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Abstract. Resource sharing for asynchronous processors with mutual
exclusion property is a fundamental task in distributed computing. We
investigate the problem in a natural setting: for the communications be-
tween processors, they only share several queues supporting enqueue and
dequeue operations. It is well-known that there is a very simple algorithm
using only one queue when the queue also supports the peek operation,
but it is still open whether we could implement mutual exclusion dis-
tributed system without the peek operation. In this paper, we propose
two mutual exclusion starvation-free algorithms for this more restricted
setting. The first algorithm is a protocol for arbitrary number of proces-
sors which share 2 queues; the second one is a protocol for 2 processors
sharing only one queue.

Keywords: Mutual Exclusion, Starvation Free, Queue, Distributed
Algorithm.

1 Introduction

In a distributed system, processors often need to share a unique resource, while
at the same time it is required that the processors are mutual exclusive, which
means that at any time, there is at most one processor who uses the resource
(i.e. enters the critical section). That fundamental problem is known as mutual
exclusion problem. Dijkstra [I] gives the first formulation of the problem, and
devices an algorithm with shared atomic registers for that purpose. However,
the algorithm does not satisfy starvation free property, i.e., there might be some
processor who wants to enter the critical section, but it never enters. Lamport
[2] further proposes bakery algorithm obtaining starvation free property, and
moreover, the processors share weaker registers called safe registers. There are a
huge amount of literatures on the design of mutual exclusion algorithms, which
can be even formed a book several decades ago [3].

* This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61061130540.

M. Chatterjee et al. (Eds.): ICDCN 2014, LNCS 8314, pp. 29-f3] 2014.
(© Springer-Verlag Berlin Heidelberg 2014



30 J. Wang and Z. Wang

Shared queues have been studied as objects for communication between pro-
cessors. Informally, the enqueue operation inserts an element to the tail of the
queue; the dequeue operation returns as well as deletes the head element of the
queue; the peek operation returns the head element of the queue without mod-
ifying it. Specially, if there is no element in the queue, it will return a symbol
indicating the queue is empty upon the dequeue or peek operation. It is well
known that if the queue object supports enqueue, dequeue and peek operations,
we can use a single queue to implement a mutual exclusion system satisfying
starvation free property: initially let the queue be empty; if one processor wants
to use the resource, it will enqueue its id to the queue and then peek the queue
over and over again until it finds that the top element of the queue is the id
of itself so that it could enter the critical section; after one’s critical section, it
removes the top element of the queue by dequeue and then exits. Notice that
the peek operation is the key for obtaining mutual exclusion property, and the
queue structure enables starvation free property. Since peek is a more advanced
operation of the queue object, one interesting question is that can we succeed
without the peek operation? We have not found the answer to the question in
the literature, and we found it to be non-trivial to solve. In this paper, we give a
positive answer by showing two algorithms. The first algorithm uses two queues
to support arbitrary number of processors, and the second one uses one queue
to support 2 processors.

In our model, we assume that the processors are failure-free, and for every
processor, if it is active, it will execute a step in finite time. More formally, the
problem concerned here is how to design a protocol with 1 or 2 queues without
peek operation such that the distributed system satisfies the following properties.

a) Mutual exclusion property: there is no time when two processors run in
the critical section.

b) No starvation (starvation-free) property: every processor that wants to
enter the critical section eventually enters the critical section.

Note that the problem studied in our paper is different from consensus in that
(1) In the problem setting of making consensus, one processor might crash and
never recover again; while in our model, one processor never crash (or might
crash, but recover in finite time and return to the state before crash); (2) The
consensus problem (or calculating the consensus number) typically concerns
only making one consensus, while mutual exclusion deals with many critical
sections. Furthermore, in the consensus problem, we have not found the concept
of starvation-free. It might be interesting to consider that property, since it is
natural and fair to make every proposer having the chance of being admitted in
the period of infinite times of consensus making.

