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We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state
method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with
certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies
the system and reduces the random number consumption. From the simulation result taking into account of
statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the
key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a
rigorous method to upper bound the phase error rate of the single-photon components of signal states.

Q
uantum key distribution (QKD)1,2 is one of the most realistic applications in quantum information. It
aims at extending a secret key between two distant parties, commonly noted as Alice and Bob. The
unconditional security has been proven even when an eavesdropper, Eve, has unlimited computation

power permitted by quantum mechanics3–6.
The best known protocol of QKD is the BB84 protocol1 presented by Bennett and Brassard in 1984. In BB84,

Alice encodes the key information randomly into the X and Z bases and sends quantum pulses to Bob. Bob
measures the received pulses in two bases randomly. After that, they compare the basis through an authenti-
cated classical channel. The key can only be extracted from the pulses where they use the same basis and this
results in that on average half of the raw data is discarded. That is, the basis-sift factor is 1/2 in the original
BB84 protocol. This factor can be improved by the efficient BB84 scheme proposed by Lo et al.7. In the efficient
scheme, Alice and Bob put a bias in the probabilities of choosing the Z basis and X basis, which can make the
basis sift-factor close to 100% in the infinitely long key limit. The efficient BB84 scheme is experimentally
demonstrated in 20098.

In practical QKD systems, a highly attenuated laser or a weak coherent state source is widely used to substitute
for a perfect single-photon source which is beyond state-of-the-art technology. A weak coherent state source
contains multi-photon components (details shown in Methods). When multi-photon states are used for QKD,
Eve can launch attacks, like the photon-number-splitting (PNS) attack9,10, to break the security. Since Eve could
have a full control of the quantum channel, she can make the transmittance of multi-photon states to be 100% in
the PNS attack. In a conventional security analysis11, Alice and Bob have to assume all the losses and errors come
from the single-photon components in the worst scenario case. As a result, the performance of QKD is very poor.
To improve the performance of the weak coherent state QKD, Hwang proposed the decoy-state method12. Instead
of sending one coherent state, Alice sends pulses with different intensities, so that she can obtain more informa-
tion to monitor the quantum channel. To maintain the detection statistics of coherent states with different
intensities, Eve is not able to change the transmittances of single-photon and multi-photon state freely without
being noticed by Alice and Bob. The security of the decoy-state method is proven13, along with various practical
schemes14,15. Follow-up experimental demonstrations show that the decoy-state method is a very effective way to
improve QKD performance16–20.

Naturally, we can improve the decoy-state method by applying the biased-basis idea of the efficient BB84
protocol. There are a few observations. First, Alice does not need to choose basis when she chooses the vacuum
decoy state. Second, if Alice and Bob mainly choose one basis, say Z basis, for key generation, they effectively treat
X basis as for quantum channel testing. In this sense, the functionality of X basis is similar to the decoy states.
Intuitively, one may expect to combine decoy states and X basis together.

Here, we propose a new decoy-state method with biased basis choice, following the widely used decoy-state
scheme, vacuum 1 weak decoy-state method15 (a quick review is shown in Methods), where Alice sends out
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pulses with three different intensities, vacuum (with an intensity of
0), weak decoy (with an intensity of n) and signal (with an intensity of
m) states.

1. Alice prepares all the signal pulses (m) in the Z basis, where the
final secure key is extracted from.

2. She prepares weak decoy pulses (n) in the X and Z with certain
probabilities.

3. If she chooses the vacuum decoy state, she does not need to set
any basis.

4. Bob measures the received pulses in the X basis and Z basis with
probabilities px and pz, respectively.

The scheme is summarized in Table 1. In the new scheme, only 4
sets of preparations are used by Alice. Compared to the original
vacuum 1 weak decoy-state method, where 6 sets are used, the
proposed scheme can simplify the system and reduce the cost of
random numbers. Later in the simulation, we will show that this
scheme can also improve the QKD performance.

Following the GLLP security analysis11, the key generation rate13,21

is given by

R§q {IeczQz
1 1{H e pz

1

� �� �
zQ0

� �
,

Iec~fQmH Em

� �
,

q~
Nmpz

Ntotal
,

ð1Þ

where q is the raw data sift factor, including basis-sift factor and
signal-state ratio; Iec is the cost of error correction and the rest terms
in the bracket is the rate of privacy amplification; f is the error
correction inefficiency; Qm and Em are the overall gain and quantum
bit error rate (QBER); Qz

1is the gain of the single-photon components
and e pz

1 is its corresponding phase error rate; Q0 is the background
gain; H(x) 5 2x log2(x) 2 (1 2 x) log2(1 2 x) is the binary Shannon
entropy function. Note that in our scheme, the final key is extracted
from Z-basis measurement results, so all the variables in equation (1)
should be measured in the Z basis. The phase error rate e pz

1 cannot be
measured directly, which, instead, can be inferred from the error rate
in the X basis22.

