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Practical schemes for measurement-device-independent quantum key distribution using phase and path or
time encoding are presented. In addition to immunity to existing loopholes in detection systems, our setup
employs simple encoding and decoding modules without relying on polarization maintenance or optical switches.
Moreover, by employing a modified sifting technique to handle the dead-time limitations in single-photon
detectors, our scheme can be run with only two single-photon detectors. With a phase-post-selection technique,
a decoy-state variant of our scheme is also proposed, whose key generation rate scales linearly with the channel
transmittance.
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I. INTRODUCTION

Quantum key distribution (QKD) enables two remote
parties to securely exchange cryptographic keys [1,2]. Despite
the theoretically provable security of QKD protocols [3–5],
achieving security with realistic devices is still a challenge
[6–10]. In fact, before any security proofs can be applied
to practical scenarios, various device imperfections should
be carefully examined. For example, the detector efficiency
mismatch can be exploited by eavesdroppers to implement
the efficiency mismatch attack [11] or the time-shift attack
[12,13]. Lately, other imperfections, such as the detector’s
after-gate pulses and the dead time, have also been exploited
in hacking strategies [14–17]. Although, in each case, certain
countermeasures have been proposed [18,19], to fully remove
such attacks one must deal with their fundamental root, i.e.,
the detection efficiency loophole. In this paper, we build
on recent progress on measurement-device-independent QKD
(MDI-QKD) [20,21] to propose alternative practical schemes
resilient to detection loopholes, thence shielding out all the
aforementioned attacks in QKD systems.

The security loopholes in QKD systems essentially stem
from the existing issues in Bell’s inequality tests. There are
three major loopholes, corresponding to the three assumptions
in Bell’s inequality tests:

(1) locality loophole [22], which is related to the assumption
that two test parties are spacelike separated;

(2) efficiency loophole [23], which is related to the fair-
sampling assumption [24]; and

(3) randomness (free-will) loophole, which is related to the
assumption that measurement bases are chosen randomly.

In the context of QKD, some of these loopholes have
proved to be more harmful than the others. For instance,
it is reasonable to assume that the information in the two
legitimate parties of QKD, Alice and Bob, is protected
from the eavesdropper, Eve. Thus, the locality loophole
does not necessarily lead to hacking strategies. With recent
developments in quantum random number generators [25,26],
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the randomness loophole may not introduce security issues
either. The efficiency loophole, however, opens up to many
quantum attacks. In fact, the aforementioned attacks all fall
into this category.

One approach to overcome device imperfections is by
using device-independent QKD (DIQKD) schemes [27–30].
The underlying assumptions of security in these schemes are
relaxed to only a few, such as no, or little, direct leakage of
key information out of QKD users. Unfortunately, DIQKD
schemes impose severe constraints on the required specifica-
tions for physical devices in use. For example, the tolerable
error rate is 7.1% and the minimum required transmittance
is 92.4% [31], which make its experimental demonstration
extremely challenging.

In order to relax the above constraints, several detection-
device-independent QKD schemes have been proposed [32,
33]. The main additional assumption is that the source is
trustful. In practice, many QKD schemes use simple source
setups, which can be monitored in real time [34,35]. The
detection system, on the other hand, is more vulnerable to
attacks [11–17]. In [32], for instance, a higher error rate of 11%
and a lower transmittance of 65.9% are allowed. We emphasize
that the scheme presented in [32] uses a partial self-testing
technique to overcome loopholes in detection. However, as
pointed out in [24], the time-shift attack puts an ultimate bound
of 50% on the transmittance. This is due to the random bit
assignment to no-click events in [32]. Recently, Lo, Curty,
and Qi proposed an MDI-QKD scheme [36] that is able to
essentially avoid random bit assignments, hence going beyond
the 50% efficiency limit [20]. By relying on entanglement
swapping techniques [37] and reverse EPR schemes [38], the
MDI-QKD scheme [20] (see also [39]) can achieve similar
performance to traditional QKD systems, while shielding out
detection loopholes.

Thus far, three schemes for MDI-QKD have been proposed,
two of which rely on phase encoding [21], and the original
one uses polarization encoding [20]. The latter requires
polarization maintenance over the quantum channel, which
makes its implementation over optical fibers challenging.
The phase-encoding scheme I in [21] essentially follows
the coherent-state QKD scheme without phase randomization
[40], and its key rate decays quadratically with the channel
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transmission efficiency [41]. Scheme II in [21] relies on the
relative phase between two weak pulses. In order to perform
entanglement swapping, in [21], this phase information is
converted to polarization states before being measured by
a set of four single-photon detectors. Both phase-encoding
schemes require fast optical switches in the measurement
unit. We remark that scheme I in [21] is more robust against
some imperfections of the state preparation, which may offer
benefits in certain practical situations. Note that experimental
demonstrations of the MDI-QKD scheme were presented
recently [42–44].

In this paper, we propose alternative phase-encoding
schemes. Comparing to the one proposed in Ref. [21], our
schemes do not require optical switches in the setups. More-
over, the proposed schemes can be implemented with only two
single-photon detectors, which makes them even more cost
effective. By introducing a proper postselection technique, in
the two-detector setup, we can minimize the effects of the dead
time. Our schemes do not require polarization maintenance,
and, if implemented with single-photon sources, they do not
require a phase reference between Alice and Bob. The decoy-
state versions of our setup are, however, sensitive to the choice
of encoding bases, and in some cases require a mutual phase
reference. By introducing a phase-post-selection technique, we
can, however, reduce the error rate in the decoy-state protocols.
Note that the security of the proposed phase-post-selection
technique needs to be further investigated.

The rest of this paper is organized as follows. In Sec. II,
we propose a path-phase-encoding MDI-QKD scheme with
single-photon states. We simplify our setup in Sec. III and
generalize it to coherent-state sources in Sec. IV. We conclude
the paper in Sec. V.

II. SINGLE-PHOTON MDI-QKD

In this section, we present an alternative MDI-QKD scheme
using path and phase-encoding techniques [45–47]. A key
component of our scheme is still a partial Bell-state measure-
ment (BSM) module implemented by 50 : 50 beam splitters
and single-photon detectors; see the Eve or Charlie’s box in
Fig. 1. In this section, we assume that perfect single-photon
(qubit) sources are used by Alice and Bob. We use the setup in
Fig. 1 to illustrate how our scheme works. In Sec. III, we will
present a more practical setup for implementation purposes.