We can define a concept called mutual exclusion number, denoted by M EN,
which is similar to the definition of consensus number [4]. We call a system has
mutual exclusion number k, if it can support starvation-free mutual exclusion
requirement of k£ processors, while it cannot support k + 1 processors. If it can
support arbitrary number of processors, we define that number to be co. For
example, we have already known that M EN (n atomic registers) > n — 1 by
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Bakery Algorithm. And the conclusion of our work can be written as

(1) MEN (1 queue with peek) = oo;
(2) MEN (2 queues without peek operation) = oo;
(3) MEN (1 queue without peek operation) > 2.

The paper is organized as follows. Section[2 gives a protocol with 2 queues that
supports arbitrary number of processors. In Section B we present a protocol with
one queue that supports 2 processors. Finally we conclude and refer to further
work in Section

2 Algorithm with Two Queues

In this section, we present an algorithm using two queues that solves the mu-
tual exclusion problem for arbitrary number of processors. In the first part, we
exhibit some intuitions behind the design of the algorithm. Next, we give some
data type notation which will be used in the algorithm. Then we show the pro-
posed algorithm, and finally give a technical correctness justification in the last
subsection.

2.1 Designing Idea

In order to satisfy mutual exclusion property, we could adopt a token-based
approach: place a unique token in queues; any processor can get into critical
section only if it obtains the token from queues by dequeue; when the processor
leaves its critical section, it should return the token back to queues by enqueue.
To satisfy no starvation property, we should design a rule to guarantee that all
the processors with intent to enter critical section will get the token in a finite
time. Since every active processor must dequeue from queues to get messages
from other processors, it becomes a trouble that how to avoid the processors
getting the token who are not supposed to do so. To tackle it, we could attach
the token with additional information such as the processors which have the right
to enter critical section, operations that each processors are executing, etc. As
a result, the processor which gets the token “wrongly” can take some actions to
“help” the processor which is supposed to get the token according to information
attached with the token. At the same time, we should also make sure that the
new processor with intent to enter critical section can notify other processors,
the processors which have the ability to guide it to get the token.

2.2 Notation

Before describing the proposed algorithm, we need to define some notations that
will be used in the following algorithm description and analysis. Suppose that
there are n processors numbered with 1 to n, which have intent to get into critical
section at any time they want (or will never have such intent). Mark two shared
queues mentioned above with gg and ¢;. To formalize the notation of operations,
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we use enqueue(q;, ) to represent command that inserts the element x to the tail
of g;. Also, x + dequeue(q;) means that the processor reads the head element
of g; and save it into variable = together with removing that element form g;.
All the elements in queues are of type number or of type order. For element
x, we can acquire the type of z by referring xz.type. For instance, x’s type is
number if and only if z.type = number. Specially, if we execute an operation
x + dequeue(q;) while g; is empty, we can obtain NULL while referring z.type.
While one processor executes the operation x < number(i), it can get an
element x of type number with an attached value ¢ which can be referred by
z.value, which ranges from 1 to n. We can regard type number as an indicator
telling the processor who gets this element that processor ¢ wants to get into
critical section. Consider the case that z.type = order, i.e., x is of type order.
We can refer x.queue to get a sequence of numbers, which can be empty (i.e.,
z.queue = ¢). We can obtain the head number of z.queue by x.head. If z.queue =
¢, mark z.head to be 0. We can also refer x.wait to get an n-dimension vector,
ith entry of which is a 0-or-1 value, acquired by notation x.wait[i]. Such an
element z, of type order, is just the token we mentioned in Subsection 2.1.

2.3 Algorithm

To begin with, let gy contain only one element x of type order, i.e., x.type =
order, where z.queue = ¢ and z.wait[i] = 0 for all i € {1,2,---,n}. Then, if
processor ¢ wants to get into critical section, it should run the following algorithm
DQ@B for processor i. In this algorithm, processor i has some local memory: a
0-or-1 variable k, a queue tmp containing at most n numbers, a Boolean variable
allow and two temporary variables x and y used to record the element dequeued
from queues.
The proposed algorithm is depicted in Algorithm [

2.4 Properties

In this subsection, we will discuss two important properties of algorithm DQB:
mutual exclusion and no starvation.

