Note

Transforming an error-tolerant separable matrix to an error-tolerant disjunct matrix

Hong-Bin Chen ${ }^{\text {a }}$, Yongxi Cheng ${ }^{\mathrm{b}}$, Qian $\mathrm{He}^{\mathrm{c}, *}$, Chongchong Zhong ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 30050, Taiwan
${ }^{\text {b }}$ Institute for Theoretical Computer Science, Tsinghua University, Beijing, 100084, China
${ }^{\text {c }}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

ARTICLE INFO

Article history:

Received 7 September 2007
Received in revised form 29 May 2008
Accepted 3 June 2008
Available online 9 July 2008

Keywords:

Error-tolerant
Separable matrices
Disjunct matrices

Abstract

Recently, Chen and Hwang [H.B. Chen, F.K. Hwang, Exploring the missing link among d separable, \bar{d}-separable and d-disjunct matrices, Discrete Applied Mathematics 133 (2007) 662-664] provided a method for transforming a separable matrix to a disjunct matrix. In [D.Z. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing - Important Tools for DNA Sequencing, World Scientific, 2006], Du and Hwang attempted to extend this result to its error-tolerant version; unfortunately, they gave an incorrect extension. This note gives a solution to this problem.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a $(0,1)$ matrix. For any set S of columns of $M, U(S)$ will denote the union of the row indices of 1-entries of all columns in S. When S is the singleton set $\{C\}$, we abuse the notation by writing $U(S)$ simply as $C . M$ is called d-separable if for any two distinct d-sets S and S^{\prime} of columns, $U(S) \neq U\left(S^{\prime}\right)$. M is called \bar{d}-separable if the restrictions $|S|=d$ and $\left|S^{\prime}\right|=d$ above are changed to $|S| \leq d$ and $\left|S^{\prime}\right| \leq d$, respectively. Finally, M is called d-disjunct if for any d-set S of columns and any column C not in S, C is not contained in $U(S)$. These three properties of $(0,1)$ matrices have been widely studied in the literature of nonadaptive group testing designs (pooling designs), which have applications in DNA screening [2-7].

It has long been known that d-disjunctness implies \bar{d}-separability which in turn implies d-separability [3, Chapter 2]. Recently, Chen and Hwang [1] found a way to construct a disjunct matrix from a separable matrix to complete the cycle of implications.

Theorem 1.1 (Chen and Hwang [1]). Suppose M is a $2 d$-separable matrix. Then one can construct a d-disjunct matrix by adding at most one row to M.

The notions of d-separability, \bar{d}-separability and d-disjunctness have error-tolerant versions. A $(0,1)$ matrix M is called (d; z)-separable if $\left|U(S) \Delta U\left(S^{\prime}\right)\right| \geq z$ for any two d-sets of columns of M. It is ($\bar{d} ; z$)-separable if the restriction of d-sets is changed to two sets each with at most d elements. Finally, M is $(d ; z)$-disjunct if for any d-set S of columns and any column

[^0]0166-218X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.06.004
C not in $S,|C \backslash U(S)| \geq z$. Note that the variable z represents some redundancy for tolerating errors [3]. For $z=1$, the error-tolerant version is reduced to the original version.

Du and Hwang attempted to extend Theorem 1.1 to its error-tolerant version.

Theorem 1.2 ([3, Theorem 2.7.6]). Suppose M is a (2d;z)-separable matrix. Then one can obtain a (d;z)-disjunct matrix by adding at most z rows to M.

By Theorem 1.2, Du and Hwang obtained the following corollary.
Corollary 1.3 ([3, Theorem 2.7.7]). A (d; 2z)-separable matrix can be obtained from a ($2 d ; z$)-separable matrix by adding at most z rows.

Unfortunately, Theorem 1.2 is incorrect; thus Corollary 1.3 is incorrect as seen from the following counter-example. Let

$$
M_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It is easily verified that M_{1} is (2;2)-separable. We now show that adding two rows to M_{1} cannot produce a (1; 2)-disjunct matrix.

