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ABSTRACT
We propose a simple yet rich model to extend strategic
games to the quantum setting, in which we define quantum
Nash and correlated equilibria and study the relations be-
tween classical and quantum equilibria. Unlike all previous
work that focused on qualitative questions on specific games
of very small sizes, we quantitatively address the following
fundamental question for general games of growing sizes:

How much“advantage”can playing quantum strate-
gies provide, if any?

Two measures of the advantage are studied.
1. Since game mainly is about each player trying to max-

imize individual payoff, a natural measure is the increase of
payoff by playing quantum strategies. We consider natural
mappings between classical and quantum states, and study
how well those mappings preserve equilibrium properties.
Among other results, we exhibit a correlated equilibrium p
whose quantum superposition counterpart

∑
s

√
p(s)|s〉 is

far from being a quantum correlated equilibrium; actually a
player can increase her payoff from almost 0 to almost 1 in a
[0, 1]-normalized game. We achieve this by a tensor product
construction on carefully designed base cases. The result
can also be interpreted as in Meyer’s comparison [47]: In a
state no classical player can gain, one player using quantum
computers has an huge advantage than continuing to play
classically.

2. Another measure is the hardness of generating corre-
lated equilibria, for which we propose to study correlation
complexity, a new complexity measure for correlation gen-
eration. We show that there are n-bit correlated equilibria
which can be generated by only one EPR pair followed by
local operation (without communication), but need at least
log2(n) classical shared random bits plus communication.
The randomized lower bound can be improved to n, the
best possible, assuming (even a much weaker version of) a
recent conjecture in linear algebra. We believe that the cor-
relation complexity, as a complexity-theoretical counterpart
of the celebrated Bell’s inequality, has independent interest
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in both physics and computational complexity theory and
deserves more explorations.
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F.1.3 [Computation by Abstract Device]: Relations
among complexity measures; F.m [Theory of Computa-
tion]: Miscellaneous
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1. INTRODUCTION

1.1 Game theory
Game theory is a branch of applied mathematics to model

and analyze interactions of two or more individuals, usu-
ally called players, each with a possibly different goal. Over
decades of development, game theory has grown into a rich
field and has found numerous applications in economics, po-
litical science, biology, philosophy, statistics, computer sci-
ence, etc. Many models have been proposed to study games,
among which the most popular and fundamental ones are
strategic games (or games in strategic or normal form) and
extensive games (or games in extensive form). In the former,
the players choose their strategies simultaneously, and then
each receives a payoff based on all players’ strategies. In the
latter, the players choose their strategies adaptively in turn,
and finally when all players finish their moves, each receives
a payoff based on the entire history of moves of all players.
Variation in settings exists. For instance, if before playing
the game, each player also receives a private and random in-
put, then they are playing a Bayesian game, which belongs
to the larger class of games with incomplete information. See
standard textbooks such as [25,54] for more details.

Motivated by the emergence of Internet and other sys-
tems with a huge number of players, various algorithmic
and complexity-theoretical perspectives from computer sci-
ence have been added as one more dimension for studying
games. Central concepts such as equilibria and important
areas such as mechanism design have been revisited with al-
gorithmic ingredients injected. See a recent textbook [58]
for more background on this emerging field of algorithmic
game theory.
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Equilibrium as a central solution concept in game the-
ory attempts to capture the situation in which each player
has adopted an optimal strategy, provided that others keep
their strategies unchanged. Nash equilibrium [50, 51, 60]1 is
the first and most fundamental concept of equilibrium. A
joint strategy is a pure Nash equilibrium if no player has
any incentive to change her strategy. If each player draws
her strategies from a probability distribution, and no player
can increase her expected payoff by switching to any other
strategy on average of other players’ strategies, then they
are playing a mixed Nash equilibrium. Note that here we
require no correlation between players’ probabilistic strate-
gies.

One important extension of Nash equilibrium is correlated
equilibrium introduced by Aumann [3], which relaxes the
above independence requirement. We can think of a cor-
related equilibrium as being generated by a Referee (or a
“Mediator”), who samples a joint strategy from the corre-
lated distribution and sends the i-th part to Player i. Given
only the i-th part, Player i then does not have an incen-
tive to change to any other strategy. The concept of cor-
related equilibruma captures many natural scenarios that
Nash equilibrium fails to do, as illustrated by the following
two canonical examples.

The first example is a game called Traffic Light, in which
two cars, one heading east and the other heading north,
drive to an intersection at the same time. Both cars have
choices of passing and stopping. If both choose to pass, then
an accident would happen, in which case both players suffer
a lot. If exactly one car passes, then this car does not need
to wait and thus gets payoff 1, and the other car (which
chooses to stop) has payoff 0. If both cars stop then both
have payoff 0. The payoff is summarized by the following
payoff bimatrix, where in each entry, the first number is the
payoff for Player 1 (row player) and the second is for Player
2 (column player).

Cross Stop
Cross (-100,-100) (1,0)
Stop (0,1) (0,0)

There are two pure Nash equilibria in this game, namely
(Cross,Stop) and (Stop,Cross). But neither of them is fair,
since it clearly prefers one to the other. Naturally, the two
cars have different preferences over these two Nash equilib-
ria. In the language of games, it is the issue of which equilib-
rium the players should agree on. There is actually a third
Nash equilibrium, which is a mixed one: Each car crosses
with probability 1/101. This solves the fairness issue, but
loses the efficiency: The expected total payoff is very small
(0) because most likely both cars would stop. Even worse,
there is a positive probability of car crash. The issue is easily
solved in the real world by introducing a traffic light, from
which each car gets a signal. Each signal can be viewed as a
random variable uniformly distributed on {red, green}. But
the two random signals/variables are designed to be per-
fectly correlated that if one is red, then the other is green.
This is actually a correlated equilibrium, i.e. a distribu-
tion over {Cross,Stop}×{Cross,Stop} with half probability

1Introduced by von Neumann and Morgenstern [60] who
showed existence of a Nash equilibrium in any zero-sum
game, existence later extended by Nash to any game with a
finite set of strategies [51].

on (Cross,Stop) and half on (Stop,Cross). It is easy to ver-
ify that it simultaneously achieves high payoff, fairness, and
zero-probability of car accident.

The second example is a game called Battle of the Sexes,
in which a couple want to travel to a city in a vacation, and
Alice prefers A to B, while Bob prefers B to A. But both
would like to visit the same city together rather than going
to different ones separately. The payoffs are specified by the
following bimatrix.

A B
A (2,4) (0,0)
B (0,0) (4,2)

Again, there are two pure Nash equilibria and the two people
prefer different ones, thus resulting a “Battle” of the Sexes.
A good solution is to take the correlated equilibrium, (A,A)
with half probability and (B,B) with half probability, gen-
erated by a mediator flipping a fair coin.

Apart from providing a natural solution concept in game
theory as illustrated above, correlated equilibria also enjoy
computational amenity for finding and learning in general
strategic games as well as other settings such as graphical
games ([58], Chapter 4 and 7).

1.2 Quantum games
Since there is no reason to assume that people interacting

with quantum information are not selfish, quantum games
provide a ground for understanding and governing quantum
interactions of selfish players. There is a large collection of
literature under the name of “quantum games”, which can
be roughly divided into three tracks.

1. Nonlocal games. This is a particular class of Bayesian
games in the strategic form, such as GHZ game, CHSH
game, Magic Square game, etc. These games are mo-
tivated by the non-locality of quantum mechanics as
opposed to any classical theory depending on “hidden
variables”. In these games, each of the two or more par-
ties receives a private input drawn from some known
distribution, and the players output some random vari-
ables, targeting a particular correlation between their
outputs and inputs. The main goal of designing and
studying these games is to show that some correla-
tions are achievable by quantum entanglement but not
classical randomness, thus providing more examples in
the type of Bell’s theorem [6], which refutes Einstein’s
program of modeling quantum mechanics as a classi-
cal theory with hidden variables. See [10] for a more
comprehensive survey (with an emphasis on connec-
tions to communication complexity). In recent years
non-local games also found connections to multi-prover
interactive proof systems in computational complexity
theory; see, for example, [15, 33,35–38].

2. Quantization of strategic games. Unlike the first track
of research motivated by physics (and computational
complexity theory), the second track of work aims at
quantizing classical strategic game theory. The basic
setting for a classical strategic game of k players is
as follows. Player i has a set Si of strategies and a
utility function ui; when the players take a joint strat-
egy s = (s1, . . . , sk), namely Player i takes strategy si,
each Player i gets a payoff of ui(s). There are various
models proposed to quantize this classical model. The
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Figure 1: The EWL model for quantization of strate-
gic games

basic approach is to extend each Player i’s strategy
space from Si to the Hilbert space Hi = span(Si), and
to allow the player to take quantum operations on Hi.
Eventually a measurement in the computational basis
is made to get a (random) classical joint strategy s,
which decides the payoff of the players by the classical
payoff functions ui.

The approach was implemented in the seminal pa-
per [22] as follows; see Fig 1. There is an extra party,
called Referee, who applies a unitary operation J on |0〉
(in the Hilbert space of dimension

∑
i |Si|), and parti-

tions the state J |0〉 into k parts for the k players. The
players then perform their individual quantum opera-
tions on their own spaces, after which Referee collects
these parts, performs the inverse operation J−1, and
finally measures the state in the computational basis
to get a random joint strategy s. Players i then gets
payoff ui(s).

The EWL-model [22] unleashed a sequence of following
studies under the same model [8, 20, 21, 23, 24, 43, 55].
Despite the rapid accumulation of literature on the
same or similar model, controversy also exists. As
pointed out in [13], there are “ad hoc assumptions and
arbitrary procedures scattered in the field”. We will
elaborate on this shortly.

3. Quantum extensive games. In a seminal work [47],
Meyer showed that in the classical Penny Matching
game, if (1) Player 1 is allowed to use quantum strate-
gies but Player 2 is restricted to classical strategies,
and (2) the sequence of moves is (Player 1, Player 2,
Player 1), then Player 1 can win the game for sure.
This demonstrates the power of using quantum strate-
gies under some particular restriction on the other
player’s strategies as well as the sequence of moves.
Gutoski and Watrous [28] initializes studies of the gen-
eral refereed game in the extensive form. The model
adopted there is very general, easily encompassing all
previous work (and the model in our paper) as special
cases. It has interesting applications such as a very
short and elegant proof of Kitaev’s lower bound for
strong coin-flipping. The generality makes the frame-
work and techniques potentially useful in a broad range
of applications, though probably also admits less struc-
tures or at least makes it challenging to discover strong
properties. Other examples of quantum extensive games
include [29], which has a very small number of rounds.

1.3 Our Results

Figure 2: Classical strategic games: Referee samples
a joint strategy s and send the i-th part to Player
i, who then applies a classical operation Ci resulting
in a possibly different strategy s′i.

Our goal is to study quantitative problems of general strate-
gic games of size n in a natural quantization model. To this
end, we first give an arguably more natural model, and then
study two measures of quantum advantages.

1.3.1 Model
Despite of the prevalence, the EWL-model also drew con-

troversies. The main result in [22] was that a quantum strat-
egy can “escape” the Prisoner’s dilemma, and this was ob-
tained on the assumption that each player is only allowed to
apply a specific subset of unitary operations. As pointed out
in [7], the assumption does not seem to “reflect any physi-
cal constraint (limited experimental resources, say) because
this set is not closed under composition”. Also shown in
the paper [7] is that without the assumption, namely if the
players are allowed to use arbitrary local unitary operations,
the proposed strategy in [22] is not a quantum Nash equilib-
rium any more. For this reason, we do not want to restrict
players’ possible actions in any way; we allow each player
to take any quantum admissible operation (i.e. any TPCP
map).