Our path-encoding MDI-QKD scheme works as follows.
Alice and Bob, in Fig. 1, each prepares a single-photon
state and passes them through 50 : 50 beam splitters. The
resulting two modes are referred to as reference and signal
modes, denoted, respectively, by ar and as on Alice’s side,
and br and bs on Bob’s side. In order to generate the four
states of the BB84 protocol, phase modulators, respectively,
introduce relative phase shifts θa and θb between the reference
and signal modes of Alice and Bob to obtain the following
state:(|1〉ar

|0〉as
+ eiθa |0〉ar

|1〉as

) ⊗ (|1〉br
|0〉bs

+ eiθb |0〉br
|1〉bs

)
,

(1)

where normalization factors are neglected for now. To follow
the BB84 protocol, Alice and Bob randomly choose θa and θb

from the two basis sets of {0,π} and {π/2,3π/2}. Phase values

FIG. 1. (Color online) A schematic diagram for the path-phase-
encoding MDI-QKD scheme. Here, BS stands for 50 : 50 beam
splitter and PM stands for phase modulator. Alice and Bob each
encodes their qubits by introducing a relative phase shift between their
reference and signal beams. The phase shifts are applied to the signal
modes using PMs, chosen from the set {0,π/2,π,3π/2}. A partial
BSM, possibly performed by an untrusted party, Eve or Charlie, on the
two reference and the two signal modes would establish correlations
between the raw key bits of Alice and Bob. Provided that they use the
same phase basis, a joint click on detectors r0 and s0 implies identical
bits for Alice and Bob, so does a joint click on r1 and s1. A joint click
on r0 and s1 or r1 and s0 would imply complement bits.

0 and π/2 represent bit 1 and the other two represent bit 0.
When single-photon sources are used, the overall phase has no
effect on the final result and will be neglected here.

To better understand how the setup in Fig. 1 works, let us
first neglect the channel loss and dark count effects, which will
be addressed in Appendix A. We also assume that the relative
phase between the reference and signal modes is preserved;
we will see that, in the next section, how this can practically be
achieved. A successful partial BSM in Fig. 1 occurs when one,
and only one, of r0 and r1, and one, and only one, of s0 and s1

click. All other detection events, such as the case when both r0

and r1 click, are discarded. Conditioned on a successful BSM
outcome, the relevant terms in the joint state of Alice and Bob
are given by

|1〉ar
|0〉as

|0〉br
|1〉bs

+ ei(θa−θb)|0〉ar
|1〉as

|1〉br
|0〉bs

. (2)

The above state will go through two 50 : 50 beam splitters,
which remove any which-way information, in the BSM module
resulting in

|01 + 10〉r0r1
|01 − 10〉s0s1

+ ei(θa−θb)|01 − 10〉r0r1
|01 + 10〉s0s1

= |0101 − 0110 + 1001 − 1010〉r0r1s0s1
+ ei(θa−θb)|0101

+ 0110 − 1001 − 1010〉r0r1s0s1 , (3)

where r0, r1, s0, and s1 represent the input modes to the
corresponding detectors in Fig. 1, and we have used the
following transformation for the two beam splitters:

|1〉ar
|0〉br

�→ |0〉r0
|1〉r1

+ |1〉r0
|0〉r1

,

|0〉ar
|1〉br

�→ |0〉r0
|1〉r1

− |1〉r0
|0〉r1

,
(4)

|1〉as
|0〉bs

�→ |0〉s0
|1〉s1

+ |1〉s0
|0〉s1

,

|0〉as
|1〉bs

�→ |0〉s0
|1〉s1

− |1〉s0
|0〉s1

.

In the above equation, we assume that the photons arriving
at the relay are indistinguishable. This can be guaranteed by

062319-2



ALTERNATIVE SCHEMES FOR MEASUREMENT-DEVICE- . . . PHYSICAL REVIEW A 86, 062319 (2012)

applying filters [48] before the 50 : 50 beam splitters in the
measurement box.

If θa − θb = 0, then the state in Eq. (3) becomes

|0101 − 1010〉r0r1s0s1
; (5)

that is, either detectors r0 and s0, and only these two, click or
r1 and s1 click. Otherwise, if θa − θb = ±π , then the state in
Eq. (3) becomes

|0110 − 1001〉r0r1s0s1
, (6)

which means that either detectors r0 and s1 click, or r1 and s0

click. In all other cases, where θa − θb = ±π/2, two random
detectors out of four will click, and then Alice and Bob’s
qubits are independent of each other. Such events will be
ruled out by a standard basis-sift procedure. Detection events
on only reference (signal) detectors will be ruled out as well,
justifying the choice of relevant terms in Eq. (2). In the end,
Alice and Bob’s bits, determined by relative phases θa and
θb, will be correlated or anticorrelated conditioned on the
detection events in the relay.

Similar to the single-photon case of the original MDI-QKD
scheme [20], the key rate formula for our MDI-QKD scheme
follows Shor-Preskill’s result [5,6]

R � Y11[1 − f H (e11) − H (e11)], (7)

where Y11 is the successful detection (trigger in the relay) rate
provided that Alice and Bob send out single photons; e11 is
the quantum bit error rate (QBER); f is the error correction
inefficiency (see, e.g, [49]; normally, f � 1 with the Shannon
limit of f = 1); and H (x) is the binary entropy function,
H (x) = −x log2(x) − (1 − x) log2(1 − x). In Appendix A,
we derive the relevant terms in Eq. (7) when loss and other
nonidealities are taken into account [see Eqs. (A9) and (A11)].

Our single-photon MDI-QKD scheme offers certain ad-
vantages over similar schemes in [20,21]. A key difference
of our scheme with the original MDI-QKD scheme in [20]
lies on their encoding procedures. In the scheme of Fig. 1,
the qubit information is encoded in the relative phases of
two orthogonal optical modes. The original scheme, on the
other hand, relies on polarization encoding, which requires
sharing a polarization reference between all three parties and
polarization maintenance along the channel. As compared to
the MDI-QKD scheme II in [21], if used with single photons,
both schemes use similar phase encoding, and are resilient
to overall phase errors. In our case, the detection setup is
simpler: it does not rely on optical switches and, as we will
show in the next section, it can operate by using only two
detectors. Note that, for the partial BSM part, all schemes
require indistinguishable photons, hence filtering before the
BSM modules is necessary.

The scheme in Fig. 1 relies on single-photon states
for its proper operation. In practice, on-demand single-
photon sources can be implemented using parametric down-
conversion processes [50], or by relying on quasiatomic sys-
tems such as quantum dots [51]. In these scenarios, one must
consider the effect of multiple photons on system performance,
which will be addressed in a separate publication. With
recent advancements in compact cost-effective single-photon
sources, the reliance on single-photon states in our scheme
is not necessarily a setback, especially when considering the

simplicity of the BSM module as compared to those proposed
in [20,21]. Nevertheless, in Sec. IV, we present the decoy-state
version of our protocol, which does not rely on single-photon
sources.