Let $C_{1}, C_{2}, C_{3}, C_{4}$ denote the four columns of M_{1}. Suppose we set $C=C_{i}$ and $S=\left\{C_{j}\right\}, i \neq j$. Then we need two rows each containing C_{i} but not C_{j}. One such row is already provided by M_{1}. So we need one (1,0)-pair in a new row. Since this is required for each pair of (i, j) with $i \neq j$, there are $4 \times 3=12$ choices of (i, j) pairs and each such pair needs a (1,0)-pair in a new row; or equivalently, we need the new rows to provide twelve such (1,0)-pairs. But one new row can provide at most four (1,0)-pairs (achieved by a row with two 1 -entries and two 0 -entries). So two new rows are not sufficient for providing the twelve $(1,0)$-pairs required by the $(1 ; 2)$-disjunctness property.

In this note we give a correct version of Theorem 1.2, and obtain a more rigorous statement of Theorem 1.1.

2. Main results

Lemma 2.1 ([3, Lemma 2.1.1]). Suppose M is a d-separable matrix with n columns where $d<n$; then it is k-separable for every positive integer $k \leq d$.

Note that the condition $d<n$ in Lemma 2.1 is necessary as seen from the following example: Let

$$
M_{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

M_{2} is trivially 3-separable. But it is not 2-separable, as the union of any pair of its columns is identical.
We now generalize Lemma 2.1 to an error-tolerant version.
Lemma 2.2. If a matrix M with n columns is ($d ; z$)-separable for $d<n$, then it is $(k ; z)$-separable for every positive integer $k \leq d$.

Proof. It suffices to prove that M is $(d-1 ; z)$-separable. Assume that M is not $(d-1 ; z)$-separable. Then there exist two distinct sets S and S^{\prime} each consisting of $d-1$ columns of M such that $\left|U(S) \Delta U\left(S^{\prime}\right)\right|<z$.

If $\left|S \backslash S^{\prime}\right|=\left|S^{\prime} \backslash S\right| \geq 2$, then there must exist a pair of columns $\left(C_{x}, C_{y}\right)$ such that $C_{x} \in S \backslash S^{\prime}$ and $C_{y} \in S^{\prime} \backslash S$. It is easy to see that

$$
\left|U\left(S \cup\left\{C_{y}\right\}\right) \Delta U\left(S^{\prime} \cup\left\{C_{x}\right\}\right)\right| \leq\left|U\left(S \cup\left\{C_{y}\right\}\right) \Delta U\left(S^{\prime}\right)\right| \leq\left|U(S) \Delta U\left(S^{\prime}\right)\right| .
$$

This violates the $(d ; z)$-separability of M, as desired.
Now consider the case of $\left|S \backslash S^{\prime}\right|=\left|S^{\prime} \backslash S\right|=1$. It is obvious that $\left|S \cup S^{\prime}\right|=d$. Thanks to $d<n$, we can take a column C of M which is in neither S nor S^{\prime}. It is easily seen that $\left|U(S \cup\{C\}) \Delta U\left(S^{\prime} \cup\{C\}\right)\right| \leq\left|U(S) \Delta U\left(S^{\prime}\right)\right|<z$. This contradicts the ($d ; z$)-separability of M, completing the proof.

We are ready to give a correct version of Theorem 1.2.
Theorem 2.3. Suppose M is $a(2 d ; z)$-separable matrix with n columns where $n \geq 2 d+1$. Then one can obtain $a(d ;\lceil z / 2\rceil)$ disjunct matrix by adding at most $\lceil z / 2\rceil$ rows to M.

Proof. Suppose M is not $(d ;\lceil z / 2\rceil)$-disjunct. Then there exist a column C and a set S of d other columns such that $|C \backslash U(S)|<\lceil z / 2\rceil$. By adding at most $\lceil z / 2\rceil$ rows to M such that each row has a 1-entry at column C and 0 -entries at all columns in S, we can obtain $|C \backslash U(S)| \geq\lceil z / 2\rceil$. Of course, there may exist another pair $\left(C^{\prime}, S^{\prime}\right)$ where C^{\prime} is a column and S^{\prime} is a set of d columns other than C^{\prime}, such that $\left|C^{\prime} \backslash U\left(S^{\prime}\right)\right|<\lceil z / 2\rceil$ in M. Then we break it up by using those $\lceil z / 2\rceil$ rows in the same fashion. What we need to show is that this procedure is not self-conflicting, i.e., there do not exist two pairs (C, S) and $\left(C^{\prime}, S^{\prime}\right)$ such that $|C \backslash U(S)|<\lceil z / 2\rceil$, yet on the other hand $C \in S^{\prime}$ while $\left|C^{\prime} \backslash U\left(S^{\prime}\right)\right|<\lceil z / 2\rceil$.