A bigger difference of the EWL-model and ours, illus-
trated in Figure 3, is that we remove operation J−1 in the
EWL-model. We find that this corresponds to the classi-
cal model more precisely. Recall that in a classical strategic
game, illustrated in Figure 2, Referee samples a joint strat-
egy s = (s1, . . . , sk) ∈ S from a classical distribution p on S,
and gives si to Player i, who may apply a classical operator
Ci and output a possibly different strategy s′i. The players
then receive payoffs ui(s

′
1, ..., s

′
k). Note that different than

in the EWL-model, Referee in the classical model does not
undo the initial sampling.

A related question is why not going to the more general
setting by letting Referee apply another joint operation K
before the final measurement?2 Because classically Referee

2The same question in another form: Why not allow a gen-
eral measurement instead of the measurement in the com-
putational basis?
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Figure 3: Our model for quantization of strate-
gic games: No action of Referee after the players’
moves, and the operations by Referee and the play-
ers are general quantum admissible ones.

does not do any joint re-sampling after players’ actions as
well — Referee’s role is simply to sample and recommend
strategies to players. Another advantage of not having K
is that now fundamental concepts such as quantum equilib-
rium (that we shall define next) will be only of the classical
game under quantization, rather than also of an extra in-
troduced quantum operator K. Last, if one really prefers
to have K, then which K to choose? In many games such
as the two canonical examples in Section 1, Nature gives
the payoff and Nature does not perform any joint measure-
ment. (Consider for example the Traffic Light game: After
the two cars get the signals and decide their moves, they
do not send their pass/stop decision to any Referee for any
joint measurement — They simply perform the actions and
then naturally face the consequences.) So even if one likes
to study various K’s, the case of K = I should be probably
the first natural one to consider.

Besides the above “categorial” reason not to have K, we
can also give the following“consequential”justification: Stud-
ies of the more general model allowing K can be easily car-
ried out by studies of our simple model without K. Indeed,
for any game with utility functions ui, we define a new game
with utility functions u′i(s) = ui(K(|s〉)), where K(|s〉) is
just the state obtained by applying operation K on |s〉 (and
ui(K(|s〉)) = Es′ [ui(s

′)] where s′ is drawn from the distri-
bution of measuring K(|s〉) in the computational basis). It
is immediate that studies on ρ in the original game {ui} (in
the model with K) translates to studies on ρ in the new
game {u′i} (in our model without K). For instance, ρ is a
quantum correlated equilibrium in game {ui} in the modle
with K if and only if ρ is a quantum correlated equilibrium
in the game {u′i} in our model.
A final remark about the generality of the model: It is

admitted that there are may be ways to further generalize
our model. But models should not be simply measured by
generality, otherwise Nash equilibrium should not have been
separately studied because it has so many (natural!) gener-
alizations, and strategic games should not have been sepa-
rately studied because they are just a special case of exten-
sive games (as two-move imperfect extensive games). Our
goal was never to identify the most general model (which
probably does not exist at all), but to propose a model
which is natural, simple, fundamental, and hopefully rich
in interesting questions — like the model of classical strate-
gic games.

So our model finally looks like the one in Figure 3: Referee

applies a joint operator Ψ on a all-zero state to create a
quantum state ρ, and gives the i-th part of it to Player i, who
applies Φi followed by a measurement in the computational
basis. The players then receive their payoffs according to
the functions ui.

Without the referee’s action J−1, our model is simpler. In
[8], three criteria were raised for an ideal quantization of clas-
sical strategic games: (a) Si is generalized to Hi = span(Si),
(b) strategies in H are to be entangled, and (c) the resulting
game generalizes the classical game. Note that despite being
simpler than the EWL model, ours easily satisfies all of them
as well. One may wonder whether ours is too simple to be of
any mathematical interest. It turns out, as will be shown in
the following sections, that our model has many interesting
mathematical questions with connections to communication
complexity, non-convex optimization and linear algebra.

The concept of equilibria can be naturally extended to
the quantum case. Recall that in a classical game, a joint
strategy s = (s1, ..., sk) ∈ S is sampled from a classical
distribution p on S and Player i receives an expected payoff
Es←p[ui(s)]. A classical distribution p is an equilibrium if
no player can increase her expected payoff by any classical
local operation. Now our model admits an almost word-
by-word translation of the above definition to the quantum
case: A joint strategy s = (s1, . . . , sk) ∈ S is measured
from a quantum mixed state ρ on H, and Player i receives
an expected payoff Es←ρ[ui(s)]. A quantum state ρ is an
equilibrium if no player can increase her expected payoff by
any quantum local operation. Here the measurement is in
the computational basis S, only on which the utility function
is defined in the first place.

1.3.2 Question
Other than the model, what also distinguishes the present

work from previous ones is the generality of the classical
games under quantization. Most of the previous work focus
on particular games, usually of small and fixed sizes. For
example, [12, 20–22, 55] considered the Prisoner’s Dilemma
game, [46] considered the Battle of the Sexes game, and [47]
considered the Penny Matching game, and there are many
other studies on specific 2× 2 or 3× 3 games, e.g. [17,17,23,
24,32], just to name a few.

In addition, most of the previous work focused on quali-
tative questions such as whether playing quantum strategies
has any advantage. While it is natural to start at qualitative
questions on specific and small examples, it is surely desir-
able to have a systematic study on quantitative properties
for general games. In particular, our aim is to understand
the following fundamental question on general games of k
players with n strategies for each player.

Central Question: How much advantage can play-
ing quantum strategies provide, if any?

Depending on how the advantage is measured, we study
the question in two ways, summarized as follows.

1.3.3 Quantum advantage 1: Increase of payoff
Since games are all about players trying to get maximum

payoffs, the first measure (of advantage) we naturally take is
the increase of payoffs. We shall consider natural mappings
between classical and quantum states, and study how well
those mappings preserve the equilibrium properties. Recall
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that a quantum state ρ in spaceH = ⊗iHi is a quantum cor-
related equilibrium if no Player i can increase her expected
payoff by any local operation. If further ρ = ⊗iρi for some ρi
in Hi, then it is a quantum Nash equilibrium. The definition
encompasses the classical correlated and Nash equilibria as
special cases.

Under this definition, we relate classical and quantum
equilibria in the following ways. Given a quantum state,
the most natural classical distribution it induces is given by
the measurement in the computational basis S. That is, ρ
induces p where p(s) = ρs,s. Not surprisingly, one can show
that if ρ is a quantum Nash (or correlated) equilibrium then
p is a classical Nash (or correlated) equilibrium.
The other direction, namely transition from classical to

quantum, is more complicated but interesting. A classi-
cal distribution p over S has two natural quantum counter-
parts: 1) classical mixture: ρ(p) =

∑
s p(s)|s〉〈s|, the mix-

ture of the classical states, and 2) quantum superposition:

|ψ(p)〉 =
∑

s

√
p(s)|s〉. We regard the second mapping as

more important because firstly, this is really quantum — the
first mapping is essentially the classical state itself — and
secondly, this mapping is the most commonly used quan-
tum superposition of a classical distribution in known quan-
tum algorithms, such as starting state in Grover’s search [27]
and the states to define the reflection subspaces in Szegedy’s
quantization of random walks [57]. It so happens that it is
also the most intriguing case of our later theorems.

One can also consider the broad class of quantum states
ρ satisfying p(s) = ρs,s, including the above two concrete
mappings as special cases. Now the question is, do these
transformations keep the Nash/correlated equilibrium prop-
erties? Note that if the answer is yes, then analysis of quan-
tum games largely reduces to that of classical games, and a
quantum game designer that wants quantum equilibria with
some specific properties can easily first find classical equilib-
ria and then use these mappings to get quantum equilibria
automatically.

It turns out that one needs to be very careful about which
map to use: The classical mixture mapping keeps both Nash
and correlated equilibrium properties, but the quantum su-
perposition mapping only keeps the Nash equilibrium prop-
erty. As to the general class of correspondence, no equilib-
rium is guaranteed to be kept.

Based on these answers, it is more desirable to study them
quantitatively: After all, if |ψ(p)〉 is not an exact correlated
equilibrium but always an ε-approximate one, in the sense
that no player can increase her payoff by more than a small
amount ε, then the interest of using quantum strategies sig-
nificantly drops, or the tasks for a quantum game designer
is still easy as long as she can tolerate a small ε inaccuracy.
Therefore, we are facing the following question. (For proper
comparison, assume that all games are [0,1]-normalized, i.e.
all utilities take values from [0,1].)

Question 1: In a [0,1]-normalized game, what is
the largest gain of payoff by playing a quantum
strategy on a quantum counterpart state of a clas-
sical equilibrium?

The question can naturally be formulated as a non-convex
program, which is notoriously hard to analyze in general.
Actually even the simple case of n = 2 is already quite
nontrivial to solve. The maximum gain turns out to be a
small constant close to 0.2, but neither the analysis nor the

solution admits a generalization to higher dimensions in any
straightforward way. For general n, there is no clue what
the largest gain should be. Nevertheless, we could show the
following, among other results.

Theorem 1.1. 1. There exists a correlated equilibrium p
in a [0, 1]-normalized (n× n)-bimatrix game s.t.

u1(|ψ(p)〉) = Õ(1/ log n), (1)

and

u1(Φ1(|ψ(p)〉)) = 1− Õ(1/ log n), (2)

for some local quantum operation Φ1.
3 There is also a cor-

related equilibrium p with the multiplicative factor

u1(Φ1(|ψ(p)〉))
u1(|ψ(p)〉) = n0.585.... (3)

2. There exists a Nash equilibrium p in a [0, 1]-normalized
(n × n)-bimatrix game, and a quantum state ρ with ρss =
p(s), s.t.

u1(ρ) = 1/n and u1(Φ1(ρ)) = 1, (4)

for some local quantum operation Φ1. The additive increase
of 1−1/n and the multiplicative increase of n are the largest
possible even for all correlated equilibria p.

Note that the optimality proved in the second part also gives
an upper bounds of the maximum additive and multiplica-
tive gains for |ψ(p)〉 in the first part. Closing the gaps be-
tween the lower bounds provided in the first part and the
general upper bounds in the second part is left open.

The main approach for the result in the first part of the
above theorem is to construct large games from smaller ones.
What we need for the construction is to preserve the equilib-
rium and to increase the “quantum gain”, the gain by play-
ing quantum strategies. It turns out that the tensor product
preserves the equilibrium property, and can increase the gain
for small games if some parameters are set properly. The de-
sign of the base games is also not straightforward: Taking
the optimal solution to the n = 2 case does not work be-
cause taking power on that game actually decreases the gain.
In the final solution, the base game itself has a very small
quantum gain, but when taken power, the classical-strategy
utility drops much faster than the quantum-strategy utility,
creating a gap almost as large as 1.

The results in the theorem can also be interpreted as a
comparison in the sense similar to [47]. Imagine that a quan-
tum state ρ is given to the two players, who are both classical
in the sense that once they take ρ, it collapses to the compu-
tational basis. Since the distribution given by ρss is a CE,
no player has incentive to deviate. But if the first player
becomes quantum, then she may significantly improve her
payoff from 1/n (almost nothing) all the way to 1 (the max-
imum).

1.3.4 Quantum advantage 2: Correlation generation
We also study the quantum advantage from a complexity-

theoretical perspective. As we have mentioned, correlated
equilibria possess game theoretical usefulness and enjoy bet-
ter computational tractability. But to really use such a good
equilibrium, someone has to generate it, which makes the
hardness of its generation an interesting question. For this,

3Õ hides a poly(log log(n)) factor.
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we propose a new complexity measure, called correlation
complexity, defined as follows.
Take two-party case, for simplicity, where Alice and Bob

aim to generate a correlation. Since local operation cannot
create correlation, they start from some“seed”, which can be
either a shared classical randomness or a quantum entangled
state. Then they perform local operations and finally output
the target correlation. We are concerned with the following
question.

Question 2: To generate the same correlation,
does quantum entanglement as a seed have any
advantage compared to the classical shared ran-
domness? If yes, how much?