The setup in Fig. 1 requires two optical channels for
each user, which seems redundant and requires relative phase
maintenance between the two channels. In the following
section, we show that, by using a simple time-multiplexing
trick, one can resolve both issues.

III. MDI-QKD WITH TIME MULTIPLEXING

Instead of path encoding, Alice and Bob can use time
multiplexing to separate their reference and signal modes.
That can be achieved by using Mach-Zehnder interferometers
at the transmitter, as shown in Fig. 2. That would result in both
reference and signal pulses traveling along the same physical
channel. Moreover, if the time delay between the two modes is
sufficiently short, we can reliably assume that the relative phase
between the reference and signal modes is well preserved along
the channel, as required in Fig. 1. The BSM module in Fig. 2
is also simpler than that of Fig. 1, as we are only using two,
rather than four, single-photon detectors. It is also simpler than
the proposed BSM modules in [20,21], as it does not require
optical switches or phase-to-polarization converters. Similar to
any other schemes, time synchronization is required to ensure
that the corresponding reference and signal modes will arrive
at the right time and properly interfere with each other.

The main problem that must be addressed in this time-
multiplexed scheme is the dead time of single-photon detec-
tors. That is, after detection, a detector will be nonresponsive
(dead) for a period of time until it resets. The dead time of
a detector is caused by the after-pulse effect in avalanche
photodiode single-photon detectors. In the time-multiplexed
scheme, the detectors are required to detect photons in two
consecutive pulses, whose time difference could be short. The
dead time of detectors then ultimately limits the repetition rate
of the proposed scheme. Here, we propose proper postselection
methods to address the dead-time problem.

For the postselection of events, at the BSM module of Fig. 2,
we consider two scenarios. In the first scenario, we assume
that the dead time of single-photon detectors is shorter than
the delay in Mach-Zehnder interferometers. In this case, we
can use exactly the same postselection technique as described
in Sec. II. The only difference would be that for the time slot
corresponding to signal pulses, detectors r0 and r1 in Fig. 2
resemble detectors s0 and s1 in Fig. 1. With recent advances
in single-photon detectors with ultrashort dead times [52,53],

FIG. 2. (Color online) A schematic diagram of the time-
multiplexed MDI-QKD protocol. Alice and Bob each encodes their
qubits onto relative phases of two optical modes separated in time,
ar , as , br and bs , respectively. The partial BSM, using a 50 : 50 BS,
is performed in the relay owned by a possibly untrusted party.
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one can use a repetition rate as high as 500 MHz with our
scheme. In order to go to higher repetition rates, one must use
a delay possibly shorter than the detector’s dead times. From
the discussion of Eqs. (5) and (6), we notice that only when
Alice and Bob’s results are correlated (they have used the same
phase), is the dead-time issue problematic. In order to resolve
this issue, Alice and Bob can further sift out those detection
events resulting from the terms in Eq. (5). That is, by accepting
a factor of 1/2 loss in the final key rate, we will only keep
measurement results in which both r0 and r1 click, each at a
different time slot corresponding to the arrival of the reference
or signal beams. With the above modified postselection
technique, the setup in Fig. 2 provides comparable secret key
generation rates to other single-photon MDI-QKD schemes,
while offering a simple and cost-effective structure.

The setup in Fig. 2 can be easily modified to implement
encoding in all three Pauli bases. If we represent the standard
basis vectors, i.e., eigenvectors of the Z operator, by a single-
photon state in the reference mode and a single-photon state
in the signal mode, the encodings implemented by the setup
of Fig. 2 are that of X and Y bases. If one replaces the first
beam splitter in the encoder with a polarizing beam splitter,
and uses horizontally or vertically polarized light at the source
[54], we can use the same setup for Z-basis encoding as well.
In the case of single-photon sources, which of two bases to
choose for the QKD protocol is arbitrary. Once we consider
the decoy-state version of our protocol, however, the choice of
bases is more crucial. In fact, it turns out that X and Y bases
are prone to a larger value of QBER than the Z basis. That
is why, in the experimental setup of [42,44], Z- and X-basis
encoding is used. A brief analysis of the decoy-state version
of the MDI-QKD protocol with Z- and X-basis encoding is
given in [20], which we will rederive within our own setup in
Appendix B. In the next section, however, we will consider the
more challenging X- and Y -basis encoding for the decoy-state
protocol and propose postselection techniques to reduce the
QBER in such a scenario.

IV. DECOY-STATE MDI-QKD

In this section, the decoy-state version of our scheme is
presented. A weak laser pulse is perhaps the easiest way to
approximate a single-photon state. Due to the multiple-photon
component in a laser pulse, in the context of QKD, coherent-
state sources are considered to be basis dependent [55]. For a
basis-dependent source, one can apply decoy-state technique
to monitor the channel transmittance of the single-photon
component in the source [40,56–58].

In the security proof of the decoy-state scheme, the overall
phase of the coherent-state source is assumed to be randomized
[40,59]. The main problem with using phase-randomized
coherent states, in the setup of Fig. 1, is that the probability
of a single photon coming out of Alice’s source and a single
photon from Bob’s source is on the same order as the case of
having two photons at Alice’s or Bob’s, and no photon out of
the other source. The former is what we need to generate a
secret key bit, whereas the latter could result in random clicks.
In fact, the QBER, in the scheme of Fig. 1, could be over 20%
if we use a standard decoy-state protocol. In order to resolve
this issue, in this section, we assume that Alice and Bob have

a common overall phase reference. We then use an improved
phase-post-selection technique to enhance the efficiency of
error correction. We remark that a full security proof of this
technique is yet to be addressed.

A. Key rate

The security analysis for our scheme with decoy states
follows from that of [20,21], which rely on the photon-number
channel model used in [40]. The key rate for the original
decoy-state QKD is given by [40,60]

R � q{−Qμf H (Eμ) + Q1[1 − H (e1)] + Q0}, (8)

where q is the basis sift factor; the subscript μ denotes
the average number of photons per pulse; Qμ and Eμ are,
respectively, the overall gain and QBER; Q1 and e1 are,
respectively, the gain and the error rate of the single-photon
components; and Q0 is the gain of the vacuum state (from
background).

There are certain details to be considered before applying
Eq. (8) to our case. The basis sift factor q is equal to 1/2 in
the original BB84 protocol due to the fact that half of the time
the bases chosen by Alice and Bob disagree. In the efficient
BB84 protocol [61], however, the factor q can approach 1 in
the infinite-size key limit. In our MDI-QKD scheme, there is
an extra factor of 1/2 due to the partial BSM described in
Sec. II. If one uses the correlation sift technique to handle
the dead-time problem as discussed in Sec. III, another factor
of 1/2 must also be accounted for. In our key-rate analysis,
described in Appendix B, we merge this factor q into other
gain factors to obtain

R � Q11[1 − H (e11)] + Q′
0μb

− Iec,
(9)

Iec = Qμaμb
f H

(
Eμaμb

)
,

where Iec is the cost of error correction; Qμaμb
(Eμaμb

) is
the overall gain (QBER) when Alice and Bob, respectively,
use an average photon number of μa and μb; Q11 (e11) is
the gain (QBER) when both sources generate single-photon
states; and Q′

0μb
= exp(−μa)Q0μb

is the probability that
there is no photon from Alice’s side and a successful BSM
occurs. Appendix B provides detailed definitions for the above
parameters.