Suppose to the contrary that there exist two pairs (C, S) and $\left(C^{\prime}, S^{\prime}\right)$ in M as described above with $|S|=\left|S^{\prime}\right|=d$. Define $S_{0}=\left\{C^{\prime}\right\} \cup S \cup S^{\prime}, S_{1}=S_{0} \backslash\{C\}$, and $S_{2}=S_{0} \backslash\left\{C^{\prime}\right\}$. Let $s=\left|S_{0}\right|$; then $s \leq 2 d+1$ and $\left|S_{1}\right|=\left|S_{2}\right|=s-1 \leq 2 d$.

Note that $S_{1} \neq S_{2}$, but they have the same cardinality which is less than $2 d+1$. We now show the symmetric difference of $U\left(S_{1}\right)$ and $U\left(S_{2}\right)$ is less than z, thus violating the assumption of ($2 d ; z$)-separability.

Since the only column in S_{1} but not in S_{2} is C^{\prime} and $\left|C^{\prime} \backslash U\left(S^{\prime}\right)\right|<\lceil z / 2\rceil$, we have

$$
\begin{equation*}
\left|U\left(S_{1}\right) \backslash U\left(S_{2}\right)\right|<\lceil z / 2\rceil . \tag{1}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
\left|U\left(S_{2}\right) \backslash U\left(S_{1}\right)\right|<\lceil z / 2\rceil \tag{2}
\end{equation*}
$$

Eq. (1) along with Eq. (2) gives $\left|U\left(S_{1}\right) \Delta U\left(S_{2}\right)\right|<z$, implying that M is not ($s-1 ; z$)-separable. This contradicts Lemma 2.2 and so we have completed the proof.

Corollary 2.4. Suppose M is a $2 d$-separable matrix with n columns where $n \geq 2 d+1$. Then one can obtain a d-disjunct matrix by adding at most one row to M.

Proof. It follows from Theorem 2.3 on setting $z=1$.
Corollary 2.4 is a more rigorous version of Theorem 1.1. The following example shows the necessity of the extra condition $n \geq 2 d+1$ in Corollary 2.4. Let

$$
M_{3}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then M_{3} is trivially 4-separable; but it can be easily verified that no row can be added to M_{3} to make it 2-disjunct. Similarly, any matrix with $2 d$ columns is trivially $(2 d ; z)$-separable and one does not expect that adding $\lceil z / 2\rceil$ rows to an arbitrary matrix with $2 d$ columns would make it ($d ;\lceil z / 2\rceil$)-disjunct. To see a specific counter-example, note that M_{1} is trivially a (4; 4)-separable matrix; but adding two rows does not make it a (2; 2)-disjunct matrix - it is even not (1; 2)-disjunct as indicated at the end of Section 1.

Corollary 2.5. Suppose M is a ($2 d$; z)-separable matrix with n columns where $n \geq 2 d+1$. Then, for any positive integer $k \leq\lceil z / 2\rceil$, one can obtain a $(d ; k)$-disjunct matrix by adding at most k rows to M.

Proof. The proof of Theorem 2.3 shows that there do not exist two pairs (C, S) and $\left(C^{\prime}, S^{\prime}\right)$ such that $|C \backslash U(S)|<\lceil z / 2\rceil$, yet on the other hand $C \in S^{\prime}$ while $\left|C^{\prime} \backslash U\left(S^{\prime}\right)\right|<\lceil z / 2\rceil$. In fact, the term $\lceil z / 2\rceil$ can be replaced by any positive integer k which satisfies the symmetric difference of $U\left(S_{1}\right)$ and $U\left(S_{2}\right)$ is less than z. Therefore, for any $k \leq\lceil z / 2\rceil$, we can obtain a ($d ; k$)-disjunct matrix by adding at most k rows to M in the same fashion.

The following equivalence relation is given in [3] without giving a proof. We now give a proof and use the equivalence relation to obtain a stronger result.