Note that this question is, in spirit, not new. Actually the
entire class of non-local games study questions of the same
flavor. However, a crucial part in non-local games is that
the two parties are given private (and random) inputs, which
are necessary for differentiating the power of classical hidden
variable and that of quantum entanglement in previous non-
local game results.

Without the private inputs, our model is simpler and
thus more basic. An immediate question is whether such a
bare model still admits any separation of classical and quan-
tum powers in generating correlations. This paper gives a
strongly affirmative answer.

Theorem 1.2. For any n > 2, there are correlations (X,Y )
which take at least n classical bits to generate classically, but
only need one EPR pair to generate quantum mechanically.

In proving the classical lower bound, we identify the non-
negative rank as the correct measure to fully characterize the
randomized correlation complexity. The nonnegative rank
is a well-studied measure in linear algebra and it has many
applications to statistics, combinatorial optimization [65],
nondeterministic communication complexity [44], algebraic
complexity theory [53], and many other fields [14].

The hidden asymptotic lower bound for randomized corre-
lation complexity of a size-n correlation is actually Ω(log n).
The bound can be improved to n, the largest possible, as-
suming a recent conjecture in linear algebra [5]. We actually
have a bold conjecture that, with probability 1, a random
correlation that can be generated by one EPR pair has the
randomized correlation complexity of n. Note that n always
suffices since for any fixed correlation (X,Y ), the two par-
ties can simply share this very same correlation as the seed
and output it. So “1 vs. n” is the largest possibly separa-
tion; this is in contrast to Bell’s inequality that even infinite
amount of classical shared randomness cannot simulate one
EPR pair. In this sense, the correlation complexity can be
viewed as a sublinear complexity-theoretical counterpart of
previous non-local games.

Coming back to the setting of games, two scenarios can
happen depending on whether the local operations are trusted
or not. In the first scenario, consider the a generalized Bat-
tle of the Sexes game, where Alice and Bob are not in the
same city but want to generate some correlation p = (X,Y ).
There is a publicly trusted company C, which can help to
generate p. Company C has a central server which generates
a seed and send to its local servers A and B, distributed close
to Alice and Bob, respectively. The local servers A and B
apply the local operations to generate a state which is then

sent to Alice and Bob. Here the local operations are carried
out by the trusted servers A and B. And the complexity
that we care is the size of the seed, which is also the com-
munication between the central server to the two distributed
servers A and B. The separation of classical and quantum
correlation complexities directly applies to this scenario.

In the second scenario, the mediator sends the seed di-
rectly to Alice and Bob, who are then supposed to apply
the local operations Φ1 and Φ2 to generate the CE (X,Y ).
But since now the local operations are under the control of
the players, they can apply some other local operations Φ′1
and Φ′2. So the process is an equilibrium if no player has an
incentive to apply any other local operation. The above sep-
aration can still be adapted to separate the minimum sizes
of classical and quantum seeds in some games, but in gen-
eral this scenario is more complicated and less understood,
leaving a good direction for future exploration.

1.4 More related work
The last decade has witnessed the advance of our un-

derstandings of the hardness to find a Nash equilibrium in
strategic games [11, 18]. There has also been some stud-
ies for communication complexity of finding a Nash equilib-
rium [16, 31], when each player only knows her own utility
function.

In [34], Jain and Watrous also considered quantum strate-
gic games. Different than ours, their paper is concerned with
algorithmic issues (mainly on efficient parallel approximate
algorithms) and it only considers Nash equilibria in zero-sum
games, whereas our focus is in game theoretical questions,
and we consider general games, with main focus on corre-
lated equilibria.

The problem of correlation generation in the asymptotic
setting is considered in [64] for the classical case and [63]
for the quantum case. The paper [30] also studies the com-
munication complexity for generating a correlation (X,Y ).
But the model there takes an average-case measure: Sup-
pose Alice samples x ← X and tries to let Bob sample from
Y |(X = x), then what is the expected communication needed
(where the expectation is over the randomness of protocol
as well as the initial sample x ← X)? For comparison, ours
is a worst-case measure requiring that for each possible x,
Bob samples from Y |(X = x). And also note the essential
difference that protocols in [30] uses a large amount of pub-
lic coins, which is exactly the resource we hope to save. See
the last section for more discussions on this.

After an earlier version of the present paper was finished
and circulated, Yaoyun Shi firstly pointed out the paper
[2], which studies communication complexity of correlation
generation. The correlations studied there, however, are a
particular type, arising from communication complexity of
Boolean functions, while ours considers general correlations.
The second difference is that [2] only considers the com-
munication complexity, but ours also considers correlation
complexity, the minimum shared resource (public random-
ness or entanglement) for generating the correlation without
any communication. It turns out that in the trusted local
operation setting, correlation complexity is the same as com-
munication complexity, both classically and quantumly. In
the randomized case, we characterize them by nonnegative
rank. The measures in the untrusted local operation setting
are of a totally different story: While correlation complex-
ity is still sublinear, there may not even be any equilibrium
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communication protocol to generate the correlation. Last,
the main body in [2] studies a bounded-error generation, and
showed an exponential separation (O(log n) versus Ω(

√
n)),

while ours aims to generate the exact target correlation, and
showed an“infinite” separation (1 versus log2 n uncondition-
ally, and 1 versus n assuming a conjecture).

Studies of computational issues of probabilistic distribu-
tions instead of Boolean functions has recently be advocated
by Viola [45, 59]. It is our hope that studies of the corre-
lation complexity of distributions later help to sharpen our
understandings of various complexity questions for Boolean
functions.

After the present work posted in arXiv:1012.5141 in 2010
and presented in QIP’11, Meyer brought his work [48] to
our attention, in which he studied in a model very similar to
ours, though in a limited scenario where the players share a
pure state. Meyer also observed the result in our Theorem
3.1 in the special case of ρ being a pure state4, and that if
p is a NE then |ψp〉 is a QNE, which we mentioned at the
beginning of Section 3.3. But note that these observations
are just a small part of the present work — our focus is
quantitative studies of the quantum advantage as the two
theorems in Section 1 illustrate.

Subsequent work
The paper has caused some interest leading to further devel-
opments. While the correlation complexity can be viewed as
minimizing Referee’s seed correlation, in [39], Kerenidis and
Zhang completely removed the referee and let the players
reach a correlated equilibrium via communications among
themselves. In [56], Shi and Zhang studied the correlation
and communication complexities of generating a quantum
state. Among other results, it completely solves the prob-
lem for the pure state bounded-error case, closing the gap
left in [2]. In [62], Wei and Zhang completely character-
ized the set of quantum correlated equilibria for an arbitrary
game. In [40], Klauck, Lee and Zhang give a separation of
log(n) v.s. Ω(n) between quantum and randomized correla-
tion complexities.

Organization
The rest of paper is organized as follows. In Section 2, after
reviewing model for classical strategic games and the defi-
nitions of Nash and correlated equilibria, we introduce the
quantum model and define quantum Nash and correlated
equilibria. Other notation is also set up in the section. In
Section 3, we show how natural maps between classical and
quantum states preserves equilibrium properties, giving the
proof of Theorem 1.1. Section 4 is devoted to the correla-
tion complexity, where we show proof of Theorem 1.2. In
the last section, we point out quite a number of problems
and directions for future research.

2. PRELIMINARIES, QUANTUM MODEL,
AND NOTATION

Suppose X and Y are two (possibly correlated) random
variables on sample spaces X and Y, respectively. The size
of bivariate distribution p = (X,Y ), denoted by size(p), is
defined as (�log2(|X |)	 + �log2(|Y|)	)/2. Here we take the

4Meyer extended the result to mixed states in a manuscript
in 2007, which unfortunately has not been published (or
posted online).

factor of half because we shall talk about a correlation as
a shared resource. It is consistent with the convention that
when Y = X = R, we say that they share a random variable
R of size �log2(|X |)	. For a two-party quantum state ρ in
H1 ⊗ H2 for Hilbert spaces Hi of dimension Di, we also
say that the size of the ρ, as a shared quantum state, is
(�log2(D1)	+ �log2(D2)	)/2.
Sometimes we view a bivariate distribution p as a matrix,

denoted by the capital P for emphasis, where the row space
is identified with X and the column space with Y.

A matrix A is called nonnegative if each entry is a nonneg-
ative real number. For a nonnegative matrix A, its nonneg-
ative rank, denoted by rank+(A), is the minimum number
r such that A can be decomposed as the summation of r
nonnegative matrices of rank 1.

Suppose that in a classical game there are k players, la-
beled by {1, 2, . . . , k}. Each player i has a set Si of strate-
gies. To play the game, each player i selects a strategy si
from Si. We use s = (s1, . . . , sk) to denote the joint strategy
selected by the players and S = S1 × . . .× Sk to denote the
set of all possible joint strategies. Each player i has a utility
function ui : S → R, specifying the payoff or utility ui(s) to
player i on the joint strategy s. For simplicity of notation,
we use subscript −i to denote the set [k] − {i}, so s−i is
(s1, . . . , si−1, si+1, . . . , sk), and similarly for S−i, p−i, etc.

A game is [0, 1]-normalized, or simply normalized, if all
utility functions have the ranges in [0, 1].

2.1 Classical equilibria
Nash equilibrium is a fundamental solution concept in

game theory. Roughly, it says that in a joint strategy, no
player can gain more by changing her strategy, provided that
all other players keep their current strategies unchanged.
The precise definition is as follows.

Definition 2.1. A pure Nash equilibrium is a joint strat-
egy s = (s1, . . . , sk) ∈ S satisfying that

ui(si, s−i) ≥ ui(s
′
i, s−i) (5)

for all i ∈ [k] and all s′i ∈ Si.

Pure Nash equilibria can be generalized by allowing each
player to independently select her strategy according to some
probability distribution, leading to the following concept of
mixed Nash equilibrium.

Definition 2.2. A (mixed) Nash equilibrium (NE) is a
product probability distribution p = p1× . . .×pk, where each
pi is a probability distributions over Si, satisfying that∑

s−i

p−i(s−i)ui(si, s−i) ≥
∑
s−i

p−i(s−i)ui(s
′
i, s−i), (6)

for all i ∈ [k], and all si, s
′
i ∈ Si with pi(si) > 0.

Informally speaking, for a mixed Nash equilibrium, the
expected payoff over probability distribution of s−i is max-
imized, i.e. Es−i [ui(si, s−i)] ≥ Es−i [ui(s

′
i, s−i)]. A fun-

damental fact is the following existence theorem proved by
Nash.

Theorem 2.3 (Nash, [51]). Every game with a finite
number of players and a finite set of strategies for each
player has at least one mixed Nash equilibrium.
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There are various further extensions of mixed Nash equi-
libria. Aumann [3] introduced a relaxation called correlated
equilibrium. This notion assumes an external party, called
Referee, to draw a joint strategy s = (s1, ..., sk) from some
probability distribution p over S, possibly correlated in an
arbitrary way, and to suggest si to Player i. Note that Player
i only sees si, thus the rest strategy s−i is a random variable
over S−i distributed according to the conditional distribu-
tion p|si , the distribution p conditioned on the i-th part
being si. Now p is a correlated equilibrium if any Player i,
upon receiving a suggested strategy si, has no incentive to
change her strategy to a different s′i ∈ Si, assuming that all
other players stick to their received suggestion s−i.

Definition 2.4. A correlated equilibrium (CE) is a prob-
ability distribution p over S satisfying that∑

s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s
′
i, s−i), (7)

for all i ∈ [k], and all si, s
′
i ∈ Si.

The above statement can also be restated as

Es−i←μ|si [ui(si, s−i)] ≥ Es−i←μ|si [ui(s
′
i, s−i)]. (8)

where μ|si is the distribution μ conditioned on the i-th com-
ponent being si. Notice that a classical correlated equilib-
rium p is a classical Nash equilibrium if p is a product dis-
tribution.

