Tennenholtz [16].

Mechanism design approaches have been employed in the past
in recommendation systems, but most of them [5, 7, 8, 2] are
concerned with how to design reputation systems that incentivize
buyers to report honest and constructive feedbacks rather than con-
sidering sellers as the selfish participants. As a notable exception,
Zhang et al. [22] consider both strategic buyers and sellers, but
their model incorporates a social network-type graph and reputa-
tion systems for both buyers and sellers and is, in most regards,
quite different from ours.

Our results
Our goal will be to design truthful mechanisms, i.e. mechanisms
that do not encourage sellers to engage is reputation-altering ma-
nipulations and at the same time maximize the socially desired out-
come, i.e. make sure that buyers receive recommendations for sell-
ers with high recommendation scores. Following the usual mech-
anism design terminology, we will refer to our objective as the so-
cial welfare.3 We will measure the performance of truthful mecha-
nism by its efficiency, i.e. worst case ratio between the social wel-
fare achieved by the mechanism over the optimal social welfare,
achieved by recommending the sellers with the highest recommen-
dation scores, ignoring potential manipulations and strategic be-
haviour.

Our results can be summarized as follows. For the case of two
sellers, we design truthful mechanisms that are optimal among all
such mechanisms in terms of efficiency for both regular cost func-
tions and general cost functions. For the general case of many sell-
ers, we design two truthful mechanisms. We provide a worst-case
guarantee for the efficiency of the first one together with a general
upper bound on the efficiency of any truthful mechanism, estab-
lishing that under some assumptions on the valuation and cost func-
tions, the efficiency of the mechanism is quite close to the efficiency
of the best truthful mechanism. We evaluate both mechanisms on
real-life data from Taobao and show that our mechanisms signifi-
cantly outperform the mechanism that Taobao currently uses. We
also observe that the performence of our two mechanisms scales
differently with the number of sellers and the choices for the cost

3We note here that usually the social welfare refers to the aggre-
gate happiness of the participanting agents. In our case however,
although the strategic entities are the sellers, the real welfare objec-
tive is the aggregate satisfaction of the buyers which is also aligned
with the interests of the e-commerce platform.
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and valuation functions, showing that both are useful, for different
input parameters and sizes.

2. THE MODEL
In our model, there are m sellers and one divisible unit of im-

pression or item to allocate between them. Each seller is associ-
ated with a non-negative recommendation score vi which is a func-
tion of a sellers reputation and propriety or fitness with respect to
a buyer of certain characteristics. Let ri denote the recorded rec-
ommendation score of seller i, i.e. the recommendation score that
is stored in the platform’s database for this seller.4 Note that the
recorded recommendation score might be different from the real,
inherent recommendation score of a seller, since the former might
have been acquired through fake transactions. Let r denote the
vector of recorded recommendation scores of all sellers and let r−i

denote the vector of recorded scores of all sellers besides seller i.
We will call r a recommendation score profile. The definitions for
the vectors of real recommendation scores are similar.

A mechanism f is a function that inputs a recorded score pro-
file r, and outputs an allocation q, i.e. a mapping from r to q =
(q1, ..., qm), where qi(r) denotes the fraction of the item seller i
gets, which as mentioned in the introduction, can have different
interpretations. Clearly, an allocation f is feasible if and only if
∀r∀i, qi(r) ≥ 0, and ∀r,

∑m
i=1 qi(r) ≤ 1. Note that any feasible

allocation of sellers to ad slots can be realized by an appropriate
convex combination of permutations of sellers to those slots.

Each seller i has an intrinsic positive valuation g(vi) towards
receiving the item that denotes how happy the seller would be if he
were allocated the whole unit of impression according to his real
recommendation score. In general, we model the valuation g to be
a positive function that maps recommendation scores to valuations;
this allows us to consider cases where the value is positively or
negatively correlated with the recommendation score. A natural
choice would be to set g(vi) = α for some constant α, which
implies that all sellers would be equally happy if they received the
whole unit of buyer impression.5

In order to feign a fake recommendation score, the seller has to
incur a cost for manipulating.

DEFINITION 1. The cost for a seller with (real) recommenda-
tion score v to obtain a recorded score r is c(v, r) = |r − v|h(v),
where h(v) is a positive continuous increasing function.