Lemma 2.6 ([3, Lemma 2.7.5]). A matrix M is ($\bar{d} ; z$)-separable if and only if it is $(d ; z)$-separable and ($d-1 ; z$)-disjunct.
Proof. Suppose M is $(\bar{d} ; z)$-separable but not $(d-1 ; z)$-disjunct, in other words, there exists a set S of $d-1$ columns other than a column C such that $|C \backslash U(S)| \leq z$. Then it is easy to see that $|U(S \cup\{C\}) \Delta U(S)|=|U(S \cup\{C\}) \backslash U(S)| \leq z$, a contradiction to $(\bar{d} ; z)$-separability. Thus, M is $(d-1 ; z)$-disjunct and $(d ; z)$-separable trivially.

Let M be $(d ; z)$-separable and $(d-1 ; z)$-disjunct. It suffices to show that $|U(X) \Delta U(Y)| \geq z$ for any two sets X, Y of at most d columns. If $|X|=|Y| \leq d$, then $|U(X) \Delta U(Y)| \geq z$ by $(d ; z)$-separability and Lemma 2.2. Assume $|X|<|Y| \leq d$; then there exists a column $C_{y} \in Y$ but not in X. By $(d-1 ; z)$-disjunctness, we obtain $\left|C_{y} \backslash U(X)\right| \geq z$; hence $|U(X) \Delta U(Y)| \geq z$. This completes the proof.

By Lemmas 2.6 and 2.2, we extend Corollary 2.5 to a stronger version.
Corollary 2.7. Suppose M is $a(2 d ; z)$-separable matrix with n columns where $n \geq 2 d+1$. Then, for any positive integer $k \leq\lceil z / 2\rceil$, one can obtain $a(\overline{d+1} ; k)$-separable matrix by adding at most k rows to M.

3. Concluding remarks

The following remarks demonstrate the optimality of our results.
Remark 1. The constraint $k \leq\lceil z / 2\rceil$ in Corollary 2.5 is necessary if we want the number of rows added to be independent of n and d. To see a specific example, consider that M is an $(n\lceil z / 2\rceil) \times n$ matrix such that each column has $\lceil z / 2\rceil$ 1-entries and any two columns have no intersection. Then, M is $(2 d ; z)$-separable. Since every column has only $\lceil z / 2\rceil$ 1-entries, to make $M(d ; k)$-disjunct by adding rows, the rows added must form a $(d ; k-\lceil z / 2\rceil)$-disjunct submatrix when $k>\lceil z / 2\rceil$. In this case, the minimum number of rows required would depend on n, d and $k-\lceil z / 2\rceil$.

Remark 2. Let N be a $(0,1)$ matrix of constant row sum 1 and constant column sum z and let M be obtained from N by adding one zero column. It is easy to verify that M is $(2 d ; z)$-separable. Since there is a zero column in M, we cannot obtain from M a ($d ; k$)-disjunct matrix by adding less than k rows. This shows that the bound on the number of additional rows given in Corollary 2.5 is optimal in this sense.

References

[1] H.B. Chen, F.K. Hwang, Exploring the missing link among d-separable, \bar{d}-separable and d-disjunct matrices, Discrete Applied Mathematics 133 (2007) 662-664.
[2] D.Z. Du, F.K. Hwang, Combinatorical Group Testing and its Applications, 2nd edition, World Scientific, 1999.
[3] D.Z. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing - Important Tools for DNA Sequencing, World Scientific, 2006.
[4] P. Erdős, P. Frankl, Z. Füredi, Families of finite sets in which no set is covered by the union of r others, Israel Journal of Mathematics 51 (1985) 79-89.
[5] F.K. Hwang, V.T. Sós, Non-adaptive hypergeometric group testing, Studia Scientiarum Mathematicarum Hungarica 22 (1987) $257-263$.
[6] A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Mathematics 162 (1996) $311-312$.
[7] A.J. Macula, Error-correcting nonadaptive group testing with d^{e}-disjunct matrices, Discrete Applied Mathematics 80 (1997) $217-222$.

[^0]: He and Zhong are supported by Science Technology Commission of Shanghai Municipality (Grant 06ZR14048) and Chinese Ministry of Education (Grant 108056).

 * Corresponding author. Fax: +86 2154743152.

 E-mail addresses: andan.am92g@nctu.edu.tw (H.-B. Chen), cyx@mails.tsinghua.edu.cn (Y. Cheng), heqian@sjtu.edu.cn, nd4ren@163.com (Q. He), zhongchongchong@sjtu.edu.cn (C. Zhong).