Here, we assume that Alice and Bob use forward classical
communication (Alice to Bob) for error correction and privacy
amplification, which leads to the Q′

0μb
term in the key rate

formula in Eq. (9). The security argument behind it is that
when Alice sends out vacuum states, Eve gains nothing about
Alice’s qubits by measuring the state in the channel [60,62].
Of course, one can assume that Alice and Bob perform
reverse reconciliation, in which case Q′

0μb
must be replaced

with Q′
μa0 = exp(−μb)Qμa0. We emphasize that, because of

relying on two photons for a successful BSM, Q′
0μb

is on
the same order of Qμaμb

for coherent-state sources. Thus, its
contribution is significant. On the contrary, for the key rate of
a regular decoy-state QKD given by Eq. (8), the contribution
from the vacuum state, Q0, is insignificant due to the fact that
normally the background count rate is much lower than Qμ.

Note that, in MDI-QKD schemes, postprocessing can be
performed separately on bit strings obtained from different
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bases [63], or from different detection events (correlated and
anticorrelated). In practice, this extra information may be
useful for error correction [32].

B. MDI-QKD with phase postselection

As mentioned before, the intrinsic QBER in our decoy-state
scheme can be very high if one uses a fully phase-randomized
coherent source. Note that randomization of the overall phase
over [0,2π ) can be regarded as randomization over one of the
following N regions:{[

mπ

N
,
(m + 1)π

N

)
∪

[
(m + N )π

N
,
(m + N + 1)π

N

)∣∣∣∣m
= 0,1,2,N − 1

}
. (10)

The choice of the region and the overall phase therein are
random at the source. In the conventional decoy-state protocol,
no information about the overall phase is exchanged between
two users. In our scheme, before error correction, Alice and
Bob would reveal which region they had used. They would
only keep raw key bits for which they both have used the same
phase region. This extra information would reduce the cost of
error correction, because the QBER is different for the raw
key from different regions. In fact, in Fig. 3, we can see that
by using N = 4 and N = 8, corresponding to, respectively,
two and three bits of classical information, the QBER has
been reduced to below 5% and 1.3%. In Fig. 3, we have
assumed that ηaμa = ηbμb, where ηa and ηb are, respectively,
the total transmission efficiency for Alice and Bob’s paths. In
Appendix B, we show that the QBER Eμaμb

is minimized under
this condition. Note that Alice and Bob do not need to control
the phases of coherent states precisely, which is practically
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FIG. 3. (Color online) QBER for the MDI-QKD scheme in Fig. 1
with coherent-state sources, conditioned on partial knowledge of the
overall phase. The overall QBER, calculated by Eq. (B15), represents
the case where no phase information is shared. Curves labeled
“W/2(3)-bit comm” represent cases where Alice and Bob postselect
states coming from the same phase region, out of N = 4(8) phase
bands in Eq. (10). The conditional QBER is calculated numerically
using Eq. (B20). No background noise or misalignment is assumed.

challenging. Instead, as long as they know the phase partition
in Eq. (10) with a high probability, the phase postselection
method proposed here can be implemented. We leave the case
where Alice and Bob do not exactly know the phase values for
future study.

Conditioned on the classical bits Alice sends to Bob, the
cost of error correction in Eq. (9) is given by

Iec =
∑
m

Qmf H (Em), (11)

where m is the partition index in Eq. (10), and Qm and Em are
the corresponding conditional gain and QBER [see Eqs. (B19)
and (B20)].

Our numerical calculations show that the key rate given by
Eqs. (9) and (11) is not positive for the parameter set listed in
Table I. If, however, one assumes the gain and error rates of
single-photon states are evenly distributed over the partitions
of Eq. (10), the key rate formula, Eq. (9), becomes

R � 1

N
Q11[1 − H (e11)] − Qmf H (Em)|m=0, (12)

where we take the lower bound of Q′
0μb

� 0. Here, we only
keep the term corresponding to m = 0 in Eq. (11), in which
case Em is minimized.

C. Key-rate comparison

In this section, we numerically compare the secret key
generation rate for the MDI-QKD schemes proposed here
using single-photon and decoy-coherent states with that of
[20]. For fair comparison, we use the same parameter values
used in [20] for our numerical evaluation, which follow the
experiment reported in [64] (see also [65]). The numerical
parameters used are listed in Table I. We have used Eq. (12)
and formulas in Appendices A and B to evaluate the key rate
of our decoy-state scheme.

Figure 4 shows the secret key generation rate for the three
schemes mentioned above. The middle curve corresponds to
that of the original MDI-QKD scheme [20], obtained from
Eq. (B27). It can be seen that while our single-photon scheme
can outperform the original MDI-QKD scheme, our decoy-
state protocol falls short of achieving the same performance.
Nevertheless, both our schemes offer simpler BSM modules
than what proposed in [20,21]. One of the reasons why the
key rate of our scheme is lower than the original scheme is the
additional phase postselection factor of N = 8.

The key rate in our scheme (and the original scheme [20])
scales better with distance than that of scheme I in [21]. The

TABLE I. List of experimental parameters used in numerical
results: pd is the background count rate per detector; f is the error
correction inefficiency; and ed is the misalignment error between
Alice and Bob, which characterizes the stability of the relative phases
at the encoders and through the channel. Note that two detectors are
used in the original experiment [64], thus pd should be roughly half
of the total background count rate.

Quantum efficiency pd f ed

14.5% 3.0 × 10−6 1.16 1.5%
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FIG. 4. (Color online) Key rate comparison for single-photon and
decoy-state MDI-QKD schemes. The setup parameters are listed in
Table I. The solid line indicates the key rate for the X–Y -basis-
encoding scheme with decoy states plus three-bit communication
for overall phase postselection, shown in Eq. (12). The dashed line
shows the performance of the original MDI-QKD with X–Z-basis
encoding. The related formulas for simulation can be found in
Appendices A and B. The μ’s are optimized for the two decoy-state
curves.

latter yields a key rate scaling quadratically with the channel
transmittance, whereas in our scheme, it scales linearly. This is
because the optimal μ of scheme I is on the same order of the
transmission efficiency as shown in [21], whereas the optimal
μ in our scheme is on the order of 1, as shown in Fig. 5.