Correlated equilibria captures natural games such as the
Traffic Light and the Battle of the Sexes mentioned in Sec-
tion 1. The set of CE also has good mathematical properties
such as being convex (with Nash equilibria being some of
the vertices of the polytope). Algorithmically, it is compu-
tationally benign for finding the best CE, measured by any
linear function of payoffs, simply by solving a linear pro-
gram (of polynomial size for games of constant players). A
natural learning dynamics also leads to an approximate CE
([58], Chapter 4) which we will define next, and all CE in a
graphical game with n players and with log(n) degree can
be found in polynomial time ([58], Chapter 7).

Another relaxation of equilibria changes the requirement
of absolutely no gain (by deviating the strategy) to gaining
a little, as the following approximate equilibrium defines.

Definition 2.5. An ε-additively approximate correlated
equilibrium is a probability distribution p over S satisfying
that

Es←p[ui(s
′
i(si)s−i)] ≤ Es←p[ui(s)] + ε, (9)

for any i and any function s′i : Si → Si. For such distri-
butions p, we say that the maximum additive incentive (to
deviate) is the minimum ε with the above inequality satisfied.
Furthermore, the distribution p is called an ε-additively ap-
proximate Nash equilibrium if it is a product distribution
p1 × . . .× pk.
An m-multiplicatively approximate correlated equilibrium

is a probability distribution p over S satisfying that

Es←p[ui(s
′
i(si)s−i)] ≤ m ·Es←p[ui(s)], (10)

for any i and any function s′i : Si → Si. For such distri-
butions p, we say that the maximum multiplicative incen-
tive (to deviate) is the minimum m with the above inequal-
ity satisfied. Furthermore, the distribution p is called an

ε-multiplicatively approximate Nash equilibrium if it is a
product distribution p1 × . . .× pk.

Note that one can also define a stronger notion of approxima-
tion by requiring that the gain is at most ε for each possible
si in the support of p. Definition 2.5 only requires the gain
be small on average (over si), but it is usually preferred
because of its nice properties, such as the aforementioned
result of being the limit of a natural dynamics of minimum
regrets ([58], Chapter 4).

2.2 Quantum equilibria
In this paper we consider quantum games which allows

the players to use strategies quantum mechanically. We as-
sume the basic background of quantum computing; see [52]
and [61] for comprehensive introductions. The set of ad-
missible super operators, or equivalently the set of com-
pletely positive and trace preserving (CPTP) maps, of den-
sity matrices in Hilbert spaces HA to HB , is denoted by
CPTP(HA, HB). We write CPTP(H) for CPTP(H,H).

For a strategic game being played quantumly, each player
i has a Hilbert space Hi = span{si : si ∈ Si}, and a joint
strategy can be any quantum state ρ in H = ⊗iHi. Since
we want to quantize classically defined games rather than
creating new rules, we respect the utility functions of the
original games. Thus we only talk about utility when we get
a classical joint strategy. The most, if not only, natural way
for this is to directly measure in the computational basis,
which corresponds to the classical strategies. Therefore the
(expected) payoff for player i on joint strategy ρ is

ui(ρ) =
∑
s

〈s|ρ|s〉ui(s). (11)

In summary, the players measure the state ρ in the com-
putational basis S, resulting in a distribution of the joint
strategies, and the utility is just the expected utility of this
random joint strategy.

Corresponding to changing strategies in a classical game,
now each player i can apply an arbitrary CPTP operation on
Hi. So the natural requirement for a state being a quantum
Nash equilibrium is that each player cannot gain by apply-
ing any admissible operation on her strategy space. The
concepts of quantum Nash equilibrium, and quantum cor-
related equilibrium, and quantum approximate equilibrium
are defined in the following, where we overload the notation
by writing Φi for Φi ⊗ I−i if no confusion is caused.

Definition 2.6. A quantum Nash equilibrium (QNE) is
a quantum strategy ρ = ρ1 ⊗ · · · ⊗ ρk for some mixed states
ρi’s on Hi’s satisfying that

ui(ρ) ≥ ui(Φi(ρ)), (12)

for all i ∈ [k] and all Φi ∈ CPTP(Hi).

Definition 2.7. An ε-approximate quantum Nash equi-
librium (ε-QNE) is a quantum strategy ρ = ρ1 ⊗ . . .⊗ ρn for
some mixed states ρi’s in Hi’s satisfying that

ui(Φi(ρ)) ≤ ui(ρ) + ε, (13)

for all i ∈ [k], and all Φi ∈ CPTP(Hi).

Definition 2.8. A quantum correlated equilibrium (QCE)
is a quantum strategy ρ in H satisfying that

ui(ρ) ≥ ui(Φi(ρ)), (14)
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for all i ∈ [k], and all Φi ∈ CPTP(Hi).

Definition 2.9. An ε-additively approximate quantum
correlated equilibrium (ε-QCE) is a quantum state ρ in H
satisfying that

ui(Φi(ρ)) ≤ ui(ρ) + ε, (15)

for any i and any admissible map Φi on Hi. For such states
ρ, we say that the maximum quantum additive incentive (to
deviate) is the minimum ε with the above inequality satisfied.

An m-multiplicatively approximate quantum correlated
equilibrium (ε-QCE) of a nonnegative utility game is a quan-
tum state ρ in H satisfying that

ui(Φi(ρ)) ≤ m · ui(ρ), (16)

for any i and any admissible map Φi on Hi. For such states
ρ, we say that the maximum quantum multiplicative incen-
tive (to deviate) is the minimum m with the above inequality
satisfied.

One can also extend the ε-QCE by allowing different εi
for different i, resulting in {εi}-QCE. By the linearity of
admissible map Φi, of quantum utility function μi, and of
expectation, it is easily seen that for any {εi}, the set of
{εi}-QCE is convex. In particular, the set of QCE is also
convex. Similar to the classical case, a quantum correlated
equilibrium ρ is a quantum Nash equilibrium if ρ is a product
state.

A final remark about QNE: One may wonder why not
allow separable states, namely ρ =

∑
t pt(ρt,1 ⊗ · · · ⊗ ρt,k)

for some distribution p and quantum states ρt,i ∈ Hi. The
reason is that correlation then exists between players, so it
includes the classical correlated equilibria as special cases.
Our preference here is to let QNE to cover NE and QCE to
cover CE, but QNE should not cover CE.

3. TRANSLATIONSBETWEENCLASSICAL
AND QUANTUM EQUILIBRIA

This section studies the relation between classical and
quantum equilibria. Basically we would like to consider
all natural correspondences between classical and quantum
states, and see how well they preserve the equilibrium prop-
erties. Thus there are two directions of mappings: from
quantum to classical and and from classical to quantum. We
will first list the correspondences and study them in detail
in the subsections.

For the first direction, the most natural way to get a clas-
sical distribution from a quantum state is, as mentioned, to
measure it in the computational basis:

p(s) = ρss, where ρss is the (s, s)-th entry of the matrix ρ.
(17)

Next we consider mappings from classical distributions
p over S to quantum states on H. There seem to have
more natural options. As far as we can think of, there are
two specific mappings and a big class of correspondences
including the two as special cases.

1. classical mixture: ρ(p) =
∑

s p(s)|s〉〈s|, the mix-
ture of the classical states. This is essentially an iden-
tity map, though when playing the quantum game the
players are allowed to perform any quantum operations
on it.

2. quantum superposition: |ψ(p)〉 = ∑
s

√
p(s)|s〉. With

the superposition, this is really quantum and we ex-
pect to see some interesting and nontrivial phenom-
ena. This is the most commonly used quantization of
probability distributions when designing quantum al-
gorithms. For example, recall that the starting state
of Grover’s search [27] and the states to define the re-
flection subspaces in Szegedy’s quantization of random
walks [57] are both of this form.

3. general correspondence: any density matrix ρ with
p(s) = ρss satisfied for all s ∈ S. This is the least
requirement we want to put, and it is a large set of
mappings containing the first two as special cases.

Next we address the questions whether being equilibria
in one world, classical or quantum, implies equilibria in the
other world, and if not, how bad it can be.

3.1 From quantum to classical
The following theorem says that the quantum equilibrium

property always implies the classical one. The proof is not
hard; one catch is that what we know for ρ is that any quan-
tum operation on Hi cannot increase the expected payoff.
What we need to prove is, however, a worst-case statement,
namely that for any Player i and any received strategy si,
she should not change to any other s′i. We just need to
handle this distinction.

Theorem 3.1 (QCE ⇒ CE, QNE ⇒ NE). If ρ is a
quantum correlated equilibrium, then p defined by p(s) = ρss
is a classical correlated equilibrium. In particular, if ρ is a
quantum Nash equilibrium, then p is a classical Nash equi-
librium.

Before presenting the formal proof, we would like to dis-
cuss the intuition first which is actually pretty clear: What
we know for ρ is that any quantum operation on Hi can-
not increase the expected payoff. What we need to prove
is, however, a worst-case statement, namely that for any
Player i and any received strategy si, she should not change
to any other s′i. One simply needs to pick a quantum opera-
tion to make the average increase of payoff equal to the that
for any fixed worst-case classical changing of strategies. A
formal proof is as follows.

Proof. Recall that we are given that μi(ρ) ≥ μi(Φi(ρ))
for all players i and all admissible super-operators Φi on Hi,
and we want to prove that for all players i and all strategies
si, s

′
i ∈ Si,∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s
′
i, s−i) (18)

for p(s) = ρss.
Fix i and si, s

′
i. Consider the admissible super-operator

Φi defined by

Φi(ρ) =
∑
ti �=si

PtiρPti + (si ↔ s′i)PsiρPsi(si ↔ s′i) (19)

where Pti is the projection onto the subspace span(ti)⊗H−i,
and (si ↔ s′i) is the operator swapping si and s′i. It is not
hard to verify that Φi is an admissible super-operator. Next
we will show that the difference of μi(ρ) and μi(Φi(ρ)) is the
same as that of the two sides of Eq. (18).
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μi(ρ) = E[ui(s(ρ))]

=
∑
s̄∈S

〈s̄|ρ|s̄〉ui(s̄) =
∑
s̄∈S

p(s̄)ui(s̄)

=
∑
s̄i �=si

∑
s̄−i

p(s̄)ui(s̄) +
∑
s̄−i

p(sis̄−i)ui(sis̄−i) (20)

μi(Φi(ρ))

=
∑
s̄∈S

〈s̄|Φi(ρ)|s̄〉ui(s̄)

=
∑
s̄∈S

〈s̄|
∑
ti �=si

PtiρPti + (si ↔ s′i)PsiρPsi(si ↔ s′i)|s̄〉ui(s̄)

=
∑
s̄∈S

〈s̄|
∑
ti �=si

PtiρPti |s̄〉ui(s̄)

+
∑
s̄∈S

〈s̄|(si ↔ s′i)PsiρPsi(si ↔ s′i)|s̄〉ui(s̄)

=
∑
ti �=si

∑
s̄−i

p(tis̄−i)ui(tis̄−i) +
∑
s̄−i

p(sis̄−i)ui(s
′
is̄−i) (21)

where in the last equality we used the fact that Pti |s̄〉 =
|tis̄−i〉 if s̄i = ti and 0 otherwise; similar equality used for
the second summand.

Since ρ is a quantum correlated equilibrium, we have μi(ρ) ≥
μi(Φi(ρ)). Comparing the above two expressions for μi(ρ)
and μi(Φi(ρ)) gives Eq. (18), as desired.

Many precious work try to find a quantum equilibrium
with “better” payoff than all classical ones, for example,
to attempt to resolve the Prisoner’s dilemma by showing
a quantum equilibrium with payoff of both players better
than the classical (unique) equilibrium. The theorem above
implies that at least in our model, this is simply not possi-
ble. We actually think that this should be a property that
reasonable quantization models should satisfy.

3.2 From classical to quantum: The classical
mixture mapping and its conceptual im-
plications

The implication from classical to quantum turns out to
be much more complicated. Let us consider the three types
of mappings one by one. Recall that the first mapping
ρ(p) =

∑
s p(s)|s〉〈s| is the mixture of the classical states.