Intuitively, the higher a seller’s recommendation score, the more
costly the manipulation. The form of the cost function also as-
sumes that it linearly depends on the extent to which a seller can
increase his recorded score. We will sometimes say that a seller re-
ports a recommendation score of r, but it should be understood that
he obtains that score through costly manipulations, according to the
cost function defined above. Our model assumes that the shape of
the cost functions is public information; this is not an unrealistic
assumption since the cost of hiring fake reviewers or using SRE
services can be calculated or estimated to a high degree. Further-
more it is not hard to see that without any knowledge of the cost
4Or more precisely, the vector of scores, since each score depends
on a group of buyers of certain characteristics.
5In our model, it is implicitly assumed that sellers are indifferent
between different advertisement slots on a website. We discuss
the added difficulties introduced when considering different values
g(vi)j for different slots j when it comes to achieving truthful-
ness in conjuction with efficiency in Section 6; besides, there are
several websites (e.g. some major flight-comparing websites) that
only have one single advertisement slot or several slots that are not
favourable over others.

function, we can not hope to do much in terms of truthfulness. We
now definte the utility6 of a seller.

DEFINITION 2. The utility of seller i with (real) recommenda-
tion score vi when the profile of recorded recommendation scores
is r is defined as ui(vi, r) = qi(r)g(vi)− c(vi, ri).

As we mentioned earlier, it is without loss of generality to restrict
attention to truthful mechanisms.

DEFINITION 3. A mechanism f is truthful if for each seller i
and for all recorded scores of all other sellers r−i and for each re-
port ri of seller i it holds that ui(vi, (vi, r−i)) ≥ ui(vi, (ri, r−i)),
i.e. the seller does not have any incentives to try to fake his real
recommendation score.

By the definition above, when analyzing a truthful mechanism,
we will use v to denote the input to the mechanism, since the
recorded scores and the real scores are the same.

Ideally, one would be interested in finding a truthful allocation
mechanism which maximizes the social welfare (among all such
mechanisms) for every instance of the problem. There are several
obstacles to doing this. First, the space of available scores (the
type space) is continuous and hence there are infinitely many in-
put instances that one would have to consider. Secondly, if we
assume that the recommendation scores come from some discrete
set, then one idea would be to adopt a linear programming-based
approach where the truthfulness constraint of Definition 3 would
be a constraint of the linear program. However, such an approach
would require us to write one constraint for each possible pair of
scores, resulting in a number of constraints not manageable even
for a relatively small number of recommendation scores. Given
that in platforms with many sellers, we need to maintain many dif-
ferent possible scores in order to distinguish between them, it does
not seem that such an approach would work.

Instead, we will aim to design mechanisms that perform well
with respect to all possible inputs. As we will see, the performance
of our mechanisms will be limited by the worst-case instances but
the experimental evaluation suggests that they perform much better
on typical inputs. We define the efficiency of a mechanism f as
the ratio between its social welfare and the algorithmic optimum
(i.e, the best welfare one can achieve without imposing truthfulness
constraints) in the worst case, i.e.,

E(f) = min
v>0

∑m
i=1 qi(v)vi

v(1)
,

We remark here that our efficiency notion is the same one as the
approximation ratio for truthful mechanisms used in the literature
of algorithmic mechanism design [14, 16]. We will be interested
in designing mechanisms that have the maximum efficiency among
all truthful mechanisms.

3. MECHANISMS FOR 2 SELLERS
In order to explain our approach better, we will start from the

design of truthful mechanisms for two sellers; this will allow us to
demonstrate some of the concepts of mechanism design in a sim-
pler environment plus, the mechanisms that we will present in the
following section for the general case ofm sellers will be very sim-
ilar in spirit. We will first consider the case of regular cost functions
and then extend our analysis to the case of general cost functions.
6We remark here that while the cost function is single-peaked [10]
in the recommendation score, the dependence of the utility on the
allocation and the cost might give rise to more complicated struc-
tures.
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DEFINITION 4. A cost function c is regular if h(v)/g(v) is non-
increasing and integrable, i.e. if we let H(v) =

∫
h(v)/g(v)dv,

then c is regular if H(v) is concave.