From Fig. 5, one can see that the optimal μ in our scheme
is smaller than the one given by the original MDI-QKD. This
is because in our scheme, multiphoton states would introduce
false triggers in the BSM relay, which causes an error rate of
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FIG. 5. (Color online) Optimal average photon number of co-
herent state for the X–Y -basis-encoding scheme (solid line) and the
original MDI-QKD scheme (dashed line, X–Z encoding) with decoy
states. The setup parameters are listed in Table I and the related
formulas can be found in Appendix B.

1/2. In order to reduce such an effect, a smaller μ should be
used. This is another reason why the key rate of our decoy-state
scheme is lower than the original one, as shown in Fig. 4. We
remark that the key rate is quite stable with certain changes of
μ, except for the regime where the channel loss is close to the
maximal tolerable one.

V. CONCLUDING REMARKS

Measurement-device-independent schemes have been pro-
posed to close the detection loopholes in QKD systems. In
this paper, we presented phase-encoding MDI-QKD setups
that could offer certain practical advantages over previously
proposed schemes in [20,21]. If implemented with single-
photon states, our scheme enjoys a simple detection setup,
consisting of only two single-photon detectors and a 50 : 50
beam splitter, with little or no compromise on the performance.
Polarization or overall phase maintenance through quantum
channels is not required in our schemes, either. This is an
advantage over the polarization scheme in [20] or the phase-
encoding schemes in [21]. There are different decoy-state
versions one can implement using our setup. The original
MDI-QKD is effectively using an X–Z-basis encoding, with
a lower QBER for the Z basis. Here we showed that, by
a proper overall phase selection scheme, we could achieve
positive secret key rates even if we used X and Y bases
for encoding over a moderately long range of distances. We
remark that the security of the phase postselection technique
described in Appendix B 2 needs to be further investigated.
Similar questions were raised for DIQKD schemes [32].

For a full key rate analysis, finite-key effects and statistical
fluctuations must also be considered. That would include
fluctuation analysis for decoy states [57] as well as phase error
estimations [63,66]. We remark that the statistical fluctuation
analysis for the MDI-QKD with decoy states has been recently
presented [54]. Other finite-key effects, such as authentication,
are expected to be negligible compared to the above two effects
in a large parameter set [63].

In the current MDI-QKD realizations [20,21], including the
one we propose here, we assume Alice and Bob use the same
source settings. It is interesting to study the case where two
source settings are different. For instance, one of the parties
uses coherent states with the decoy-state protocol and the other
one uses single-photon states.

We finally remark that our proposed scheme can be easily
adapted to quantum network settings [67,68]. For a single-hop
network, the switching center is a collection of several BSM
modules along with switching and controlling devices. For
longer distances, one can connect two switching centers with
quantum repeaters [46,47,69–72] and effectively enable any
two users to exchange secret keys. One of the key advantages
of such a setup is the simplicity and the low cost of local users’
equipment (the optical source), while the more expensive part,
i.e., detectors, are shared among all users.
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APPENDIX A : MDI-QKD WITH SINGLE-PHOTON STATES

In this appendix, we will consider channel losses, back-
ground counts, and misalignment errors for the scheme
introduced in Sec. II. The initial joint state of Alice and Bob
is given by Eq. (1). After passing through lossy channels,
modeled by beam splitters with transmissivities ηa and ηb,
and considering the normalization factors, the state in Eq. (1)
becomes a mixed state as follows:

ηaηb

4
|ψ11〉〈ψ11| + ηa(1 − ηb)

2
|ψ10〉〈ψ10|

+ (1 − ηa)ηb

2
|ψ01〉〈ψ01| + (1 − ηa)(1 − ηb)|ψ00〉〈ψ00|,

(A1)

where

|ψ11〉 = |1010〉 + eiθa |0110〉 + eiθb |1001〉 + ei(θa+θb)|0101〉,
|ψ10〉 = |1000〉 + eiθa |0100〉,

(A2)
|ψ01〉 = |0010〉 + eiθb |0001〉,
|ψ00〉 = |0000〉.

Here, as a shorthand notation, in the above equation |abcd〉
represents the joint number state |abcd〉arasbr bs

.
The state in Eq. (A1) will then pass through beam splitters

in the relay, as described in Eq. (4). The state |ψ11〉 is
transformed to

[|1010〉 + eiθa |0110〉 + eiθb |1001〉 + ei(θa+θb)|0101〉]
�→ 1√

2
|02 − 20〉|00〉 + 1

2
eiθa |01 − 10〉|01 + 10〉

+ 1

2
eiθb |01 + 10〉|01 − 10〉 + 1√

2
ei(θa+θb)|00〉|02 − 20〉,

(A3)

where the optical modes ar , as , br , and bs are mapped to r0,
r1, s0, and s1. Here, we used the following transformations
corresponding to a 50 : 50 beam splitter:

|0〉ar
|0〉br

�→ |0〉r0
|0〉r1

,

|1〉ar
|1〉br

�→ [|0〉r0
|2〉r1

− |2〉r0
|0〉r1

]/
√

2,
(A4)

|0〉as
|0〉bs

�→ |0〉s0
|0〉s1

,

|1〉as
|1〉bs

�→ [|0〉s0
|2〉s1

− |2〉s0
|0〉s1

]/
√

2,

where the arrived photons are assumed to be indistinguishable,
say, by passing through proper filters, such as polarization and
frequency filters, before the partial BSM.

Similarly, other states in Eq. (A2) are transformed to

|1000〉 + eiθa |0100〉 �→ [|01 + 10〉|00〉
+ eiθa |00〉|01 + 10〉]/

√
2,

(A5)
|0010〉 + eiθb |0001〉 �→ [|01 − 10〉|00〉

+ eiθa |00〉|01 − 10〉]/
√

2,

|0000〉 �→ |0000〉.
Define a successful partial BSM event to be the case when

exactly one of the two detectors in each mode of the relay (that
is, r0 and s0, r0 and s1, r1 and s0, or r1 and s1) clicks, as shown
in Fig. 1. The yield Y11 is defined as the probability to have a
successful measurement event, given that both Alice and Bob
send out single-photon states and choose the same basis (that
is, θa − θb = 0,π ).

When Alice and Bob’s bits are correlated (θa − θb = 0),
Eq. (A3) becomes

[|1010〉 + eiθa |0110〉 + eiθb |1001〉 + ei(θa+θb)|0101〉]
�→ 1√

2
|02 − 20〉|00〉 + eiθa |0101 − 1010〉

+ 1√
2
e2iθa |00〉|02 − 20〉, (A6)

where the second term on the right-hand side is the postselected
term mentioned in Eq. (5).