The following theorem says that this always yields a quan-
tum equilibrium from a classical equilibrium. That is, the
utility pi(s) cannot be increased for a classical equilibrium
even when player i is allowed to have quantum operations.

Theorem 3.2 (p CE/NE ⇒ ρ(p) QCE/QNE). If p is
a (classical) correlated equilibrium, then ρ(p) = Σs∈Sp(s)|s〉〈s|
is a quantum correlated equilibrium. In particular, if p is a
Nash equilibrium, then ρ as defined is a quantum Nash equi-
librium.

Proof. Since the state ρ(p) is essentially a classical one,
whatever operation on Hi, followed by the measurement in
the computational basis, only gives a new distribution over
Si without affecting the distribution of s−i. Since classi-
cally changing the given si to any s′i does not increase the
expected payoff, changing si to a random s′i according to the
new distribution does not give any advantage either.

The reason we still mention this technically trivial result
is because it has a couple of conceptually important impli-
cations. First, together with Theorem 3.1, it gives a one-one
correspondence between classical Nash/correlated equilibria
and a subset of quantum Nash/correlated equilibria. This
can be used with Theorem 2.3 to answer the basic question
of the existence of a quantum Nash equilibrium.

Corollary 3.3. Every game with a finite number of play-
ers and a finite set of strategies for each player has a quan-
tum Nash equilibrium.

Second, one also notices that there is a one-one corre-
spondence between the utility values in classical and quan-
tum games. This immediately transfers all the NP-hardness
results for finding an optimal Nash or correlated equilib-
rium [26] to the corresponding quantum ones.

Theorem 3.1 and 3.2 also help to answer a basic question
about the hardness of finding a quantum Nash equilibrium.
One subtlety for quantum Nash equilibria is that it is a
quantum state, so we need to first define what it means by
“finding” a quantum equilibrium: Is it sufficient to generate
one, or to fully specify the state by giving all the matrix
entries. It turns out that these two definitions are close to
each other.

Theorem 3.4. Suppose that there is a polynomial-time
quantum algorithm for finding a quantum Nash equilibrium
ρ, with the guarantee that every execution of the algorithm
gives the same ρ. Then there is a polynomial-time quantum
algorithm to solve any problem in PPAD.

Basically once having found a quantum Nash equilibrium
ρ, one can use measurement in the computational basis to
get a sample according to p(ρ). Then taking an average of
enough number of such samples gives a good enough (an
inverse polynomial, to be precise) approximation, and then
we can apply the hardness result of finding an approximate
NE in [11]. Details are omitted.

3.3 From classical to quantum: The quantum
superpositionmapping and its extremal prop-
erties

The second way of inducing a quantum state from a classi-
cal distribution is by quantum superposition |ψ(p)〉 = ∑

s

√
p(s)|s〉.

This case is subtler than the classical mixture mapping:
While an argument similar to that for Theorem 3.2 shows
that the quantum superposition mapping preserves Nash
equilibrium property, it is not immediate to see whether it
also does so for correlated equilibria.

We consider to find the maximum incentive in two-player
games, in which without loss of generality we can assume
that the second player always getting payoff 1. Indeed, any
CE of any other bimatrix game (A,B) is also a CE of (A, J).
We will formulate the maximum incentive finding problem
over n×n bimatrix games (A, J) by an optimization in Sec-
tion 3.3.1 and give solution for the special case of n = 2 in
Section 3.3.2. Then for the general bimatrix games (A,B),
we will also consider n × n bimatrix game with Player 2’s
payoff being the all-one matrix, though our solutions are
also CE for bimatrix game (In, In), a natural extension of
the Battle of the Sexes game.
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3.3.1 Maximum quantum incentive on |ψ(p)〉 as an
optimization problem

A CPTP operation Φ by Player 1 followed by the measure-
ment in the computational basis {1, 2, . . . , n} gives a general
POVM measurement {Ei : i ∈ [n]}. Suppose Player 1’s pay-
off matrix is A = [aij ]. Then Player 1’s new payoff, i.e. the
payoff for playing Φ, is∑

i,j∈[n]

aij

( ∑
i1∈[n]

√
pi1j〈i1|

)
Ei

( ∑
i2∈[n]

√
pi2j |i2〉

)

For simplicity let us use a short notation |√pj〉 for
∑

i∈[n]

√
pij |i〉.

Then the above payoff is
∑

i,j aij〈√pj |Ei|√pj〉. Thus the

maximum quantum additive incentive on |ψ(p)〉 for a CE p
can be written as the following optimization problem.

Primal:

max
∑

i,j∈[n]

aij(〈√pj |Ei|√pj〉 − pij)

s.t. 0 ≤ aij ≤ 1, ∀i, j ∈ [n]

(The game is [0,1]-normalized.)
(22)∑

ij

pij = 1, pij ≥ 0, ∀i, j ∈ [n]

(p is a distribution.) (23)∑
j

aijpij ≥
∑
j

ai′jpij , ∀i, i′, j ∈ [n]

(p is a correlated equilibrium.) (24)∑
i

Ei = In, Ei � 0, ∀i ∈ [n]

({Ei} is a POVM measurement.)
(25)

And the maximum quantum multiplicative incentive is the
same except the objective function now becomes( ∑

i,j∈[n]

aij〈√pj |Ei|√pj〉
)/( ∑

i,j∈[n]

aijpij
)

Note that the objective function is highly non-concave5,
which makes the problem generally hard to compute or an-
alyze. (The non-concavity can be witnessed by the optimal
solution of the case of n = 2 shortly.) One way for handling
this is to fix some of the variables and consider the dual of
the remaining problem. If we fix A = [aij ] and P = [pij ],
then it is a semi-definite program with variable Ei’s. The
dual of it is the following.

Dual(A,P):

min Tr(Y )−
∑

i,j∈[n]

aijpij (26)

s.t. Y �
∑
j∈[n]

aij |√pj〉〈√pj |, ∀i ∈ [n] (27)

One can also write down the dual for the multiplicative in-
centive optimization primal by simply changing the subtrac-
tion to division in the objective function; note that it is still

5Sometimes people say convex programming for convex min-
imization, or equivalently as in our case, concave maximiza-
tion.

linear in Ei’s for fixed A and P . Sometimes working with
dual helps to establish the optimality of the objective func-
tion value on a primal feasible solution that we find.

3.3.2 Complete solution of 2× 2 games
We first study 2×2 games, which turns out to be nontrivial

already, and the experiences we obtain here will be useful
later for general games. First it is not hard to see that in
an optimal solution, all aij ’s are either 0 or 1. Then one

can see that only A = I2 or A =

[
0 1
1 0

]
may admit positive

incentive. Since permuting columns or rows will not change
the optimal value, let us assume that A = I in the following.
We do not know whether A = I is also a maximizer for the
general problem; it is an interesting open question.

The equilibrium property implies that p11 ≥ p12 and p22 ≥
p21. By the requirement E1 � 0 and E2 = I − E1 � 0, we

can assume that the optimal value E1 =

[
a c
c∗ 1− b

]
, where

a, b ∈ [0, 1], and |c|2 ≤ min{a(1 − b), b(1 − a)}. Then the
primal value is

〈√p1|E1|√p1〉+ 〈√p2|E2|√p2〉 − p11 − p22 (28)

= 2 ·Re(c) · (√p11p21 −√
p12p22)

− (p11 − p12)(1− a)− (p22 − p21)(1− b) (29)

= 2 · |Re(c)| · ∣∣√p11p21 −√
p12p22

∣∣
− (p11 − p12)(1− a)− (p22 − p21)(1− b). (30)

where the last equality is because the optimal value is non-
negative. It then follows that

Re(c) · (√p11p21 −√
p12p22)

≥(p11 − p12)(1− a) + (p22 − p21)(1− b) ≥ 0. (31)

Further, in a maximizer, |Re(c)| should be as large as pos-
sible, so it holds that c ∈ R and either c2 = a(1 − b) or
c2 = b(1 − a). We claim that actually both hold and thus
a = b. Actually, if |c|2 = a(1−b) < b(1−a), then a < b, and
it can be observed that the objective function increases with
a. So one can increase a up to b; the other case of a > b can
be argued in the same way.

Now the primal value becomes

2
√

a(1− a)·∣∣√p11p21−√
p12p22

∣∣−(p11−p12+p22−p21)(1−a).
(32)

By simultaneously switching the two rows and columns, one
can assume that p11p21 ≤ p12p22. (We need to switch rows
and columns simultaneously because we have already as-
sumed the matrix to be I.) Then the optimal value is

OPT = 2
√

a(1− a) · (√p12p22 −√
p11p21)

− (p11 − p12 + p22 − p21)(1− a) (33)

≤ 2
√

a(1− a) ·
(√

p11 + p12
2

p22 −
√

p11 + p12
2

p21

)

− (p22 − p21)(1− a) (34)

That is, we shift mass from p11 to p12 and the objective func-
tion always increases. This can be done as long as the equi-
librium properties is maintained, namely p11 ≥ p12. Since
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P is maximizer, we know that p11 = p12. Thus

OPT = (2
√

a(1− a)
√
p11 − (1− a)(

√
p22 +

√
p21))

· (√p22 −√
p21)

≤ (
2
√

a(1− a)
√
p11 − (1− a)(

√
p22 + p21)

)√
p22

Thus if we shift mass from p21 to p22, then the objective
function value increases. So the maximizer p has p21 = 0,
and we have

OPT = 2
√

a(1− a)
√

p11(1− 2p11)− (1− a)(1− 2p11)

Now by looking at the partial derivative (and setting it to
be zero), it is not hard to finally find that p∗11 =

√
2/4 and

a∗ =
√
2/2 give the maximum value (

√
2−1)/2, which is the

maximum quantum additive incentive. The corresponding
optimal solutions for the primal and the dual are as follows.

Additive OPT: (
√
2− 1)/2 = 0.2071...

Primal solution:

P =

[
p∗11 p∗11
0 1− 2p∗11

]
, (35)

E1 =

[
2p∗11 −√

2p∗11(1− 2p∗11)

−√
2p∗11(1− 2p∗11) 1− 2p∗11

]
, (36)

E2 = I − E1. (37)

Dual solution:

Y =

[
1/2

√
p∗11(1/2− p∗11)√

p∗11(1/2− p∗11) p∗11

]
. (38)

The solution also confirms that the objective function of
the Primal for additive incentive is not concave. Indeed, by
symmetry, another optimal solution for Primal is

P ′ =

[
1− 2p∗11 0

p∗11 p∗11

]
, (39)

E′1 =

[
2p∗11

√
2p∗11(1− 2p∗11)√

2p∗11(1− 2p∗11) 1− 2p∗11

]
, (40)

E′2 = I − E′1. (41)

But the average of the two solutions gives a negative objec-
tive value.

One may wonder whether the objective function is concave
“with respect to” p, that is, if we are allowed to take optimal
E for each p. Unfortunately it is still not concave: Actually
for (P +P ′)/2 there is not any positive incentive, as can be
witnessed by the dual matrix

Y =

[
(1− p∗11)/2

√
p∗11(1− p∗11)/2√

p∗11(1− p∗11)/2 (1− p∗11)/2

]
. (42)

It can be easily verified that Y is a feasible solution for the
dual, and it gives the value Tr(Y )−Tr(P ) = 0, which is an
upper bound of the optimal value for this (P + P ′)/2.
Using a similar method, one can also find that the maxi-

mum quantum multiplicative incentive is 4/3. The optimal
solutions of the primal and dual are as follows.

Multiplicative OPT: 4/3,

Primal solution:

P =

[
2/5 2/5
0 1/5

]
, (43)

E1 =

[
2/3 −√

2/3

−√
2/3 1/3

]
, E2 = I − E1, (44)

Dual solution:

Y =

[
8/15 2

√
2/15

2
√
2/15 4/15

]
. (45)

We have then completely solved the case of n = 2.