By the definition above, since H
′
(v) = h(v)/g(v) > 0, it holds

that H(v) is an increasing function.

Optimal mechanism for regular cost functions
In this section we present a truthful mechanism for two sellers,
prove that it is optimal among all truthful mechanisms for the case
of regular cost functions and actually the mechanism is derived
from the deduction in the proof. The mechanism is the following
one.

MECHANISM 1. Consider the recommendation score profile v
and let vl denote the larger value, and vs denote the smaller value.
Let qj(v) be the allocation of the seller with value vj for j ∈ {l, s}.
Then allocate the item as follows:

ql(v) = min

{
H(vl)−H(vs) +

1

2
, 1

}
, qs(v) = 1− ql(v)

As an example, when vl = vs, ql(v) = qs(v) = 1/2 and each
seller receives half of the total impression. It is easy to see that
the mechanism is feasible, and the intuition why this mechanism
is truthful is that manipulations are not desirable because H is a
concave function. We formalize this intuition in the following the-
orem.

THEOREM 1. Mechanism 1 is truthful.

PROOF. Without loss of generality, (by symmetry), we prove
that seller 1 does not have an incentive to report a fake score, given
an arbitrary recorded score of seller 2. Clearly, seller 1 has no in-
centive to report a score smaller than his real score because he will
receive a smaller fraction of the item in that case and therefore we
consider two cases.

Case 1. v1 ≤ r2: The utility of seller 1 by reporting truthfully is

u1(v1, (v1, r2)) =

(
max

{
−H(r2) +H(v1) +

1

2
, 0

})
g(v1).

If seller 1 reports r1 such that v1 ≤ r1 ≤ r2, then his utility
u1(v1, (r1, r2)) is(

max

{
−H(r2) +H(r1) +

1

2
, 0

})
g(v1)− (r1 − v1)h(v1).

We have that the difference in utility δu = u1(v1, (r1, r2)) −
u1(v1, (v1, r2)) is at most

δu ≤ (H(r1)−H(v1))g(v1)− (r1 − v1)h(v1),

H(v) is a concave function, and the derivative of it is h(v)/g(v).
By concavity and by the inequality above, we get that δu ≤ 0. If
seller 1 chooses to report r1 such that r1 > r2, then his utility
u1(v1, (r1, r2)) is(

min

{
H(r1)−H(r2) +

1

2
, 1

})
g(v1)− (r1 − v1)h(v1).

Then, combining the formulas for the utility of truthful reporting
and of misreport r1, we obtain again that the difference in utility
δ′u = u1(v1, (r1, v2))− u1(v1, (v1, r2)) is at most

δ′u ≤ (H(r1)−H(v1)g(v1)− (r1 − v1)h(v1) ≤ 0.

Case 2. v1 > r2. The utility of seller 1 by reporting truthfully is

u1(v1, (v1, r2)) =

(
min

{
−H(r2) +H(v1) +

1

2
, 1

})
g(v1).

If seller 1 reports r1 such that v1 < r1, his utility u1(v1, (r1, r2))
is(

min

{
−H(r2) +H(r1) +

1

2
, 1

})
g(v1)− (r1 − v1)h(v1).

Similarly to before, we get that the difference in utility δu =
u1(v1, (r1, r2))− u1(v1, (v1, r2)) is at most

δu ≤ (H(r1)−H(v1))g(v1)− (r1 − v1)h(v1) ≤ 0.

This completes the proof.

In the following, we will prove the worst-case efficiency guaran-
tee of Mechanism 3 and the fact that it is optimal among all truthful
mechanisms. For the latter part, we will need the next lemma, that
provides a necessary condition for a mechanism to be truthful.

LEMMA 1. Let f be a truthful mechanism. It holds that

- for all v1 ≥ v2, q1(v1, v2) ≤ q1(v2, v2) +H(v1)−H(v2).