Call processor i as p; and mark p;’s local queue as tmp;. For convenience,
we divide the whole algorithm into three parts: trying section (from Line 1 to
Line 10), control section (from Line 11 to Line 25) and exit section (from Line
26 to the end). If we say trying-control section, we mean the union of trying
section and control section. In the same way, we say control-exit section to
express the union of control section and exit section. To claim these sections
clearly, if we say that processor i enters or gets into one section, we mean that
processor ¢ has executed one command of this section. To say that processor @
leaves or gets out of one section, we mean that processor ¢ has executed the last
operation-command in this section, the command that would change the memory
used in the whole algorithm including shared memory and local memory, and
next operation-command p; will execute is out of this section. For instance, if
processor ¢ with local variable allow true has just executed the command at Line
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Algorithm 1. Algorithm DQB for Processor ¢

1: enqueue(q1, number(i)) > trying section
2: k<« 0

3: repeat

4: tmp < ¢

5 repeat

6 x  dequeue(qr)

7 if x.type = number then

8 tmp <+ (tmp, z.value)

9 end if
10: until z.type = order
11: allow < (z.head € {0,1}) > control section
12: z.queue — (x.queue, tmp)

13: repeat

14: y < dequeue(qr)

15: if y.type = number then

16: z.queue < (z.queue, y.value)
17: end if

18: until y.type = NULL

19: if allow = false then
20: rawaitfi] «— 1 —k
21: enqueve(qr, x)
22: k—1—-k
23: end if

24: until allow = true

25: Critical Section

26: Delete number i from x.queue > exit section
27: z.waitfi] < 0

28: if x.queue = ¢ then

29: enqueue(qo, x)

30: else

31: enqueue(qx.wait[:&head] ’ LE)
32: end if
33: Remainder Section

14 and has obtained its local element y of type NULL, we can say that processor
i leaves control section because the next several commands (at Line 15, 18, 19,
24, 25) processor i will execute make no chance on the memory used in the
algorithm. If we say that processor ¢ is running in one section, we mean that
processor i has entered this section and has not leaved yet. For simplicity of the
proof, we postulate that local queue tmp should be cleared up automatically after
executing Line 12, and that local element x should be cleared up after executing
enqueue(-, ) command. Such postulations make no chance of the function of
algorithm.

Now, we will show some basic observations and lemmas. In the algorithm, a
processor can get into control-exit section if and only if it acquires an element of
type order at Line 6 and then executes the first command at Line 11. Whatever
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its local variable allow returned by command at Line 11 is, the last command it
will execute before leaving is enqueue command at Line 21 or 29 or 31, which is
also the first command of enqueue operation it executes in control-exit section,
i.e., an element of type order is enqueued back to queues if and only if this
processor leaves control-exit section. These can be concluded in the observation
below.

Obseravation 1. A processor has an element of type order in its local memory
if and only if it is running at control-exit section.

Based on this observation, we will propose the following lemma about unique-
ness of the element of type order, which will be used on whole analysis of this

paper.

Lemma 1 (Conservation of Order)
There is exact one element of type order in queues and all processors’ local
memories.

Proof. Call the time as free when there is no processor in control-exit section.
Oppositely, if there exists one processor in control-exit section, we mark this
moment as busy.

Let’s consider the case in free time first. If there is exact one element of type
order in queues (we call this as one-element-in-queues condition), Lemma [I] can
be proved because all the processors have no element of type order in their
memories by Observation 1. We say beginning time is such a free time that
satisfies one-element-in-queues condition.

From the beginning time on, Lemma[llkeeps correct until a processor ¢ obtains
an element of type order and will enter control-exit section later. After processor
i gets into control-exit section, the time becomes busy. This time no elements of
type order can be found in queues. Then, no processor can acquire an element of
type order by dequeue unless one processor enqueues it. In busy time, the only
case that the element of type order is enqueued to queues is that processor i
executes its last command and gets out of control-exit section. Therefore, queues
and all the processors except i can not get the element of type order in busy
time. As processor 7 holds it during the whole busy time, Lemma[Il keeps correct.

After processor ¢ leaves control-exit section, queues gains an element of type
order again, which satisfies one-element-in-queues condition. Therefore, the case
become the first one again. Lemma [I] can keep correct forever.

According to Lemma [ if we say order in the following context, we refer to
that unique element of type order placed in queues or one process’s local mem-
ory. Combining Lemma [I] with Observation [l we can directly get the following
lemma.