3.3.3 Lower bounds for general games
Next we will study game of the general size n and prove

first part of Theorem 1.1. Note that the ad hoc analysis
used in previous part cannot be generalized in any straight-
forward way to the general case. However, some insights
obtained there are useful in the later construction.

We will exhibit a family of games and correlated equilib-
ria p such that the quantum incentive in |ψ(p)〉 increases
with the size of the game. Before giving the construction,
let us briefly discuss the intuition. Suppose we already have
a small game matrix A and a correlated equilibrium p with
positive quantum additive incentive on |ψ(p)〉. How to con-
struct a larger game with a larger quantum additive incen-
tive? Note that we are to find a distribution p′ satisfying
two requirements: First, it is a CE of the larger game, and
second, |ψ(p′)〉 has a larger quantum additive incentive. It
turns out that tensor product can satisfy both properties if
the parameters are good.

Lemma 3.5. For two bimatrix games (A1, B1) and (A2, B2)
with two correlated equilibria p1 and p2 (of the two games
respectively), suppose Player 1’s expected payoff on |ψ(pi)〉
is ui, and her maximum quantum additive and multiplica-
tive incentives on |ψ(pi)〉 are ai and mi. Then the distri-
bution p1 ⊗ p2 is a correlated equilibrium of the larger game
(A1 ⊗ A2, B1 ⊗ B2), and the maximum quantum additive
and multiplicative incentives on |ψ(p1 ⊗ p2)〉 are at least
(u1 + a1)(u2 + a2)− u1u2 and m1m2, respectively.

Proof. Let us first show that p1⊗p2 is a correlated equi-
librium of (A1 ⊗ A2, B1 ⊗ B2). Given any strategy x ◦ y of
Player 1, where x and y are two strategies of Player 1 in
games (A1, B1) and (A2, B2), respectively, the conditional
distribution of Player 2’s strategy is p1|x × p2|y, where p1|x
is the distribution of Player 2’s strategy in game (A1, B1)
conditioned on Player 1 getting x (in a sample from p1), and
similarly for p2|y. Note that p1|x×p2|y is a product distribu-
tion, therefore, Player 1 changing the strategy to any other
x′ ◦ y′ does not increase her expected payoff, since the ex-
pectation decomposes as the product of two expectations in
the two small games, both cannot be increased by changing
strategies by the definition of correlation equilibrium.

Now we calculate the payoffs. The average payoff of Player
1 in (A1 ⊗A2, B1 ⊗B2) for strategy p1 ⊗ p2 is

〈p1 ⊗ p2, A1 ⊗A2〉 = 〈p1, A1〉 · 〈p2, A2〉 = u1u2 (46)

If the maximum quantum multiplicative incentive on |ψ(pi)〉
are achieved by Player 1 applying Φi, then the maximum
quantum multiplicative incentive on |ψ(p1 ⊗ p2)〉 is at least
m1m2, since Player 1 can at least apply the local operation
Φ1 ⊗ Φ2. The additive incentive on |ψ(p1 ⊗ p2)〉 follows
similarly.
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We want to use the lemma d = �logc(n)� times, recur-
sively, to construct a game of size n from small building-
block games of size c. First consider c = 2 and n being a
power of 2; same asymptotic bound holds for general n (by
looking at the largest submatrix of size 2d). Some experi-
ences from the last section, such as A = I and p21 = 0, help
to design the 2 × 2 game. But note that simply taking the
optimal solution of the 2×2 games will not work since even-
tually the quantum additive incentive will be (u1(Φ1(ρ)))

d−
(u1(ρ))

d = (
√
2/4 + 1/2)d − (1 − √

2/4)d = o(1). To have
the additive incentive (u1(Φ1(ρ)))

d−(u1(ρ))
d large, it needs

u1(Φ1(ρ)) to be very close to 1. It turns out that for a small-
size game (I2, J2), if u1(Φ1(ρ)) is close to 1, so is u1(ρ). Thus
the incentive in the size-c game is actually very small, far
from being a good solution of the small game.

With this in mind, we construct the game in the following
way. Again define utility functions of Player 1 and 2

A1 =

[
1 0
0 1

]
, B1 =

[
1 1
1 1

]
, (47)

and a probability distribution

P =

[
sin2(ε) cos2(ε) sin2(ε)

0 cos4(ε)

]
, (48)

where ε is a small number to be decided later. It is not hard
to verify that p is a CE with Player 1’s average utility being

μ1,old = tr(P ) = sin2(ε) + cos4(ε). (49)

The induced quantum superposition state

|ψ(p)〉 = sin(ε)|00〉+ cos(ε) sin(ε)|01〉+ cos2(ε)|11〉, (50)

is not a QCE, because Player 1 can apply the unitary oper-
ator

U1 =

[
cos(ε) − sin(ε)
sin(ε) cos(ε)

]
, (51)

which has a general effect of

cos(a) cos(b)|00〉+ sin(a) cos(c)|01〉
+cos(a) sin(b)|10〉+ sin(a) sin(c)|11〉 (52)

→ cos(a) cos(b+ ε)|00〉+ sin(a) cos(c+ ε)|01〉
+cos(a) sin(b+ ε)|10〉+ sin(a) sin(c+ ε)|11〉 . (53)

So applying U1 on |ψ(p)〉 gives

U1|ψ(p)〉 = sin(ε) cos(ε)|00〉+ sin2(ε)|10〉+ cos(ε)|11〉, (54)

which has a utility of

μ1,new = sin2(ε) cos2(ε) + cos2(ε). (55)

Now we apply the above lemma to define a large game
by Ad = A⊗d, Bd = B⊗d and a correlated equilibrium
by Pd = P⊗d. Recall that d = �log2 n�. Let ε satisfy

d = 4ε−2 ln(1/ε), which gives ε = Θ(
√

log d/d). Using the
above tensor product construction, we get a quantum addi-

tive incentive of

μd
1,new − μd

1,old (56)

= (sin2(ε) cos2(ε) + cos2(ε))d − (sin2(ε) + cos4(ε))d (57)

= (1− sin4(ε))d − (1− sin2(2ε)/4)d (58)

≥ (1− dε4)− (e−d sin2(2ε)/4) (59)

= 1− (4ε2 ln
1

ε
+ εε

−2 sin2(2ε)) (60)

≥ 1− (4ε2 ln
1

ε
+ ε4−16ε2/3) (61)

= 1−O
( log2 d

d

)
= 1−O

( log2 log n
log n

)
(62)

where the first inequality used the bounds sin(x) < x and
1 − dx < (1 − x)d < e−dx, for any x > 0, and the second
inequality used the bound sin(x) ≥ x− x3/6 for x > 0.

For the multiplicative incentive, we can simply take the
2 × 2 game with the maximum multiplicative quantum in-
centive, 4/3, in the last section. The resulting multiplica-

tive quantum incentive is then (4/3)log2 n = nlog2(4/3) =
n0.4150.... This falls short of the promise in Theorem 1.1.
We now give another construction for general dimension c,
which yields a better multiplicative incentive. Consider the
following c × c bimatrix game. The utility function is still
A1 = Ic, B1 = Jc, and define a distribution p by

pij =

{
0 i− j = 1 mod c

1
c2−c

otherwise
(63)

where i, j range over {0, 1, . . . , c− 1}. It is routine to check
that it is indeed a correlated equilibrium, and Player 1’s
current utility is c · 1/(c2 − c) = 1/(c − 1). Let the POVM
{E0, . . . , Ec−1} be defined by Ei = |ψi〉〈ψi|, where the i′-th
entry of vector |ψi〉 is

ψi,i′ =

{
2−c
c

i′ − i = 1 mod c
2
c

otherwise
. (64)

It is a valid POVM measurement:∑
i

Ei(j, j) =

(
2− c

c

)2

+ (c− 1)

(
2

c

)2

= 1, ∀j, (65)

and∑
i

Ei(j, j
′) = 2 · 2− c

c
· 2
c
+ (c− 2)

(
2

c

)2

= 0, ∀j �= j′.

(66)
Now the new probability is

p′ij =
∑
i1,i2

√
pi1,jpi2,jEi(i1, i2). (67)

and the new utility is∑
i

∑
i1,i2

√
pi1,ipi2,iEi(i1, i2) (68)

=
∑
i

∑
i1 �=i+1,i2 �=i+1

1

c2 − c

(
2

c

)2

(69)

= c · (c− 1)2 · 4

c3(c− 1)
(70)

=
4(c− 1)

c2
(71)
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So the multiplicative incentive is 4(c− 1)2/c2. By the same
tensor product construction, we get an n × n game with
multiplicative incentive(4(c− 1)

c2

)logc(n)

= n
2+2 log2(1−1/c)

log2 c . (72)

Optimizing this over integers c, we get a quantum multi-
plicative incentive nlog2(3)−1 = n0.585... at c = 4.

A final remark for this section is that both lower bounds,
for the maximum additive and multiplicative incentives, can
be achieved even by symmetric games. Indeed, it is not hard
to verify that the probability distributions P⊗d with P given
in Eq. (48) and Eq. (63) are still correlated equilibria for
the game (I, I), a natural extension of Battle of the Sexes
game in Section 1.

3.4 From classical to quantum: General map-
pings and their extremal properties

Finally, for the general mapping, i.e. an arbitrary quan-
tum state ρ with p(s) = ρss satisfied, the equilibrium prop-
erty can be heavily destroyed, even if p is uncorrelated. We
can pin down the exact maximum quantum additive and
multiplicative incentives.

Theorem 3.6 (p NE � ρ QCE). There exist ρ and p
satisfying that p(s) = ρss, p is a Nash equilibrium, but ρ is
not even a quantum correlated equilibrium. The maximum
quantum additive incentive in a normalized (m×n)-bimatrix
game is 1 − 1/min{m,n}, and the maximum multiplicative
incentive is min{m,n} even for correlated equilibria p.

The theorem is a corollary of the next more general one.

Theorem 3.7. Suppose p is a correlated equilibrium for
a normalized n-player game and ρ satisfies ρss = p(s), ∀s ∈
S. Then the maximum quantum additive incentive is at most
1− εi and the maximum quantum multiplicative incentive is
at most 1/εi, where εi = max{|Si|−1, |S−i|−1}. Both bounds
are achievable even by some Nash equilibrium p.

Proof. Suppose Player i applies operation Ψi on ρ, re-
sulting in a distribution λ on S when the players measure
the state in the computational basis. Sine local operation
cannot change other parties’ density operator, the marginal
distribution of λ on S−i is still p−i. The new payoff for
Player i is ‖u ◦ λ‖1, where ‖ · ‖1 is the sum of entries in ab-
solute value. We are going to prove that the original payoff
for Player i is at least εi fraction of the new payoff; that is,

‖u ◦ p‖1 ≥ εi‖u ◦ λ‖1. (73)

This would imply the claimed bound for multiplicative in-
centive, and the additive incentive follows: (1−εi)‖u◦λ‖1 ≤
1− εi since u is normalized.
Now we prove the above inequality. First consider the case

of εi = |S−i|−1. For each s−i ∈ S−i, define a probability
distribution p

s−i

i over Si by p
s−i

i (si) = λ(sis−i)/p−i(s−i).
Then

‖u ◦ (ps−i

i × p−i)‖1 =
∑

si,s
′

−i

λ(s)

p−i(s−i)
u(si, s

′
−i)p−i(s

′
−i)

≥
∑
si

λ(sis−i)u(si, s−i) (74)

where in the last step we dropped the summands for all
s′−i �= s−i. Now define

p̄i =
1

|S−i|
∑

s−i∈S−i

p
s−i

i , (75)

the average of these distributions p
s−i

i . Since p is a cor-
related equilibrium, Player i cannot increase her expected
payoff by switching to p̄i. So

‖u ◦ p‖1 ≥ ‖u ◦ (p̄ip−i)‖1 (76)

=
1

|S−i|
∑
s−i

‖u ◦ (ps−i

i p−i)‖1 (77)

≥ 1

|S−i|
∑

si,s−i

λ(sis−i)u(si, s−i) (78)

=
1

|S−i| ‖u ◦ λ‖1. (79)

where the first equality is by noting that all matrices here
are nonnegative.