- for all v2 ≥ v1, q2(v1, v2) ≤ q2(v1, v1) +H(v2)−H(v1).
PROOF. By symmetry, we only prove the first statement of the

lemma. If seller 1 has score v2 and seller 2 reports score r2, we
have that for any δ > 0 it must hold that

(q1(v2 + δ, r2)− q1(v2, r2)g(v2) ≤ δh(v2),

otherwise seller 1 will have an incentive to misreport v2 + δ, i.e.,

∀δ > 0, v2 > 0 :
q1(v2 + δ, r2)− q1(v2, r2)

δ
≤ h(v2)

g(v2)
.

Because the cost function c is regular, the function h(v)/g(v) is in-
tegrable, and hence q1(v1, v

′
2)−q1(v2, v

′
2) ≤

∫ v1
v2
h(v)/g(v)dv,

i.e.,∀v1 ≥ v2, q1(v1, v2) ≤ q1(v2, v2) +H(v1)−H(v2).

We are now state the following theorem. The proof is omitted due
to lack of space; we refer the reader to the full version.

THEOREM 2. Let

E(H) = min
v1≥v2

(
v2
v1

+
v1 − v2
v1

(
1

2
+H(v1)−H(v2)

))
(1)

The efficiency of Mechanism 1 isE(M1) = min {E(H), 1}, which
is optimal among all truthful mechanisms.

Optimal mechanism for general cost functions
In this section we present a truthful mechanism with two sellers and
general cost functions, and prove it is optimal among all truthful
mechanisms. The idea is to extend the idea we used in the previous
section and find a decreasing function that is below h(v)/v that is
“as large as possible”. For ease of reference, we will use say that a
function g1 is not larger than function g2 if for all v ∈ (0,+∞) it
holds that g1(v) ≤ g2(v). Given the cost function c(v, r), for all
v > 0, we define the function

h1(v) = min
0<t≤v

h(t)

g(t)
.

Let H1(v) =
∫
h1(v)dv and hence H1(v) is a concave function.

Note that h1(v) is a decreasing function not larger than h(v)/g(v),
and moreover, it holds that h1(v) = h(v)/g(v) when h(v)/g(v) is
decreasing. The following lemma states that function h1(v) is the
largest decreasing function which is not larger than h(v)/g(v).
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LEMMA 2. For any decreasing function h2(v) not larger than
h(v)/g(v), for all v > 0, it holds that h2(v) ≤ h1(v).

PROOF. For any score v1 such that 0 < v1 ≤ v, we have that
h2(v) ≤ h2(v1) ≤ h(v1)/g(v1) , i.e.

h2(v) ≤ min
0<t≤v

h(t)

g(t)
= h1(v).

Using the concave function H1(v) defined above and the same
intuition of the design of Mechanism 1, we obtain the following
optimal truthful mechanism for general cost functions.

MECHANISM 2. Consider the recommendation score profile v
and let vl denote the larger value, and vs denote the smaller value.
Let qj(v) be the allocation of the seller with value vj for j ∈ {l, s}.
Then allocate the item as follows:

ql(v) = min

{
H1(vl)−H1(vs) +

1

2
, 1

}
, qs(v) = 1− ql(v).

The following theorem establishes the truthfulness of the mech-
anism.

THEOREM 3. Mechanism 2 is truthful.

The proof of Theorem 3 follows from very similar arguments as
the ones used in the proof of Theorem 1 (see full version) and the
following lemma.

LEMMA 3. Recall that H1(v) =
∫
h1(v)dv. For any 0 <

v1 ≤ r1, we have that

H1(r1)−H1(v1) ≤
h(v1)

g(v1)
(r1 − v1).

PROOF. Because H1 is concave, for any 0 < v1 ≤ v
′
1, it

holds that H1(r1)−H1(v1) ≤ h1(v1)(r1 − v1), and furthermore
h1(v1) ≤ h(v1)/g(v1), which proves the lemma.

Finally, the following theorem establishes that Mechanism 2 is
optimal among all truthful mechanisms for two agents, for general
cost functions.

THEOREM 4. The efficiency of Mechanism 2 is equal to
min{E(H1), 1} which is optimal among all truthful mechanisms.

Again, Theorem 4 can be proved using arguments very similar to
those used in the proof of Theorem 2, together with the following
lemma. The proof of the lemma is similar to the proof of Lemma 1
and we omit it due to lack of space.