Lemma 2. At most one processor is running in control-exit section.

Using the similar analysis, we can also acquire some observations as follows.
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Obseravation 2 (Conservation of Number). processor i is running in
trying-control section if and only if exact one of following events happens.

1. q1 contains number(i) exactly once;
2. order.queue contains i exactly once;
3. there exists exact one processor whose local queue contains i exactly once.

Obseravation 3. If order.head # 0, order is stored in qorder.waitjorder.head) OT
one process’s local memory. Otherwise, order is stored in qo or one process’s
local memory.

Obseravation 4. processor i executes dequeue(qy) (Line 6) in trying section
only if order.waiti] = k.

Now, let’s consider the property of Mutual Exclusion first.
Theorem 1. Algorithm DQB satisfies Mutual Exclusion.

Proof. In the algorithm, critical section is in control-exit section. Therefore,
Mutual Exclusion is directed indicated by Lemma 2l

Next, let’s discuss the property of No Starvation.

Lemma 3. If one processor is running in control section, it will get out of con-
trol section in a finite time.

Proof. If one processor stays in control section forever, it must keep repeating
the commands in repeat-until paragraph from Line 13 to Line 18. Then we
can only consider that processor ¢ is running in control section before passing
repeat-until paragraph. Suppose that the current time is ¢ while there are m
processors running the algorithm for them. By Observation 2] there are at most
m elements of type number in ¢; at this time. By Lemma [2] no processor can
enter exit section except p; before p; ends. Therefore, the enqueue command at
Line 1 can be executed at most n —m times before p; gets out of control section,
i.e., processor i can get non-empty local element y by dequeue operations at
most m + (n — m) times before it gets out of control section. Then, in a finite
time, processor ¢ will dequeue and obtain the element of type NULL stored in
p;’s local memory y, and pass the until-condition at Line 18. Finally, it will get
into critical section and exit section if its local variable allow is true, or it will
return trying section in the case allow = false.

Here, we claim an extended version of Lemma[3] which can be directed demon-
strated based on Lemma [3l It is that if one processor is running in control-exit
section, it will leave in a finite time.

Lemma 4. If order.head =i # 0, processor i has been in critical section or will
get into critical section in a finite time.



36 J. Wang and Z. Wang

Proof. Because of the command at Line 26, processor i is impossible to run
in exit section. Then we will discuss this lemma in two parts according to the
section processor ¢ is running in.

In first part, let’s consider the case that p; is running in control section but
has not entered critical section now. processor i’s local variable allow must be
true because there is no operation in control section that can modify the head
element in order.queue, i.e., order.head = i or order.head = 0 (in the case
that processor ¢ inserts ¢ into the empty order.queue) when p; executed the first
command (at Line 11) of control section. By Lemma [B] processor i will get out
of control section in a finite time. As its local variable allow is true, it can pass
until-condition at Line 24 and then get into critical section.

In second part, we will discuss the case that p; is running in trying section at ¢g.
Let a dynamic set S; for time ¢ contain all the processors that will execute their
next dequeue operation at Gorder.waitfi) (Say ¢* for short in following analysis).
Before p; gets into critical section, any other processor will enter control section
with local variable allow = false, and will not be able to pass until-condition
at Line 24. Therefore, there will be finite times for processors to enqueue the
elements of type number to ¢* before p; gets into critical section. By Observation
2l there are finite elements of type number in ¢*. According to the similar analysis
in Lemma 3] it is impossible for processors to execute dequeue(g*) acquiring an
element of type number forever. By Observation B order is placed in ¢*. Then,
from any time ¢t > ty to the moment p; enters critical section, there will be a
processor j € Sy ar (At represents a finite period of time) acquiring order by
dequeue operation. If j # i, processor j enters control section with local variable
allow = false. In a finite time, processor j will execute the command at Line
20, which changes order.wait[j]. Suppose that p; reaches Line 19 at time ¢_
and finishes the command at Line 20 at time ¢;. The dynamic set S; updates
according to Sy, < S;_\{j}. As time ¢ goes on, the elements in the dynamic
set S; will be eliminated one by one. According to Observation [, we guarantee
1 € Sy at time t. Therefore, there will be a moment p; obtains order. In extreme
case that all the elements except i will be eliminated from S; as time ¢ goes on,
processor i will still acquire order in a finite time. Now, we can only consider
the case 7 = ¢ which will happen in a finite time. In this case, processor i will
enter control section and then it will critical section in finite time by the proof
in first part.