For the case of εi = |Si|−1, take the uniform distribution
qi over Si, then by the similar argument as above, we have

‖u ◦ p‖1 ≥ ‖u ◦ (qi × p−i)‖1 =
1

|Si|
∑

si,s−i

u(sis−i)p−i(s−i).

(80)

Now note that p−i is the marginal distribution of λ on S−i,
thus p−i(s−i) ≥ λ(sis−i), and

‖u ◦ p‖1 ≥ 1

|Si|
∑

si,s−i

u(sis−i)λ(sis−i) =
1

|Si| ‖u ◦ λ‖1.

(81)

as desired.
We next show that the bounds in the above theorem is

achievable even by a Nash equilibrium p. Assume that |Si| =
|S−i| = n, then there is a one-one correspondence π : S−i →
Si. Consider the following n-player game:

ui(s) =

{
1 if si = π(s−i)

0 otherwise
, uj(s) = 1, ∀j �= i.

(82)
Consider the state

|ψ〉 = (FSi⊗IS−i)|ψ′〉, with |ψ′〉 = 1√
n

∑
s−i∈S−i

|π(s−i)s−i〉

(83)
where FSi is the Fourier transform operator on the register
corresponding to Si (and IS−i is the identity on the rest).
If we measure |ψ〉, then we get a uniform distribution over
the n2 joint strategies. This is a Nash equilibrium, since if
all other [n]− {i} players choose a random strategy in S−i,
then Player i is indifferent in all her n strategies in Si.

However, |ψ〉 is not a quantum (even correlated) Nash
equilibrium, because Player i can apply the inverse Fourier
transform on |ψ〉 to get |ψ′〉, which gives Player i payoff 1
if the players measure the state. The gained payoff by this
local operation is 1− 1/n = 1− εi.

4. SEPARATION INCLASSICALANDQUAN-
TUMCORRELATIONCOMPLEXITYOF
CORRELATED EQUILIBRIA
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Figure 4: Correlated equilibrium generation with
trusted local operations

This section studies the correlation from its generation.
First observe that all correlations are correlated equilibria
for some game. Actually, for any given probability distribu-
tion p on S, for any si, let

s∗−i = the lexicographically first maximizer for max
s−i

p(sis−i).

(84)
Define the utility function to be

ui(s) =

{
1 if s−i = s∗−i

0 otherwise
. (85)

Then it is easy to verify that p is a correlated equilibrium.
Thus the problem of generating correlated equilibria is as
general as that of generating an arbitrary correlation.

Consider the following scenario for correlation generation.
Two parties, Alice and Bob, share some “seed” correlation
initially, and then perform local operations on their own
systems. Different resources can serve as the seed correla-
tion; in particular, it can be shared (classical) randomness
and entangled (quantum) states.

In the setting of games, two scenarios can be considered,
depending on whether the local operations are carried out by
trusted parties or untrusted players. We will discuss these
models in the next two subsections.

4.1 Correlated equilibrium generation: trusted
local operation model

To illustrate the trusted local operation model, consider
the a generalized Battle of the Sexes game, where Alice and
Bob are not in the same city but want to generate some
correlation p = (X,Y ). There is a publicly trusted company
C, which can help to generate p. Company C has a central
server which generates a seed and send to its local servers A
and B, distributed close to Alice and Bob, respectively. The
local servers A and B apply the local operations to generate
a state which is then sent to Alice and Bob. Here the local
operations are carried out by the trusted servers A and B.
And the complexity that we care is the size of the seed,
which is also the communication between the central server
to the two distributed servers A and B.

More precisely, in the classical case, the two parties Alice

and Bob initially have random variables SA and SB , re-
spectively, which may be correlated in an arbitrary way.

They can also use private randomness RA and RB , respec-
tively. The two parties then apply local operations on their
own systems. The joint output is then a pair of (corre-
lated) random variables (X,Y ) where X = fA(SA, RA) and
Y = fB(SB , RB) for some functions fA and fB . In the
quantum setting, the two parties initially share a state ρ,
and they then apply local operations and output a pair of
classical random variables (X,Y ).

Definition 4.1. The randomized correlation complexity
of a distribution p is the minimum size of shared random
variables (X ′, Y ′) given which Alice and Bob can apply local
operations (but no communications) and output X and Y ,
respectively, such that (X,Y ) is distributed according to p.
The quantum correlation complexity is defined in the same
way with the initially shared (X ′, Y ′) being a quantum en-
tangled state. We use RCorr(p) and QCorr(p) to denote the
randomized and quantum correlation complexity of p.

We can also define the private-coin randomized (and quan-
tum, respectively) communication complexity of distribu-
tion p, which is the minimum number of bits (and qubits,
respectively) exchanged such that at the end of the protocol,
Alice outputs X and Bob outputs Y with (X,Y ) distributed
according to p. Note that no seed correlation is allowed
in this case; that is why we call it private-coin. We use
RComm(p) and QComm(p) to denote the private-coin ran-
domized and quantum communication complexity of p.

Some remarks are in order. First, recall that the size of
the seed correlation (X ′, Y ′) is half of the number of bits
of (X ′, Y ′), consistent with the convention that the size of
public-coin string is the number of bits of R which Alice and
Bob share. Second, since (even one-way) communication can
easily simulate the shared randomness/entanglement (by one
party generating the shared resource and sending part of it
to the other party), we have RComm(p) ≤ RCorr(p) and
QComm(p) ≤ QCorr(p). It turns out that actually equality
holds in both cases. However we still define the correlation
complexity because it is a natural model and it is easier to
bound (for example, in the later Theorem 4.2). Third, as
we mentioned, Alice and Bob can always share the target
correlation as the seed, so QCorr(p) ≤ RCorr(p) ≤ size(p).
Finally, using a round-by-round argument, one can prove
that QComm(p) ≥ I(p)/2 where I(p) is the mutual informa-
tion I(X,Y ) for (X,Y ) ← p. Putting all these together, we
have

I(p)

2
≤ QComm(p) = QCorr(p) (86)

≤ RComm(p) = RCorr(p) ≤ size(p). (87)

Remark.
The QComm(p) = QCorr(p) was pointed out firstly by

Nayak (private communication), who observed that the ar-
gument in Kremer’s thesis [41] (which was in turn attributed
to Yao) implies that the Schmidt rank of a joint state gen-
erated by c-qubit communication (without prior entangle-
ment) is at most 2c.

We next relate the quantum and classical correlation com-
plexities to standard and nonnegative ranks, respectively.

Theorem 4.2.

1

4
log2 rank(P ) ≤ QCorr(p) ≤ min

Q: Q◦Q̄=P
log2 rank(Q), (88)
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and the upper bound can be achieved by (local) unitary opera-
tions followed by a measurement in the computational basis.

Proof. Lower bound: Suppose the seed state is ρ =

μi

∑2q

i=1 |ψi〉〈ψi|, where q = 2r = 2QCorr(p) and |ψi〉’s are
pure states. Further apply Schmidt decomposition on each
|ψi〉:

|ψi〉 =
2r∑
j=1

λij |ψij〉 ⊗ |φij〉, (89)

where |ψij〉 and |φij〉 are in Alice’s and Bob’s sides, respec-
tively. Now whatever local operations Alice and Bob apply
(for generating a distribution p) can be formulated as general
POVM measurements {Ex} and {Fy}, respectively, result-
ing in

p(x, y) =
∑
i

μi

〈
Ex ⊗ Ey, |ψi〉〈ψi|

〉
(90)

=
∑
ijk

μiλijλik〈ψik|Ex|ψij〉 · 〈φik|Ey|φij〉 (91)

Therefore P can be written as the summation of 2q+r+r =
24r rank-1 matrices, i.e. rank(P ) ≤ 24r.

Upper bound: Consider the singular value decomposition
of Q: Q =

∑r
i=1 σi|ui〉〈vi|, where σi > 0, r = rank(Q), |ui〉

and |vi〉 are unit length vectors. Observe that∑
i

σ2
i = ‖Q‖2F =

∑
x,y

|Q(x, y)|2 =
∑
x,y

Q(x, y)Q̄(x, y) (92)

=
∑
x,y

(Q ◦ Q̄)(x, y) =
∑
x,y

P (x, y) = 1. (93)

Now let Alice and Bob share the state |ψ〉 = ∑r
i=1 σi|i〉⊗|i〉,

which is a valid pure state because of the equality above.
Then Alice applies U and Bob applies V , where U and V
are unitary matrices the i-th columns of which are |ui〉 and
|v̄i〉, respectively. Then a measurement in the computational
basis gives (x, y) with probability∣∣∣∑

i

σi〈x|ui〉〈y|v̄i〉
∣∣∣2 =

∣∣∣∑
i

σi〈x|ui〉〈vi|y〉
∣∣∣2 (94)

= |Q(x, y)|2 = Q(x, y)Q̄(x, y) (95)

= P (x, y), (96)

as desired.

An application of the lower bound is to separate the quan-
tum correlation complexity and mutual information, namely,
the aforementioned lower bound I(p)/2 ≤ QCorr(p) can be
quite loose.

Proposition 4.3. There is a correlated distribution p with
I(p) = O(n−1/3) and QCorr(p) ≥ 1

4
log2(n+ 1).

Proof. In [30], the following distribution is defined to
separate mutual information and another two measures C(p)
and T (p) which we will not give details but only mention
that both are lower bounds for RComm(p). The distribution
p is defined on {0, 1}n × {0, 1}n:

p(x, y) =
|{i : xi = yi}|

n
· 21−2n (97)

and they showed that I(p) = O(n−1/3). Here we can sep-
arate I(p) and QCorr(p) by showing that rank(P ) = n + 1

and thus QCorr(p) ≥ 1
4
log2(n + 1). Indeed, consider the

submatrix of size (n+ 1)× (n+ 1) where the indices x, y ∈
{0n, 10n−1, 110n−2, · · · , 1n}. The submatrix, after a proper
scaling, is the following one

⎡
⎢⎢⎢⎢⎢⎣

1 1− 1/n 1− 2/n · · · 0
1− 1/n 1 1− 1/n · · · 1/n
1− 2/n 1− 1/n 1 · · · 2/n

...
...

...
. . .

...
0 1/n 2/n · · · 1

⎤
⎥⎥⎥⎥⎥⎦ . (98)

By subtracting each row from its next one, it is not hard to
see that the rank of this is n+ 1.

Next we fully characterize the randomized correlation and
communication complexity by nonnegative rank. The argu-
ment of the lower bound was essentially known before (for
example, in proving the Cut-and-Paste lemma in [4]), here
we observe that the argument also yields a lower bound for
nonnegative rank. We include it for the completeness.

Theorem 4.4. RComm(p) = RCorr(p) = �log2 rank+(P )	.
Proof. We shall prove that RCorr(p) ≤ �log2 rank+(P )	

and RComm(p) ≥ �log2 rank+(P )	. The conclusion then
follows by the bound RComm(p) ≤ RCorr(p).

Upper bound for RCorr(p): By definition of rank+(P ), we
can decompose P s.t. P (x, y) = K

∑r
i=1 qiai(x)bi(y) where

q, ai’s and bi’s are all probability distributions, K > 0 is
a global normalization factor, and r = rank+(P ). By sum-
ming over all (x, y) and compare the above equality, it is
easily seen that actually K = 1. Therefore, Alice and Bob

can sample from P by first sharing a random i distributed
according to q, and Alice sampling x from ai, Bob sampling
y from bi.