LEMMA 4. Let f be a truthful mechanism. It holds that

- for all v1 ≥ v2, q1(v1, v2) ≤ q1(v2, v2)+H1(v1)−H1(v2).

- for all v2 ≥ v1, q2(v1, v2) ≤ q2(v1, v1)+H1(v2)−H1(v1).

4. MECHANISMS FOR MANY SELLERS
In this section we consider the more general setting where we

have m sellers (with m > 2) that we are allocating the unit of
impression to. Our main contribution of this section is the design
of a truthful mechanism whose efficiency (a) approaches optimal-
ity among truthful mechanisms when the cost of manipulation ap-
proaches 0 and (b) is strictly better than the obvious truthful mecha-
nism, that allocates the unit uniformly to the sellers. As we will see
in Section 5, in typical instances of the problem, our mechanism
will significantly outperform the uniform allocation, which makes
the extra effort of analyzing its properties clearly justified.

MECHANISM 3. Let i be the seller with the highest recommen-
dation score, i.e. i = argmaxj vj and j be the seller with the
second highest recommendation score. The allocation of is:

qi(v) = min

{
1

m
+ (H(vi)−H(vj)), 1

}
and

qk(v) =
1− qi(v)
m− 1

for all k 6= i.

It is easy to check that the mechanism is feasible. Note that Mech-
anism 3 is in fact a generalization of Mechanism 1; the fraction of
the item that the seller with the highest score receives is determined
by the difference between the highest score and the second highest
score, and other sellers split the remainder of the item evenly.

For ease of exposition, we will analyze the mechanism in the
setting of regular cost functions. We can obtain similar mechanisms
with analogous efficiency guarantees for general cost functions by
using similar lemmas as the ones that we employed in Section 3.

THEOREM 5. Mechanism 3 is truthful.

PROOF. Again, without loss of generality, it suffices to prove
that seller 1 does not have an incentive to misreport his recommen-
dation score. Obviously, seller 1 has no incentive to report a score
smaller than v1 because then, he will get a smaller fraction of the
item. Let r = (v1, r2, ..., rm), and r′ = (r1, r2, ..., rm). We con-
sider three cases.

Case 1 v1 ≥ ri for all i 6= 1: The utility of seller 1 by telling the
truth is

u1(v1, r) = min

{
1

m
+H(v1)−H(r2), 1

}
g(v1).

If seller 1 reports a score r1 such that (r1 > v1) to report, his utility
u1(v1, r

′) becomes

min

{
1

m
+H(r1)−H(r2), 1

}
g(v1)− (r1 − v1)h(v1).

and for the difference in utility δu = u1(v1, r
′)−u1(v1, r) it holds

that δu ≤ (H(r1)−H(v1))g(v1)− (r1 − v1)h(v1) ≤ 0.
Case 2. r2 > v1 ≥ r3 ≥ . . . ≥ rm Seller 1’s utility from telling
the truth

u1(v1, r) =
max {0, (m− 1)/m+H(v1)−H(r2)}

m− 1
g(v1).

If seller 1 reports r1 such that r2 > r1 > v1), his utility u1(v1, r
′)

becomes
max {0, (m− 1)/m+H(r1)−H(r2)}

m− 1
g(v1)−(r1−v1)h(v1).

and for the difference in utility δu = u1(v1, r
′)−u1(v1, r) it holds

that δu ≤ (H(r1)−H(v1))g(v1)/(m−1)− (r1−v1)h(v1) ≤ 0.
If seller 1 reports r1 such that r1 ≥ r2, his utility u1(v1, r

′) is

min

{
1

m
+H(r1)−H(r2), 1

}
g(v1)− (r1 − v1)h(v1).

and the difference δu = u1(v1, r
′)− u1(v1, r) is at most(

H(r1)−H(v1)

(m− 1)
−

(m− 2)H(r2)

(m− 1)

)
g(v1)− (r1 − v1)h(v1)

≤ (H(r1)−H(v1))g(v1)− (r1 − v1)h(v1) ≤ 0.