Lemma 5. From any time on, queues will contain order in a finite time.

Proof. We can only consider the case that queues do not contain order now.
By Lemma [I there must be a processor owning order in the local memory.
According to[l this processor is currently running in control-exit section. Using
the extended version of Lemma [3] this processor will leaves control-exit section
together with inserting order by enqueue operation in a finite time.

Lemma 6. If order.queue contains i, processor i has been in critical section or
will get into critical section in a finite time.
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Proof. Suppose the order.queue contains 7 currently at time ty. Consider the
first time t; at or after tg, when order is placed in queues. By Lemma [B ¢ is
bound to be a finite number.

If number ¢ is not in order.queue at time t;, processor i must have entered
critical section during the time ¢¢ to t1, because the command to delete i from
order.queue is right down the critical section in algorithm. In fact, this case
happens when processor ¢ is running in control-exit section with local variable
allow = true at time ty. Otherwise, order.queue contains number . Then it will
keep non-empty till processor i enters critical section, i.e., order.head # 0 before
processor ¢ gets into critical section. Therefore, processor j enters critical section
before p; does only if order.head = j. In other words, the next processor to enter
critical section is processor order.head. By Lemma [l processor order.head will
get into critical section in a finite time. Then it will delete the head element of
order.queue at Line 26. Meanwhile, the rank of number i (i.e., the number of
elements prior to i) in order.queue will be decreased by 1. Thereby, the rank
will be 0 in a finite time. At that time, processor i, the processor indicated in
the head element of order.queue, will get into critical section finally.

Lemma 7. If ¢1 contains number(i), there is one event of the following two
that will happen in a finite time.

1. number i is in a certain processor j’s local queue tmp;;
2. order.queue contains number i.

Proof. In the algorithm, the elements of type number can be dequeued only at
Line 6 or Line 14. If a certain processor j acquires number at Line 6, it will
store it in its local queue tmp;. If one processor obtains it at Line 14, it will be
inserted to the tail of order.queue. Therefore, we should only claim that these
two events will happen in a finite time.

Suppose that ¢; contains number(i) at time tg. Pick the first time ¢ at or
after ty when order is placed in queues. By Lemma [ ¢; is a finite time.

Now consider the case that number(4) is still in ¢; at time ¢;. If order.head = 0
at time t1, order should be contained in gy by Observation[Bl At this time, there
are at least one processor including p; trying to dequeue at qg. Therefore, a
certain processor j will obtain order in a finite time. (We can get this result by
the similar proof in second part of Lemmal[dl Then processor j will keep executing
dequeue(qy) until it obtains an empty reply. This procedure will be finished in a
finite time by Lemma [3] Before this procedure ends, one of two events must have
happened. In the other case that order.head = j # 0, processor j will get into
critical in a finite time by Lemma [l Before processor j enters critical section, it
will get order and clear up ¢;, before which two events mentioned in this lemma
must have happened.

To prove that the algorithm has no starvation property, we should consider
such a dynamic graph model. For any time t, we can construct a directed graph
Gy = (V,E;) where V = {0,1,---,n}, and where an edge from i to j exists in
E; if and only if one event of the following two happens.
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1. tmp; contains j
2. v =0 and order.queue contains j

Lemma 8. If there is a directed path from 0 to i in Gy, processor i will get into
critical section in a finite time after time t.

Proof. In a specific dynamic graph G, we shall prove this lemma using mathe-
matical induction on the length of the directed path.