The gain and QBER, Qm and Em, can be measured from the experi-
ment directly. Alice and Bob need to estimate Qz

1and e pz
1 for privacy

amplification. According to the model reviewed in Methods, we have
Qz

1~Yz
1 me{mand Q0 5 Y0e2m, where Yz

1 and Y0 are the yield of single-
photon components measured in the Z basis and background rate,
respectively. In order to lower bound the key rate equation (1),
one can lower bound Yz

1 , Y0 and upper bound e pz
1 .

Since that both the vacuum state and the single-photon state are
basis independent, the yields of vacuum states and single-photon
states in different bases are equal

Yx
0 ~Yz

0 ,

Yx
1 ~Yz

1 :
ð2Þ

While a multi-photon state is basis dependent, whose basis informa-
tion may be revealed to Eve by, for example, PNS attack9, so for any i-
photon state (i $ 2), in general,

Yx
i =Yz

i : ð3Þ

That is, depending on the basis information, Eve may set the yield of
i-photon state different for the X and Z bases. As for the error rates,
the phase error probability in the Z basis equals to the bit error
probability in the X basis

e pz
1 ~ebx

1 : ð4Þ

Then, in the finite-key-size situation where statistical fluctuations
should be taken into account22,23, we have

e pz
1 <ebx

1 : ð5Þ

Given ebx
1 , we can upper bound e pz

1 by the random sampling argu-
ment (details shown in Methods). We need to point out that even
though the single-photon state is basis independent, the error rates in
two basis may not be the same

ex
1=ez

1: ð6Þ

This can be easily seen by considering a simple intercept-and-resend
attack where Eve measures all the pulses in the Z basis, and then she
will not introduce any additional error in the Z basis ez

1~0, but
ex

1~1=2.

Results
In our simulation, the parameters of the experimental setup are listed
in Table 2. Statistical fluctuations are taken into account in the simu-
lation (details shown in Methods). We compare the key generation
rate in our scheme with that in the standard BB84 protocol with the
vacuum 1 weak decoy-state scheme. The result is shown in Fig. 1.

As one can see from Fig. 1, the key rate of the proposed biased
scheme is larger than that of the standard BB84 with vacuum 1 weak
decoy states by at least 45%. When the transmission loss is 0, the key
rate improvement can go up to 80%. As the transmission loss
increases, the improvement of the biased scheme decreases. This is
because at a larger transmission loss, more pulses for decoy states are
needed and Bob also needs a larger px to estimate the privacy amp-
lification part in Eq. (1). The improvement comes from the fact that
px is less than 1/2. As px approaches to 1/2, the biased scheme
becomes similar to the original scheme, where px 5 pz 5 1/2. It is
an interesting prospective question how to apply our scheme to QKD
systems with high channel losses24.

For a practical QKD system, one needs to optimize the bias px for
the key rate. The dependence of the optimal bias on the transmission
loss is shown in Fig. 2, from which we can see that the optimal pz is
about 0.95 when the transmission loss is below 3 dB and decreases as
the transmission loss increases. The minimal optimal pz is about 0.6,
which is close to 1/2. That is why our scheme approaches the stand-
ard BB84 with the vacuum 1 weak decoy-state scheme as the trans-
mission loss increases.

Discussion
In conclusion, we combine the decoy-state QKD with a biased basis
choice to enhance the system performance. The key point of our
scheme is increasing the raw data sift factor by setting all signal states
in one (Z) basis. We take statistical fluctuations into account and use a
rigorous method to upper bound the phase error rate of the single-
photon components of the signal state. Comparing the result with that
in the standard decoy-state BB84 protocol, we find an improvement in

Table 1 | List of Alice and Bob’s operations. Alice prepares and
sends Ntotal pulses, with Ntotal~NmzNz

n zNx
n zN0. Bob measures

the received pulses with certain probabilities, pz 1 px 5 1

Alice prepares and sends Bob measures

Nm signal pulses in the Z basis with probability pz in the Z basis
Nz

n decoy pulses in the Z basis
Nx

n decoy pulses in the X basis with probability px in the X basis
N0 vacuum pulses

Table 2 | List of experimental parameters for simulation

Ntotal f ed Y0

6 3 109 1.16 3.3% 1.7 3 10–6
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the key generation rate. Meanwhile, we reduce the complexity of the
QKD system by assigning all signal states in the Z basis.