Case 3. r2 ≥ r3 > v1. Seller 1’s utility from telling the truth is

u1(v1, r) =
max {0, (m− 1)/m+H(r3)−H(r2)}

m− 1
g(v1).
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By the construction of the Mechanism, seller 1 can only affect
the allocation outcome only when his reported score is the high-
est score or the second highest score. If he reports r1 such that
r2 > r1 > r3, his utility u1(v1, r

′) becomes

max {0, (m− 1)/m+H(r1)−H(r2)}
m− 1

g(v1)−(r1−v1)h(v1).

and the difference in utility δu = u1(v1, r
′)− u1(v1, r) is at most

(H(r1)−H(r3))g(v1)

(m− 1)
− (r1 − v1)h(v1)

≤ (H(r1)−H(v1))g(v1)

(m− 1)
− (r1 − v1)h(v1) ≤ 0.

If he reports r1 such that r1 > r2 ≥ r3, his utility becomes

min

{
1

m
+H(r1)−H(r2), 1

}
g(v1)− (r1 − v1)h(v1).

and the difference δu = u1(v1, r
′)− u1(v1, r) is at most(

H(r1)−H(r3)

(m− 1)
−

(m− 2)H(r2)

(m− 1)

)
g(v1)− (r1 − v1)h(v1)

≤ (H(r1)−H(v1))g(v1)− (r1 − v1)h(v1) ≤ 0.

This concludes the proof of the theorem.

The following theorem establishes the efficiency guarantee of
Mechanism 3. Note that this a theoretical lower bound, over all
possible instances of the problem. We will see in Section 5 that on
real-life instances, Mechanism 3 outperforms the worst-case bound
considerably. We omit the proof of the lemma due to lack of space.

THEOREM 6. Let a = h(0)/g(0). The efficiency of Mechanism
3 is at least

min

{
2

m
,
1

m
+
m− 2

m− 1
· a
}
.

An upper bound for all truthful mechanisms
We conclude the section with an upper bound on the efficiency of
any truthful mechanism. To prove the bound, similarly to the ma-
chinery needed for the proof of Lemma 1, we firstly obtain a nec-
essary condition for truthfulness for the case of m sellers. Again,
we omit the proof due to lack of space.

LEMMA 5. Let f be a truthful mechanism. For every v1 ≥ v2,

q1(v1, v2, ..., v2) ≤ q1(v2, v2, ..., v2) +H(v1)−H(v2).

Using Lemma 5 we prove the following theorem. Notice the im-
plications of the theorem; when c = 0, in which case there is no
cost for manipulating, then the best thing that we can hope for with
truthful mechanisms is a uniform allocation between sellers. As c
goes to infinity the incentive for manipulation is too small and truth-
ful mechanisms that approach algorithmic optimality are possible.
Furthermore, notice that if the functions h(·) and g(·) are “smooth”
enough (for example when h and g are constant functions) and their
values at 0 are small enough the efficiency guarantee of Mechanism
3 is very close to that of the best possible truthful mechanism.

THEOREM 7. Let c = h(1)/g(1). The efficiency of any truthful

mechanism f is at most 1
m

+ 2
√
c
(
c+ m−1

m

)
− 2c.

PROOF. Assume without loss of generality that v1 = maxi vi.
By definition, E(f) = minv>0(

∑m
i=1 qi(v)vi)/v1. Consider the

profiles v = (v1, v2, ..., v2) and v′ = (v2, v2, ..., v2), It holds that

E(f) ≤ min
v1≥v2>0

(
v2
v1

+
(v1 − v2)

v1
q1(v)

)
.

ByLemma 5, we have that q1(v) ≤ q1(v′)+H(v1)−H(v2). Then

E(f) ≤ min
v1≥v2>0

(
v2

v1
+

(v1 − v2)

v1
(q1(v

′) +H(v1)−H(v2))

)
.

Similarly, for all sellers i it holds that

E(f) ≤ min
v1≥v2>0

(
v2

v1
+

(v1 − v2)

v1
(qi(v

′) +H(v1)−H(v2))

)
.

By feasibility, we have that
∑m

i=1 qi(v
′) ≤ 1 and therefore

E(f) ≤ min
v1≥v2>0

(
v2
v1

+
(v1 − v2)

v1

(
1

m
+H(v1)−H(v2)

))
.