Clearly, the lemma holds when the length of a directed path is 1, since if
there is a directed edge from 0 to ¢ in Gy, i.e., order.queue contains ¢ at time t,
processor 7 will enter critical section in a finite time by Lemma [6l

Suppose the lemma holds for the directed path of length k in G;. That is, if
there is a directed path of length & from 0 to i in G, processor i will get into
critical section in a finite time after time t. Consider the case of the length of
directed path being k + 1. For any directed path of length k£ + 1 from 0 to 7 in
G, there must be an unique node j which has an out-edge pointing to node i
in Gy by Observation Pl In the same time, there is a directed path of length k
from 0 to j in Gy. By the induction hypothesis, processor j will enter critical
section in a finite time after time t. Before that, processor j must execute the
command at Line 12 before entering critical section. Therefore, ¢ must be added
to order.queue. By Lemma [B, processor ¢ will enter critical section in a finite
time. Hence, if lemma holds for the directed path of length k, it also holds for
the directed path of length & + 1.

By the principle of mathematical induction, we conclude that for all natural
numbers k, if there is a directed path of length & from 0 to ¢ in Gy, processor @
will get into critical section in a finite time after time t.

Lemma 9. If one node has an in-edge in Gy, there is a directed path from 0 to
it.

Proof. At the beginning time ¢y, G, is a graph with no edge, while the lemma
is apparently correct. Suppose that the lemma is correct from time ¢g to time
t1, let’s consider the case in time t5, which is the atomically-next time of ¢4, i.e.,
there is at most one command executed from ¢; to to. In fact, we should only
consider the commands at Line 8, 12, 16 and 26, which insert or delete edges
on Gy, so that new dynamic graph Gy, is different from Gy, . Among these, the
commands at Line 8 and 16 insert in-edges to the nodes without any in-edges.
The command at Line 12 connects the nodes, which already have in-edges, with
some other in-edges. For the command at Line 26, it makes a node isolated by
deleting its in-edge. Now, we will discuss all these commands respectively.

If processor i executes the command at Line 8 during the time ¢; to to, we
can construct Gy, by inserting an edge from node i to j on Gy, where j is the
number indicated in a number element in ¢; at time ¢; and node j is isolated
node in Gy, . During this time, processor i’s local variable £ must be 1 because
elements of type number can only be dequeued in q;. Hence we can imply that
processor 7 obtained at least one order before, because only if processor ¢ has ever
acquired order, can it have the opportunity to make a change on its local variable
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k from 0, the initial value of k, to 1. In the algorithm, processor ¢ must clear up
q1 before it enqueues order. Before p; got an empty reply while dequeuing ¢,
number (i) must be read by some processor and then be stored in order.queue or
one process’s local queue, i.e., node ¢ must have an in-edge before. As the only
command which can make node ¢ connected with no in-edges is the command
at Line 26 in exit section and processor ¢ is still running at trying section, it is
impossible for it to run that command. Therefore, node 7 still has an in-edge at
Gy, - By the assumption that the lemma is correct in Gy, , there exists a directed
path from 0 to ¢ in Gy, . Hence, there must be a directed path 0 to j in G,, and
so the lemma holds on this case.

Next, let’s consider the case that processor ¢ executes the commands at Line
12 and 16. Whatever processors do during the time ¢; to t3, all the nodes with
in-edges to be changed or added in G¢, will be connected to node 0 by in-edges
pointing to them from 0 in Gy,. Therefore, the lemma holds on this case too.

Finally, consider the case when one processor executes the command at Line
26 which deletes number ¢ from order.queue. After executing this command,
a directed edge from 0 to i is deleted from G:, and node ¢ will become the
node without any in-edge in Gy,. In fact, node i will be isolated in Gy, because
processor ¢ must execute the command at Line 12 before entering critical section,
which deleted all the out-edges from node i. Therefore, this command makes no
influence on other nodes in Gy,, i.e., the lemma also holds on this case.

Theorem 2. Algorithm DQB satisfies no starvation property.

Proof. For any processor ¢ which wants to get into critical section, it should
enqueue an element of type number which contains the value of i to ¢;. By
Lemma [, number ¢ will be contained either in one process’s local queue or
order.queue in a finite time. At this moment ¢, there is an in-edge for node i on
the dynamic graph G;. By Lemma[d] there is a directed path from 0 to ¢ on Gy.
According to Lemma [8 processor ¢ will get into critical section in a finite time
after time t. Therefore, Algorithm DQB satisfies no starvation property.