Lower bound for RComm(p): Suppose p can be generated
by an r-round protocol M = (M1, . . . ,Mr) where the ran-
dom variable Mi is the message in the i-th message. Alice

uses private randomness rA and Bob uses private random-
ness rB . Without loss of generality, suppose Alice starts
the protocol by sending M1. Let c be the total number of
bits exchanged. At the end of the protocol Alice outputs X
and Bob outputs Y . Let m range over the set of possible
message. Then

p(x, y) =
∑
m

PrrA,rB [M = m]PrrA,rB [X = x, Y = y|M = m]

(99)

Expand the probability PrrA,rB [M = m] by conditional
probabilities in a round-by-round manner, we have

PrrA,rB [M = m]

= PrrA [M1 = m1] ·PrrB [M2 = m2|M1 = m1] · . . .
·Pr[Mr = mr|M1 . . .Mr−1 = m1 . . .mr−1] (100)

where the last probability is over either rA or rB , depending
on the parity of r. Finally noting that PrrA,rB [X = x, Y =
y|M = m] = PrrA [X = x|M = m] · PrrB [Y = y|M = m]
since conditioned on a fixed message m, the Alice and Bob’s
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outputs are independent. Rearranging the terms gives

p(x, y) =
∑
m

(
PrrA [X = x|M = m]

·
∏

i∈[r]:odd

PrrA [Mi = mi|Mi−1 = mi−1]
)

·
(
PrrB [Y = y|M = m]

·
∏

i∈[r]:even

PrrB [Mi = mi|Mi−1 = mi−1]
)

Now for each fixed m, the first term in the above product
depends only on x, and the second term depends only on y,
thus each summand is a rank-1 matrix. Since each entry of
the matrix is a product of probabilities, it is also a nonnega-
tive matrix. Thus we have decomposed P = [p(x, y)]x,y into
the summation of 2c nonnegative rank-1 matrices, proving
the theorem.

With the above setup, now we look for matrices Q with
small rank and large nonnegative rank for Q ◦ Q̄. Consider
the following Euclidean Distance Matrix : For distinct real
numbers c1, c2, . . . , cN of R+, consider the matrix Q defined
by

Q(x, y) = cx − cy (101)

for all x, y ∈ [N ]. Now we construct our probability dis-
tribution matrix P = [p(x, y)]xy by taking the Hadamard
product of Q and itself, then normalized:

P = Q ◦Q/‖Q ◦Q‖1 = [(cx − cy)
2]xy/‖Q ◦Q‖1 (102)

Note that Q is a real matrix, so Q = Q̄. Clearly rank(Q) =
2, therefore Theorem 4.2 implies that QCorr(P ) = 1. The
classical hardness is immediate from a recently proved result.

Theorem 4.5 (Beasley-Laffey, [5]). rank+(P ) ≥ log2 N .

By this theorem, we have the separation QCorr = 1 and
RCorr ≥ log2(n). Letting n go to infinity gives the separation
in Theorem 1.2.

Euclidean Distance Matrix is generally formed by taking
distinct points ci’s from a d-dimensional space, and it is a
well-studied subject; see textbook [19] and survey [42]. It
is also conjectured in [5] that actually rank+(P ) = N for
all Euclidean Distance MatricesNote that existence of even
one Euclidean Distance Matrix with rank+(P ) = N implies
that our separation can be improved to “1 vs. n”, the largest
possible.

A final remark is that one can also consider approximate
versions of correlation complexity, the minimum seed needed
to generate a probability distribution p′ which is close to the
target p. Various distance functions can be considered. The-
orem 4.4 immediately characterizes this quantity as the ap-
proximate nonnegative rank, namely the minimum nonneg-
ative rank of a matrix which is close to the given matrix (un-
der the corresponding distance functions). The well-studied
approximate nonnegative rank factorization usually uses the
Frobenius distance [9] or total variance (	1-distance) [66,67].

Shi pointed out the paper [2], the main result of which
showed an exponential separation between randomized and
quantum communication complexities of approximating a
correlation in 	1-distance. To be more precise, a natural
correlation p of size n, arising from the Disjointness function,
hasQCommε(p) = O(log n log(1/ε)), but RCommε(p) = Ω(

√
n).

4.1.1 Conjecture of high nonnegative rank for a ran-
dom matrix with low QCorr

We actually conjecture that a random P with QCorr(P ) =
1 and some condition holding has RCorr(P ) = n with prob-
ability 1. Let us make the precise statement.

For a matrix M , denote by 〈mi| the row i and by |mj〉
the column j. Note that multiplying a whole column by a
positive number does not change the rank or the nonnegative
rank of a matrix.

Definition 4.6. A nonnegative matrix M is in the nor-
mal form if ‖|mj〉‖1 = 1 for all j ∈ [n]. A nonnegative
factorization Mm×n = Cm×rDr×n is in the normal form
if ‖|dj〉‖1 = 1 for all j ∈ [n]. A nonnegative factorization
Mm×n = Cm×rDr×n is called optimal if r = rank+(M).

Fact 1. Any nonnegative matrix in the normal form has
an optimal nonnegative factorization in the normal form.

Proof. Take an optimal nonnegative factorizationMm×n =
Cm×rDr×n. Rewrite it as

M = [|c1〉/‖|c1〉‖1, · · · , |cn〉/‖|cn〉‖1]
· diag(‖|c1〉‖1, · · · , ‖|cn〉‖1) ·D. (103)

The middle diagonal matrix can be absorbed into D, giving
a new matrix D′. Now the 	1 norm of column j of D′ is∑

i

‖|ci〉‖1dij =
∑
ik

ckidij =
∑
k

mkj = ‖|mj〉‖1 = 1.

(104)

We want to define our Qn = An×rBr×n, where (A,B)
comes from the following set.

Mn = {(A,B) : A ∈ R
n×r, B ∈ R

r×n,
n∑

i=1

〈ai|bj〉 = 1, ∀j ∈ [n],

and 〈ai|bi〉 = 0, ∀i ∈ [n]}. (105)

Here the first equality is to make Q = AB in the normal
form. The second equality requires that the diagonal entries
of Qn are zero; this is for the purpose of later induction. Let

Qn = {Qn = AB : (A,B) ∈ Mn}. (106)

One can pick a random Q ∈ Qn as follows. First pick ran-
dom vectors 〈ai|’s on the unit circle, and then a random |bi〉
satisfying the two equalities in the definition of Mn. Finally
let Q = AB. Our main conjecture is:

Conjecture 1. A random Q ∈ Qn has rank+(Q ◦Q) =
n with probability 1.

4.2 Correlated equilibrium generation: untrusted
local operation model

In the untrusted local operation model as illustrated in
Figure 5, the referee generates the seed σ and send it to the
two players, who then are supposed to finish the correlation
generation process by applying the local operations Ψ1 and
Ψ2, respectively. However, since the players can deviate
from the protocol, the generation process is an equilibrium if
no player has incentive to deviate. We define the correlation
complexity of generating an CE p in gameG as the minimum
size of the seed needed.

55



Figure 5: Correlated equilibrium generation with
untrusted local operations

Definition 4.7. The randomized correlation complexity
of a distribution p is the minimum size of shared random
variables (X ′, Y ′) given which

1. Player 1 and Player 2 can apply local operations Φ1

and Φ2 and output X and Y , respectively, such that
(X,Y ) is distributed according to p,

2. no player has incentive to deviate from the protocol,
namely, Player i cannot increase her payoff by apply-
ing some Φ′i, provided that the other player does not
deviate from the protocol.

The quantum correlation complexity is defined in the same
way with the initially shared (X ′, Y ′) being a quantum state.
We use RCorr(p,G) and QCorr(p,G) to denote the random-
ized and quantum correlation complexity of CE p in game
G.

It is easy to see that RCorr(p,G) ≥ RCorr(p) since the
definition of RCorr(p,G) has more requirement than that of
RCorr(p). Similarly we have QCorr(p,G) ≥ QCorr(p). The
following fact is also easy to see because unitary operations
are reversible.

Fact 2. QCorr(p,G) ≤ min|ψ〉QCorr(|ψ〉), where the min-
imization is over the set {|ψ〉 : |ψ〉 is a QCE of G, and |ψ〉
can be generated by local unitary operations (on some seed)}.
Next we show that the separation of classical and quan-

tum correlation generation in the trusted model also applies
in the untrusted model for some natural game. Consider
the following load-balancing scenario, where each of the two
players have n servers to choose. If the two players choose
the same server, then both will suffer from the delay due to
the collision. If the two players choose different strategies,
then they each use one server and no delay is caused, thus
they are both happy. So the game matrix is (J − I, J − I).
This can be viewed as a natural generalization of the Traffic
Light game, which is also about collision avoiding. Since in
the example in the trusted local operation model, the up-
per bound of the QCorr(p) is achieved by unitary operations,
and it is easy to verify that the pure state before the mea-
surement is a QCE of the game, the above Fact implies that

the same separation also applies here: QCorr(p,G) = 1 and
RCorr(p,G) ≥ RCorr(p) ≥ log2 n.

A final remark is that though it holds that RCorr(p,G) ≤
size(p) for all CE p, there is no such upper bound for
RComm(p,G). Actually, for the aforementioned CE p in the
Battle of the Sexes game (with half probability on (A,A)
and half probability on (B,B)), if there is no Referee, then
a communication protocol to achieve p actually gives a pro-
tocol for weak coin flipping with no bias. This is known to
be classically impossible (if no computational assumption is
made); in fact in any protocol, there is always one player
with success probability being 1. Weak coin flipping with
no bias is also impossible for quantum protocols [1], but
the bias can be made arbitrarily close to 0 [49]. This also
implies an “finite” vs. “infinite” separation between classi-
cal and quantum approximate communication complexities
RCommε(p,G) and QCommε(p,G) .

5. CONCLUDING REMARKS AND OPEN
PROBLEMS

This work gives a first-step explorations for quantization
of classical strategic games, and calls for more systematic
studies for quantum strategic game theory. There are lots
of problems left open for future work. Some are closely re-
lated to quantum games; some are motivated from quantum
games but are of their independent interest.

1. (Maximum increase of payoff) How to improve
the bounds in the first part of Theorem 1.1? Is the
maximum quantum incentive in an n × n bimatrix
game always achievable at A = In, B = Jn? Can we
give upper bounds better than 1− 1/n for additive in-
centive (or better than n for multiplicative incentive)
of |ψp〉? Can we solve more low dimensional cases,
such as n = 3, 4, 5? What is the complexity of finding
the maximum quantum incentive for a given bimatrix
game?

2. (Special games) There are many important special
classes of games, such as zero-sum games, succinctly
representable games, etc. It would be interesting to
investigate the extremal questions about the maximum
incentives in these special classes.

3. (Average-case games) How about the increase of
payoff for an random game drawn from some natural
distribution?

4. (Separation between classical and quantum cor-
relation complexities) Can we improve the sepa-
ration between randomized and quantum correlation
complexities? We conjecture that a random size-n dis-
tribution p withQCorr(p) = 1 would have RCorr(p) = n
with probability 1.

5. (Approximate correlation/communication com-
plexity) Given the connection of approximate ran-
domized correlation/communication complexity and ap-
proximate nonnegative rank, can we use the former to
answer some questions in the later?

6. (Characterizing QCorr). We have shown that the
randomized correlation and communication complexi-
ties are fully characterized by the well-studied measure
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of the nonnegative rank. Can we have a characteriza-
tion of the quantum correlation complexity better than
the bounds in Theorem 4.2?

7. (Direct sum/product of correlation and com-
munication complexities)Do we have direct sum/product
for (approximate) correlation and communication com-
plexities?

8. (Communication complexities of generating CE)
What gameG has finite RComm(p,G)? Has RComm(p,G) =
poly(size(p))? How about quantum? What if we al-
low a small error?

This can be seen as an extension of coin-flipping (with-
out computational assumptions) to the more general
case.

9. (Testing of quantum equilibria) How many iden-
tical copies of ρ are needed to test the quantum equi-
librium property?
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