Letting a = v1/v2, the right-hand side of the inequality above can
be written as

min
v1>0,a≥1

(
1

a
+
a− 1

a

(
1

m
+H(v1)−H(v1/a)

))
.

Now observe that

H(v1)−H
(v1
a

)
≤
(
v1 −

v1
a

) h(v1/a)
g(v1/a)

,

and hence the efficiency can be upper bounded as

E(f) ≤ min
v1=a,a≥1

(
1

a
+
a− 1

a

(
1

m
+ (a− 1)c

))
,

which implies the bound of the theorem.

5. EXPERIMENTS
Up until now, we have been discussing the worst-case theoretical

guarantees of the mechanisms that we designed. In this section, we
will evaluate the performance of our mechanisms empirically, us-
ing real data from Taobao, the primary online marketplace in China
and one of the biggest e-commerce websites in the world. In par-
ticular, because the number of sellers and buyers in Taobao is very
large, we gather information about the transactions and buyers’ data
from 2047 randomly sampled sellers with respect to buyers of a cer-
tain demographic (female buyers, of ages between 20 and 30) that
occurred within the past year. The number of transaction orders
after deleting buyers that have been detected to fake transactions in
this dataset is 11599033 , thus we think doing experiments on this
dataset is without loss of generality.

As we explained in the model section, we will interpret the item
as the total number of buyer impressions for this buyer category.
The recommendation scores of the sellers are calculated as follows.
First, for each seller, we calculate the number of transaction or-
ders he could have made if he were allocated all buyer impressions
for this buyer category by machine learning methods and then, we
scale these numbers appropriately to make sure they lie in the range
[0, 1]; the latter is just a convention but it is in accordance with
usual conventions in reality, where the scores are usually % per-
centages. The social welfare achieved by a mechanism is the total
(normalized) number of transactions resulted from the impressions
being allocated by to the mechanism.

As we mentioned earlier, there exist fake transactions in the in-
put data that need to be taken into consideration. For this reason,
first we compose a “blacklist” of buyers that have been detected
to fake transactions in the past by the Alibaba group, the company
that owns Taobao. Then, we remove these fake orders from the in-
put data and estimate the real recommendation score for each seller.
As a result, we can construct a data generator D for any seller in
Taobao with associated recommendation scores, i.e, the distribu-
tion of real recommendation score is uniformly drawn from the real
scores of 2047 sellers.
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For our experiments, we will evaluate the efficiency of Mecha-
nism 3, the mechanism used by Taobao and the following mecha-
nism which we can show to be truthful (proof omitted due to lack
of space).

MECHANISM 4. Recall the definition of H . Let H(0) = 1/m.

Seller i is allocated the fraction qi(v) = H(vi)/
(∑m

j=1H(vj)
)

.

Note that while we do not provide a worst-case lower bound for the
efficiency of Mechanism 4, as we will see shortly, the mechanism
actually performs very well on the real-life inputs that we generate.

The recommendation algorithm that Taobao uses works as fol-
lows: when a single buyer visits the system, the algorithm ranks
sellers according to their recommendation scores associated to buy-
ers of the visitor’s characteristics. Then, it picks a certain number
of sellers from the top of the ranking and suggests these sellers to
the buyer. Unfortunately, the exact allocation rule to the selected
sellers based on their scores is not public information. However,
we can infer the allocation rule using machine learning methods
from the data, and we can simulate the Taobao mechanism with in-
put scores of any sellers by this rule; since we are interested in this
particular data set, our implementation will be an accurate approx-
imation.

We compare the mechanisms for different sample sizes. For each
sample size m, we first use our data generator to generate recom-
mendation scores of artificial sellers, i.e, the score of each seller
is i.i.d drawn from D. We then compare our two mechanisms
against the Taobao mechanism, as well as the uniform mechanism
that gives each seller a-1/m fraction of the item; the later compari-
son is useful to demonstrate that although the worst-case bounds of
Mechanism 3 are comparable to those of the uniform mechanism,
in reality, Mechanism 3 significantly outperforms the uniform allo-
cations. We repeat those experiments 3000 times and we calculate
the average efficiency (i.e. the average ratio between the social wel-
fare of the mechanisms and the welfare of the algorithmic optimal).