3 Algorithm with One Queue

In this section, we show a protocol which implements a mutual exclusion system
for two processors with one single queue. We first specify the data format for
elements in the queue, together with the initial value of the queue. Then we
describe the proposed protocol in pseudo-code in Algorithm 2l Due to the length
limit, we leave the correctness proof to the online version.

3.1 Data Format and Initial Value

Every element in the queue is a record with several fields. The first field is type,
whose value is either OFFER or APPLY, identifying the type of the record.

If the type is OFFER, meaning that it is an invitation for some processor (or
both) to enter the critical section, then the second field will be name (whose
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value is 1, 2 or ALL), indicating the processor to which the offer will give. The
third field is id, which starts from 1 and goes larger, making the offer unique,
(in fact, its concrete meaning in our algorithm is that after accepting that offer,
it will be the id-th time for these two processors to use the resource), so that
we can use this information to discern overdue offers. If name is not equal to
ALL, there will be a fourth field version (a natural number, and in the following
algorithm it will always be 1 or 2), which serves for identifying different versions
of the same information (i.e. records with the same type, name and id), and in
the following algorithm, you will find the use of the version field to convince one
processor that its command (APPLY or OFFER) has been successfully received
by the other, which is one crucial technique for our success.

If the type is APPLY, meaning that it is the application of a processor for
using the resource (i.e., for entering the critical section), there will be two more
fields, name (the one who applies) and version (the same meaning as above)

We will write the record as

(type, name][, id], version]).

And if we dequeue when the queue is empty, we will get EMPTY as return.
At the beginning, the only element in the queue is (OFFER,ALL,1).

3.2 The Protocol

We give the proposed protocol in Algorithm 2l Because of the length of the pro-
tocol, we list the types and initial values of the variables used in the protocol
here. Variable 4 is either 1 or 2, indicating the processor number. We use i’ to
represent 3 — i, i.e. the other process, in a concise way. Variable j is a tempo-
rary variable for version number. Temporary variable ¢ will be used for storing
one record dequeued from the queue. The initial value of the temporary Boolean
variable flag is 0. It serves for deciding whether processor i should give offer to ¢’
after finishing the critical section. Variable m1, m2 are also temporary ones stor-
ing version numbers, whose initial values are 2. idmaker is a persistent variable
(its value will remain after exit), whose initial value is 0. It stores the maximum
1d value among all the offers known by processor i. eaten is a temporary variable
for counting the number of applies of the other that are received by processor 7,
and its initial value is 0.

3.3 Explanations

The protocol consists of 3 parts, trying section (Line[Ilto Line[Id), critical section
(Line [[M) and exit section (Line [I8 to Line B1).

a) The trying section contains two parts. In the first part (Line [ to Line (),
processor i enqueues two coupled applies for itself (the first is of version 1 and
the second is of version 2). The second part (Line @ to Line [I0)) is an endless
loop. It will jump out of the loop whenever it can enter critical section. For each
loop, it firstly dequeues an element (Line []), and then make decisions based on
the dequeued element t¢.
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Algorithm 2. Algorithm SQ2 for processor i (i = 1 or 2)

= e
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47:
48:
49:
50:
51:
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for j =1to 2do
enqueue(APPLY, 4, j)
end for
repeat
t « dequeue()
if t = (APPLY, ¢, %) then
flag=1
else if t = (APPLY, 4, %) then
if ml # t.version then
ml < t.version
enqueue(t)
end if

> trying section starts

> “x” means ignoring the field when comparing
> i’ refers to 3 — i, i.e., the other processor

else if t.type = OFFER and (t.name = ALL or t.name = i) and t.id > idmaker

then
break()
end if
until false
Critical Section
idmaker = t.id + 1
if t.name = i then
flag =20
end if
repeat
t = dequeue()
if t = (APPLY,#,%) then
flag + 1
end if
until t = EMPTY
if !flag then

enqueue(OFFER, ALL, idmaker)

else
for j =1to 2do

enqueue(OFFER, 7, j, idmaker)

end for
repeat
t + dequeue()

if t = (OFFER, ', +, +) then

if t.version = m2 then
exit()

end if

m2 < t.version

enqueue(t)

> trying section ends
> critical section
> exit section starts

else if t = (OFFER,ALL, %) then

enqueue(t)
exit()

else if t = (APPLY, ¢, *) and eaten < 2 then

eaten < eaten + 1
else
exit()
end if
until false
end if

> exit section ends



42 J. Wang and Z. Wang

Case 1 (Line [): t.type = APPLY and t.name = i’, meaning that this is the
other’s apply. The processor will simply assign flag to 1 (Line [M), marking the
fact that the other is also applying.