With Eqs. (A1), (A2), (A5), and (A6), we can calculate the
probability for a single click in each mode when θa − θb = 0,

0Y
r0s0
11 = 0Y

r1s1
11 = (1 − pd )2

[
ηaηb

4
+

(
ηa + ηb

2
− 3ηaηb

4

)
pd

+ (1 − ηa)(1 − ηb)p2
d

]
,

(A7)

0Y
r0s1
11 = 0Y

r1s0
11 = (1 − pd )2

[(
ηa + ηb

2
− 3ηaηb

4

)
pd

+ (1 − ηa)(1 − ηb)p2
d

]
,

where pd is the background rate for one detector (pd ≈ Y0/2).
Due to the symmetry, the probabilities for the case when θa −
θb = π are similar:

πY
r0s0
11 = πY

r1s1
11 = 0Y

r0s1
11 ,

(A8)
πY

r0s1
11 = πY

r1s0
11 = 0Y

r0s0
11 .

Thus the yield Y11, defined as the total probability to have a
successful measurement event when Alice and Bob use the
same basis, is given by the summation of the terms in Eq. (A7)
[or Eq. (A8)] as follows:

Y11 = 0Y
r0s0
11 + 0Y

r1s1
11 + 0Y

r0s1
11 + 0Y

r1s0
11

= (1 − pd )2

[
ηaηb

2
+ (2ηa + 2ηb − 3ηaηb)pd

+ 4(1 − ηa)(1 − ηb)p2
d

]
. (A9)

When pd = 0, Y11 = ηaηb/2, which is reasonable because the
probability of the two optical modes each containing exactly
one photon is 1/2.
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An error may occur when θa − θb = 0 but an anticorrelated
detection signal comes out; that is, detectors r0 and s1, or r1

and s0 click. Thus, the error rate due to background noise is
given by

e′
11Y11 = 0Y

r0s1
11 + 0Y

r1s0
11 = (1 − pd )2

[(
ηa + ηb − 3ηaηb

2

)
pd

+ 2(1 − ηa)(1 − ηb)p2
d

]

= e0(1 − pd )2

[
(2ηa + 2ηb − 3ηaηb)pd

+ 4(1 − ηa)(1 − ηb)p2
d

]
, (A10)

where e0 = 1/2 is the error rate of a random (background)
noise. Now considering possible phase errors, i.e., the devi-
ation of �θ = θa − θb from its nominal value, the total error
rate is given by

e11Y11 = (1 − pd )2

[
ed

ηaηb

2
+ e0(2ηa + 2ηb − 3ηaηb)pd

+ 4e0(1 − ηa)(1 − ηb)p2
d

]

= e0Y11 − (e0 − ed )(1 − pd )2 ηaηb

2
, (A11)

where ed is approximately the variance of �θ , accounting for
channel relative-phase distortions (misalignment).

APPENDIX B : MDI-QKD WITH DECOY STATES

In this appendix, we calculate the key parameters in Eq. (9).
As pointed out in [20], with an infinite number of decoy states,
these parameters can be accurately estimated. One of the key
assumptions in decoy-state analysis is the phase randomization
at the source [57]. According to the photon channel model [40],
with phase randomization, a coherent state can be regarded as
a mixture of Fock states. In fact, any state can be treated as
a mixture of Fock states when the phase of the Fock state
component is randomized. In this appendix, we first consider
the case when the phase is randomized over [0,2π ), and then
consider our phase postselection technique. For simplicity, we
only consider the limit of the efficient BB84 scheme, where the
basis-sift factor is approaching 1 [61]. That is, the difference
between relative phases set by Alice and Bob in Fig. 1 is either
0 or π almost surely.

1. Coherent states with full phase randomization

Now, let us consider the case where phase-randomized
coherent states are used [73]. According to the Poisson
distribution of photon numbers in a coherent state, the gain of
single-photon states Q11 defined as the probability that both
Alice and Bob send out single-photon states with the same
basis and obtain a successful partial BSM is given by

Q11 = μaμbe
−μa−μbY11, (B1)

where the yield Y11 is given by Eq. (A9).
Next, we evaluate the overall gain and QBER. Alice and

Bob prepare coherent states with intensities μa and μb,

respectively, and randomize the phases∣∣eiφa
√

μa

〉
a

∣∣eiφb
√

μb

〉
b
, (B2)

where φa and φb are the overall randomized phases. Then, the
photon sources are split into two orthogonal optical modes,
labeled by r and s, by 50 : 50 beam splitters, as described in
Sec. II,∣∣∣∣eiφa

√
μa

2

〉
ar

∣∣∣∣ei(θa+φa )

√
μa

2

〉
as

∣∣∣∣eiφb

√
μb

2

〉
br

∣∣∣∣ei(θb+φb)

√
μb

2

〉
bs

,

(B3)

where θa and θb are the relative phases Alice and Bob want
to encode, as shown in Fig. 1. Transmitting through lossy
channels, modeled by beam splitters, the joint state arrived at
the relay can be expressed by∣∣∣∣eiφa

√
ηaμa

2

〉
ar

∣∣∣∣ei(θa+φa )

√
ηaμa

2

〉
as

∣∣∣∣eiφa

√
ηbμb

2

〉
br

⊗
∣∣∣∣ei(θb+φb)

√
ηbμb

2

〉
bs

. (B4)

After passing through the beam splitters in the relay, the state
is transformed into, according to Eq. (4), four detection modes
r0, r1, s0 and s1,∣∣∣∣eiφa

√
ηaμa

2
+ eiφb

√
ηbμb

2

〉
r0

∣∣∣∣eiφa

√
ηaμa

2
− eiφb

√
ηbμb

2

〉
r1

⊗
∣∣∣∣ei(θa+φa )

√
ηaμa

2
+ ei(θb+φb)

√
ηbμb

2

〉
s0

⊗
∣∣∣∣ei(θa+φa )

√
ηaμa

2
− ei(θb+φb)

√
ηbμb

2

〉
s1

. (B5)

Therefore, the detection probabilities for the four detectors are
given by

Dr0 = 1 − (1 − pd ) exp

(
−

∣∣∣∣eiφa

√
ηaμa

2
+ eiφb

√
ηbμb

2

∣∣∣∣
2
)

,

Dr1 = 1 − (1 − pd ) exp

(
−

∣∣∣∣eiφa

√
ηaμa

2
− eiφb

√
ηbμb

2

∣∣∣∣
2
)

,

Ds0 = 1 − (1 − pd )

× exp

(
−

∣∣∣∣ei(θa+φa )
√

ηaμa

2
+ ei(θb+φb)

√
ηbμb

2

∣∣∣∣
2
)

,

Ds1 = 1 − (1 − pd )

× exp

(
−

∣∣∣∣ei(θa+φa )
√

ηaμa

2
− ei(θb+φb)

√
ηbμb

2

∣∣∣∣
2
)

.