We consider different choices for the valuation functions g(v)
and the function h(v) associated with the cost function. Figure 1
shows the comparisons of the average efficiency as a function of
the sample size, for the case when g(v) = 1 and h(v) = 1. This
simple case corresponds to the assumption that all sellers would
be equally satisfied by receiving the whole amount of impressions
(g(v) = 1) and that a sellers’ cost is simply the distance between
his recorded score and his real score. As we can see, both of our
mechanisms outperform Taobao’s algorithm for up to 4000 sellers
and Mechanism 4 is actually much better for all input sizes we con-
sider. Both Mechanism 3 and Mechanism 4 outperform the uniform
allocation by a lot although, as the number of sellers grows large,
Mechanism 3 seems to converge to its theoretical guarantee.

Figure 2 makes the same assumption on the valuation function
g(v) but assumes a “steep” scaling of the cost function, to model
instances where the cost of manipulation is much lower than the
valuation of a seller. In this case, Mechanism 3 exhibits a poorer
performance; on the other hand, Mechanism 4 performs exception-
ally well, relatively to the other mechanisms.

The high performance of Mechanism 4 can be explained by the
fact that the functions g(v) and h(v) are constant functions, and
the mechanism performs better when “smooth” enough functions
are considered. To demonstrate this even more clearly, we consider
the case where g(v) = v and h(v) = αv+α where α is either 1 or
10; the results of the experiments are summarized in Figure 3. As
we can see, in the first case Mechanism 3 outperforms Mechanism
4 for input sizes up to roughly 3000 sellers and the Taobao algo-
rithm for sizes up to slightly less than 6000 sellers. Note that in the
second case, when the function h(v) is more “steep”, Mechanism

Figure 1: The average efficiency of the four mechanisms with
h(v) = 1 and g(v) = 1.

Figure 2: The average efficiency of the four mechanisms with
h(v) = 10−4 and g(v) = 1).

4 performs worse and is outperformed by Mechanism 3 for input
sizes up to roughly 6000 sellers. It is also worth pointing out that
both mechanisms outperform Taobao’s algorithm, which seems to
not scale well with quickly increasing functions h(v) either.

Based on our observation, we can draw the following conclu-
sions for real-life instances: (a) Both of our mechanisms outper-
form Taobao’s algorithm for the most part and the (truthful) uni-
form mechanism on all occurrences and (b) Mechanism 4 seems to
be much better in terms of scaling with the number of sellers when
the model functions are relatively “smooth” and Mechanism 3 is
preferable when these functions are quickly increasing. Overall,
the experiments seem to be indicative that the truthful mechanisms
we present can yield better results than existing approaches.

6. CONCLUSION AND FUTURE WORK
There are many interesting directions for future work. As we

mentioned earlier, we assume that the value g(v) denotes the sat-
isfaction that a seller would experience for receiving any slot on a
webpage. This is a fair assumption in many personalized recom-
mender systems with limited ad-slots for instance, but ideally, we
would like to assume that sellers also have preferences over the dif-
ferent slots. Then, we would have to model each slot as a different
item j and each seller would have a different value vij for each one
of them. However, this multi-dimensionality introduces added dif-
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Figure 3: The average efficiency of the four mechanisms with
h(v) = v+1 and , g(v) = v and h(v) = 10v+10 and , g(v) = v.

ficulties in the design of truthful mechanisms with good efficiency
guarantees. The task is challenging but certainly worth exploring.

Another interesting furure direction is to impose certain alloca-
tive constraints on the amount of impressions. Currently, we as-
sume that the social optimum would be to give the unit to the seller
with the highest score; it seems natural to assume that the platform
imposes some fairness constraints as well, making sure that at least
respected sellers receive a certain fraction of an impression. The
challenge then would be to design truthful mechanisms that obey
the allocative constraints (which can render the quest for truthful-
ness quite harder) and those mechanisms would be compared to the
best possible allocation among those that respect the constraints.

Finally, since Mechanism 4 seems to outperform the other mech-
anisms significantly, at least for the case of “smooth” functions, a
future task would be to provide a worst-case theoretical guarantee
on the efficiency of the mechanism.
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