Methods
Model. The weak coherent state source is equivalent to a photon-number channel
model and its photon number follows a Poisson distribution15:

P nð Þ~ mn

n!
e{m: ð7Þ

Define Yi as the yield of an i-photon state; g as the transmittance of the channel
measured in dB; Y0 as the background count rate. Then, in a normal channel when
there is no Eve’s intervention, Yi is given by:

Yi~1{ 1{Y0ð Þ 1{gð Þi: ð8Þ

The gain of i-photon states Qi is given by:

Qi~Yi
mi

i!
e{m: ð9Þ

The overall gain which means the probability for Bob to obtain a detection event in
one pulse with intensity m is:

Qm~
X?
i~0

Qi~
X?
i~0

Yi
mi

i!
e{m: ð10Þ

The error rate of i-photon states ei is given by

eiYi~e0Y0zed 1{ 1{gð Þi
� �

1{Y0ð Þ, ð11Þ

where ed is the probability that a photon hits the erroneous detector and e0 5 1/2. The
overall QBER is given by

EmQm~
X?
i~0

eiYi
mi

i!
e{m: ð12Þ

Without Eve changing Yi and ei, the gain and QBER are given by

Qm~1{e{gm 1{Y0ð Þ,

EmQm~e0Y0zed 1{e{gmð Þ 1{Y0ð Þ
ð13Þ

Upper bound of e
pz

1 . Here, we review the random sampling argument23: using the bit
error rate measured in the X basis, ebx

1 , to estimate the phase error rate in the Z basis,
e pz

1 , for privacy amplification.
If the key size is infinite, we know that ebx

1 ~e pz
1 . Otherwise, given ebx

1 , nx (the
number of decoy states that Alice sends and Bob measures in the X basis), and nz (the
number of signal states that Alice sends and Bob measures in the Z basis), we can give
a probabilistic upper bound of e pz

1 such that it is lower than e pz
1 with a small prob-

ability Phx

Phx:Pr epz§ebxzhx
� �

, ð14Þ

where hx is the deviation of the phase error rate from the tested value. Here, Phx is a
controllable variable and is equal to 1027 in the simulation. We have

Phxv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nxznz
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ebx 1{ebxð Þnxnz

p 2{ nxznzð Þjx hxð Þ, ð15Þ

where the function jx(hx) is given by

jx hxð Þ:H ebxzhx{qxhxð Þ{qxH ebxð Þ{ 1{qxð ÞH ebxzhxð Þ, ð16Þ

and qx 5 nx/(nx 1 nz). Given Phx, we compute the value of jx and find the value hx

which is the root of equation (16). We get the probabilistic upper bound

e pzU
1 ~ebxzhx : ð17Þ

Vacuum 1 weak decoy state. In this protocol, Alice and Bob use two decoy states to
estimate the low bound of Y1 and the upper bound of e1. First, they implement a
vacuum decoy state to estimate the background counts in signal states

Qvacuum~Y0,

Evacuum~e0~
1
2
:

ð18Þ

Secondly, they perform a weak decoy state where Alice uses a weaker intensity n (n ,

m) for the decoy state to estimate Y1 and e1. We have:

Y1§YL
1 ~

m

mn{v2
Qnen{Qme m n2

m2
{

m2{n2

m2
Y0

	 

, ð19Þ

and

e1ƒeU
1 ~

EnQnen{e0Y0

YL
1 n

: ð20Þ

Note that in our scheme all the parameters for estimating YL
1 are measured in the Z

basis and the parameters for estimating eU
1 are measured in the X basis. And we must

lower bound Y0 to obtain the lower bound of the key rate15. The eU
1 we get here will

substitute ebx in equation (14).

Statistical fluctuation. Here, we consider statistical fluctuations for the decoy-sate
method15. We need to modify the estimation of Y1, equation (19), and e1, equation
(20).

The total number of pulses sent by Alice is composed of four cases

Ntotal~NmzNz
n zNx

n zN0: ð21Þ

Since that Alice sends all signal states in the Z basis and the final key is only extracted
from the data measured in the Z basis, the parameter q in equation (1) is given by

q~
Nmpz

Ntotal
: ð22Þ

We follow the statistical fluctuation analysis proposed by Ma et al.25.
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Figure 1 | Plot of key rate versus total transmittance. The solid line shows

the result of our scheme and the red line shows the result of the standard

BB84 with the vacuum 1 weak decoy-state method. The simulation

parameters are shown in Table 2. The confidence interval for statistical

fluctuation is 5 standard deviations (i.e., 1–5.73 3 10–7). The expected
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Figure 2 | Plot of optimal pz versus transmission loss.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2453 | DOI: 10.1038/srep02453 3



QU
m ~Q̂m 1z

uaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmpzQm

p
 !

,

QL
n~Q̂n 1{

uaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nz

n pzQn

p
 !

,

YL
0 ~Ŷ0 1{

uaffiffiffiffiffiffiffiffiffiffiffi
N0Y0
p

	 

,

QL
0~YL

0 e{m 1{
uaffiffiffiffiffiffiffiffiffiffiffi

N0Q0
p

	 

,

ð23Þ

where Q̂m , Q̂nand Ŷ0are measurement outcomes which means that they are rates
instead of probabilities. If we follow the standard error analysis assumption, ua is the
number of standard deviations one chooses for the statistical fluctuation analysis.
Note that QU

m and QL
n are used to estimate YL

1 , so they should be measured in the Z

basis. Here we use equation (14) to estimate the upper bound of e pz
1 with

nz~NmpzYL
1 me{m,

nx~Nx
n pxYL

1 ne{u:
ð24Þ
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