(B6)

For simplicity, we use the following notations:

μ′ = ηaμa + ηbμb,

�φ = φb − φa,
(B7)

x = √
ηaμaηbμb/2,

y = (1 − pd )e−μ′/4.

Here, μ′ denotes the average number of photons reaching
the relay, and �φ denotes the difference between the random
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overall phases set by Alice and Bob, which should be integrated
over [0,2π ). Then, Eq. (B6) can be simplified to

Dr0 = 1 − ye−x cos �φ ,

Dr1 = 1 − yex cos �φ ,
(B8)

Ds0 = 1 − ye−x cos(�φ+θa−θb),

Ds1 = 1 − yex cos(�φ+θa−θb).

The gain Qμaμb
is defined as the probability that Alice

and Bob choose the same basis and obtain a successful
measurement, and is given by

Qμaμb
= [

Dr0

(
1 − Dr1

) + (
1 − Dr0

)
Dr1

][
Ds0

(
1 − Ds1

)
+ (

1 − Ds0

)
Ds1

]
. (B9)

Strictly speaking, Eq. (B9) should be averaged over random
phases φa and φb, and different values for θa and θb. We delay
this averaging until the last stage. By substituting Eq. (B8) into
Eq. (B9), we have

Qμaμb
= y2(e−x cos �φ + ex cos �φ − 2y)2, (B10)

where we use the fact that |θa − θb| = 0,π when Alice and Bob
choose the same basis. For a small μ′ (thus,

√
ηaμaηbμb �

μ′/2 is also small) and pd = 0, the gain, Eq. (B10), will be
approximated by

Qμaμb
→

(
μ′

2

)2

. (B11)

Note that Eq. (B11) is independent of �φ , which can
be understood as follows. In the weak coherent-state limit
(ηaμa ≈ ηbμb � 1), there are two dominant terms in the relay:
single-photon states on both sides versus a vacuum state on
one arm and a two-photon state on the other. The vacuum
state is not affected by the phase shift, and then the phase of
the two-photon state will behave like an overall phase, which
does not affect the measurement result. Also, as shown in
Sec. II, the randomized phase does not affect the partial BSM
of single-photon states. Thus, Eq. (B11) is independent of �φ .

Now, we take the integral of �φ for Eq. (B10),

Qμaμb
= 2y2[1 + 2y2 − 4yI0(x) + I0(2x)], (B12)

where I0(x) is the modified Bessel function of the first kind. For
small values of x, one can take the first-order approximation
to I0(x) ≈ 1 + x2/4 to verify that Eq. (B12) approaches
Eq. (B11), when pd = 0 and μ′ is small. Note that in this
weak coherent-state limit, the overall gain Qμaμb

cannot be
approximated by the gain of single-photon states, Q11 in
Eq. (B1), because two-photon states cannot be neglected in
this case. This is different from regular decoy-state QKD [57],
where a coherent state can be approximated as a single-photon
state when the intensity is low enough. We remark that this
property will make the statistical fluctuation analysis more
complicated for MDI-QKD.

Using Eq. (B12), we calculate Q′
0μb

as follows:

Q′
0μb

= e−μaQ0μb
= 4(1 − pd )2e−(1/2)ηbμb−μa

× [1 − (1 − pd )e−(1/4)ηbμb ]2. (B13)

The term Q′
0μb

appears as an additive term in the key rate
formula of Eq. (9) because we assume a forward classical

communication (Alice to Bob) is used for postprocessing
[60,62]. The intuition behind it is that, when Alice sends out
a vacuum state as an information carrier, no one (including
Eve) can get any information about the final key (Alice’s bit)
by measuring the signals in the channel.

The overall QBER Eμaμb
is defined as the error rate in

the sifted data. Similar to the derivation of Eq. (A11), due to
symmetry, we only need to consider the case of θa − θb = 0.
Without loss of generality, we assume θa = θb = 0, which
leads to Dr0 = Ds0 and Dr1 = Ds1 in Eq. (B6). In this case, an
error happens when the relay announces anticorrelated bits
corresponding to clicks on r1–s0 and r0–s1 detectors. The
intrinsic error rate, due to background noise and multiphoton
states, is then given by

E′
μaμb

Qμaμb
= 2Dr0

(
1 − Dr1

)(
1 − Ds0

)
Ds1

= 2y2(y − ex cos �φ )(y − e−x cos �φ ). (B14)

It can be verified that Eq. (B14) is a decreasing function of x.
The minimum of E′

μaμb
Qμaμb

is then obtained when ηaμa =
ηbμb. Averaging over �φ in Eq. (B10), we have

E′
μaμb

Qμaμb
= 2y2[1 + y2 − 2yI0(x)], (B15)

where x and y are defined in Eq. (B7). Finally, considering
relative-phase distortion errors, in a similar way to Eq. (A11),
we obtain

Eμaμb
Qμaμb

= e0Qμaμb
− 2(e0 − ed )y2[I0(2x) − 1]. (B16)

2. Phase randomization with postselection

If Alice and Bob randomly set the overall phases of
their coherent sources, a large intrinsic QBER is accrued
(see Fig. 3). From Eq. (B14), the intrinsic QBER is 0 if
�φ = 0, μaηa = μbηb, and pd = 0. The condition �φ = 0
implies that Alice and Bob must use the same overall phase
value, which jeopardizes the security assumption that requires
random-phase values. In order to reduce the cost of error
correction, they can, however, inform each other at the sifting
stage, the phase region they used in Eq. (10). We remark that
this improved data postprocessing is originated from the one
proposed in [32].

Let us take a look at a simple example where Alice sends
Bob two-bit classical information for phase postselecting.
Then, according to Eq. (10), they can divide the phase in
[0,2π ) into four partitions:{[

mπ

4
,
(m + 1)π

4

)
∪

[
(m + 4)π

4
,
(m + 5)π

4

)∣∣∣∣m
= 0,1,2,3

}
. (B17)

The two classical bits for each pulse are used to identify which
partition they use for their random phases. Then, the cost of
error correction is given by Eq. (9),

Iec =
3∑

m=0

Qmf H (Em), (B18)

where, due to the symmetry, we can assume Alice picks up m

from {0,1,2,3} randomly and Bob always uses m = 0.
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The gain Qμaμb
in Eq. (B10) should be averaged over �φ

from mπ/N to (m + 1)π/N , yielding

Qm = N

π

∫ π/N

0
dφb

1

π

∫ (m+1)π/N

mπ/N

dφa y2

× (e−x cos �φ + ex cos �φ − 2y)2. (B19)

Similarly, for the QBER E′
μaμb

Qμaμb
, one should take the

integral of Eq. (B14) to obtain

E′mQm = N

π

∫ π/N

0
dφb

1

π

∫ (m+1)π/N

mπ/N

dφa 2y2

× (y − ex cos �φ )(y − e−x cos �φ ). (B20)

The intrinsic QBERs for m = 0 with two cases, k = 2 and
k = 3, are shown in Fig. 3, where k = log2 N .