Case 2 (Line R)): t.type = APPLY and t.name = i, meaning that this is its
own apply. The processor will make decisions based on t.version (Line [)). If
t.version = ml, the processor will do nothing because in that case, it knows the
same apply with a different version number is received by the other processor.
Otherwise, the processor updates m1 as t.version (Line[I0), and then enqueues
t back (Line [IT).

Case 3: t.type = OFFER, meaning that this is an offer. If the offer is for
processor 4 or both, and the offer is not overdue (Line [[3]), the processor will
jump out of the loop (Line [4) to finish the trying section. Otherwise, it will do
nothing.

Case 4: t = EM PTY . Do nothing.

b) After finishing trying section, The processor enters into critical section,
where it will stay for finite time and then go to exit section.

c¢) The exit section is more complicated. It can be divided into two phases:
Clear-up Phase (Line[I8to Line[27)) and Release-offer Phase (Line 28 to Line[BT]).

i) In Clear-up Phase, the processor will clear up the queue, and update some
local variables. On Line [I8 processor ¢ updates its idmaker according to the
offer, which will become the id number of the offer it soon releases. If the offer
comes from the other, i.e., t.name = i, the processor will clear flag (Line 19 to
Line 21]), because the applies sent by the other processor before in fact mean-
ingless, since processor i’ is able to give offer to processor ¢. Then processor 7
enters a loop (Line 22 to Line 7)), dequeuing until it reads the EMPTY symbol.
Meanwhile, it keeps track on whether there are applies from the other processor.
If so, it will assign 1 to flag.

ii) In Release-offer Phase, the processor will release an offer whose name de-
pends on flag (Line 28)), i.e., whether the other processor has been applied
before. If the other has not applied, the processor simply enqueues an offer for
all whose id is idmaker (Line 2J)), and then exits. Otherwise, the processor will
give offer to the other (Run Line Bl to Line B0). It will enqueue two coupled
offers to processor ¢’ (Line 3] to Line B3)). From Line [34] to Line B0, processor i
execute an endless loop until it can make sure that processor ¢’ really receives
the offer. For each loop, processor ¢ will dequeue one element first (Line [35).
And then its decision will depend on that element. We discuss it in several cases
as follows.

Case 1 (Line[36): ¢ is an offer for processor #’. In this case, if the version of the
offer is the same with m2 (Line [37]), then processor ¢ will exit (Line B8]) because
it will be convinced that processor i’ has already received the offer. Otherwise,
it will update m2 (Line @0), and dequeue ¢ back (Line HI]).

Case 2 (Line E2): ¢ is an offer for all. In this case, ¢ is produced by proces-
sor ' after critical section. processor ¢ will enqueue ¢ back (Line [3]), and exit

(Line E4).
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Case 3 (Line 45): ¢ is an apply of ¢’. If processor ¢ has read such apply for
more than 2 times before, it will exit. Otherwise, it will increase eaten by 1,
which is the number of times processor ¢ has read (APPLY, 4/, ).

Case 4: t = EMPTY . processor i will exit. Notice that it is impossible that
t.name = i in this loop.

4 Conclusion

In this paper, we investigate the classical mutual exclusion problem in a new set-
ting, by which communication is made through shared queues. Without the peek
operation, the protocol becomes quite hard to design since every processor has
to modify the shared objects in order to make contact with others. We propose
two novel algorithms for the problem. The designing ideas of both algorithms
give new insights for the mutual exclusion problem, as well as the usage of the
shared queue objects in the distributed computing setting. We leave the question
of finding a protocol or proving impossibility results for more than 2 processors
using one single shared queue as our further research work.
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