Let us consider the case when ηaμa = ηbμb, which
minimizes the intrinsic QBER of Eq. (B14), hence μ′ =
2ηaμa , x = ηaμa = μ′/2, and y = (1 − pd )e−x . Assuming
pd < μ′ � 1, and using the first-order approximation to
Eq. (B10), we obtain

Qm = 4

N
y2(1 − y)2 + O(μ′3), (B21)

which is independent of m, and for Eq. (B14),

E′mQm = 2

N
y2(1 − y)2 − 2x2y3N

π2

×
∫ π/N

0
dφb

∫ (m+1)π/N

mπ/N

dφa cos2 �φ + O(μ′3)

= 2

N
y2(1 − y)2 − x2y3

N
− x2y3N

4π2
Am,N + O(μ′3),

(B22)

where

Am,N ≡ − cos

[
2(−1 + m)π

N

]
+ 2 cos

[
2mπ

N

]

− cos

[
2(1 + m)π

N

]
(B23)

and we use the fact that 1 − y = O(μ′). From the numerical
evaluation, we notice that Eq. (B22) gives a slightly higher
value for QBER than the integral in Eq. (B20). Finally, similar
to Eq. (B16), the overall QBER is given by

EmQm ≈ e0Qμaμb
− (e0 − ed )

(
2x2y3

N
+ x2y3N

2π2
Am,N

)
.

(B24)

3. Randomized but equal overall phase

Assume Alice and Bob can somehow manage to meet �φ =
0. Then, using Eq. (B9), the gain is given by

Qμaμb
= y2(e−x + ex − 2y)2, (B25)

and from Eq. (B14) the corresponding QBER is given by

Eμaμb
Qμaμb

= e0Qμaμb
− (e0 − ed )y2(ex − e−x)2. (B26)

One can evaluate the key rate using Eq. (9) by taking the lower
bound of Q′

0μb
= 0. We numerically verified that the key rate

obtained from Eqs. (B25) and (B26) is close to that of the
original MDI-QKD scheme in [20] for the parameter set given
in Table I.

4. The original MDI-QKD scheme

In our path-phase encoding scheme of Fig. 1, the four
BB84 states are encoded by the relative phases of two
orthogonal optical modes, r and s. If we think of single-
photon states in r and s modes as a standard basis for qubit
representation, our encoding uses the basis vectors of X and
Y Pauli operators. In our setup, one can also encode key
information directly onto modes r and s as the third basis (Z
basis) for QKD. In fact, the rectilinear basis in the original
MDI-QKD can be regarded as using this third basis. The
diagonal basis in [20] is then equivalent to the X basis in our
scheme.

Using the above correspondence, we reproduce the key rate
formula for the original MDI-QKD scheme in [20], which is
given by

R � Q11[1 − H (e11)] − Qrectf (Erect)H (Erect), (B27)

where Q11 and e11 are, respectively, given by Eqs. (B1) and
(A11), and Qrect and Erect are, respectively, the gain and the
QBER in the rectilinear basis. The latter two are the only
terms that we need to calculate here, as described below.
Note that Q11 is the same for both rectilinear and diagonal
bases.

In the rectilinear basis, Alice chooses one of the two r and s

modes and sends a phase-randomized coherent state |eiφa
√

μa〉.
Similarly, Bob sends |eiφb

√
μb〉 in one of the two modes. If

different modes are chosen by Alice and Bob, then a click on
one of the r detectors, in Fig. 1, as well as a click on one of the
s detectors, correctly indicate the exchange of anticorrelated
bits by Alice and Bob. If, however, they choose similar modes,
and such a two-click event occurs, they mistakenly assign
different bits to their raw keys, and that will be a source of
error. The overall gain in the rectilinear basis is then given by
the sum of detection probabilities in the above scenarios as
follows:

Qrect = Q
(C)
rect + Q

(E)
rect, (B28)

where

Q
(C)
rect = 2(1 − pd )2e−μ′/2[1 − (1 − pd )e−ηaμa/2]

× [1 − (1 − pd )e−ηbμb/2] (B29)

represents the detection probability in the first scenario, and

Q
(E)
rect = 2pd (1 − pd )2e−μ′/2[I0(2x) − (1 − pd )e−μ′/2] (B30)

represents the detection probability in the second scenario,
where μ′ and x are defined in Eq. (B7). Note that the above
equation also includes averaging over the randomized overall
phase.

Finally, considering misalignment errors, we obtain

ErectQrect = edQ
(C)
rect + (1 − ed )Q(E)

rect. (B31)
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J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger,
Nat. Phys. 3, 481 (2007).

[65] X. Ma and H.-K. Lo, New J. Phys. 10, 073018 (2008).

[66] C.-H. F. Fung, X. Ma, and H. F. Chau, Phys. Rev. A 81, 012318
(2010).

[67] H. J. Kimble, Nature (London) 453, 1023 (2008).
[68] M. Razavi, IEEE Trans. Commun. 60, 3071 (2012).
[69] M. Razavi and J. H. Shapiro, Phys. Rev. A 73, 042303 (2006).
[70] J. Amirloo, M. Razavi, and A. H. Majedi, Phys. Rev. A 82,

032304 (2010).
[71] M. Razavi, M. Piani, and N. Lütkenhaus, Phys. Rev. A 80,

032301 (2009).
[72] N. Lo Piparo and M. Razavi, arXiv:1210.8042.
[73] Any other states can be applied here with certain modifications

in the formulas, mainly in the photon-number distribution.

062319-12

http://dx.doi.org/10.1007/s00145-004-0142-y
http://dx.doi.org/10.1007/s00145-004-0142-y
http://dx.doi.org/10.1088/1367-2630/11/4/045018
http://dx.doi.org/10.1016/j.cose.2010.11.001
http://dx.doi.org/10.1016/j.cose.2010.11.001
http://dx.doi.org/10.1038/nphys629
http://dx.doi.org/10.1088/1367-2630/10/7/073018
http://dx.doi.org/10.1103/PhysRevA.81.012318
http://dx.doi.org/10.1103/PhysRevA.81.012318
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1109/TCOMM.2012.072612.110840
http://dx.doi.org/10.1103/PhysRevA.73.042303
http://dx.doi.org/10.1103/PhysRevA.82.032304
http://dx.doi.org/10.1103/PhysRevA.82.032304
http://dx.doi.org/10.1103/PhysRevA.80.032301
http://dx.doi.org/10.1103/PhysRevA.80.032301
http://arXiv.org/abs/1210.8042



