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Abstract. We present a new discrete fixed point theorem based on a
novel definition of direction-preserving maps over simplicial structures.
We show that the result is more general and simpler than the two re-
cent discrete fixed point theorems by deriving both of them from ours.
The simplicial approach applied in the development of the new theorem
reveals a clear structural comparison with the classical approach for the
continuous case.

1 Introduction

There has recently been a sequence of works related to fixed point theorems in a
discrete disguise, started with the seminal work of Iimura [13] which introduced
a crucial concept of direction-preserving maps. Iimura, Murota and Tamura [14]
corrected the proof of Iimura for the definition domains of the maps. With a
different technique, Chen and Deng introduced another discrete fixed point the-
orem in order to achieve the optimal algorithmic bound for finding a discrete
fixed point for all finite dimensions [2]. In [15], Laan, Talman and Yang designed
an iterative algorithm for the discrete zero point problem. Based on Sperner’s
lemma which is fundamental for deriving Brouwer’s fixed point theorem, Friedl,
Ivanyosy, Santha and Verhoeven defined the black-box Sperner problems. They
also obtained a

√
n upper bound for the two-dimensional case [11], which is also

a matching bound when combined with the lower bound of Crescenzi and Sil-
vestri [8] (mirroring an early result of Hirsch, Papadimitriou and Vavasis on the
computation of 2D approximate fixed points [12]). On the other hand, Chen and
Deng [6] showed that the two theorems, that of Iimura, Murota and Tamura [14],
as well as that of Chen and Deng [2], cannot directly derive each other.

In this article, we derive a new discrete fixed point theorem based on simplicial
structures and a novel definition of direction-preserving maps. We show that both
previous discrete fixed point theorems can be derived from this simpler one.

The simplicial structure, together with Sperner’s Lemma, has played an im-
portant role in establishing various continuous fixed point theorems. Our focus
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on the simplicial structure in the study of the discrete version will help us gain
a full and clear understanding of the mathematical structures and properties
related to discrete fixed point theorems. Furthermore, even for continuous fixed
point theorems, discrete structural propositions are needed to derive them. Our
study would provide a unified view of the fixed point theorem, both discrete and
continuous, instead of treating them with ad hoc techniques. Our simplicial ap-
proach unveils the mystery behind the recent results on discrete fixed points and
settles them under the same mathematical foundation as the classical continuous
fixed point theorems.

The discrete nature of the fixed point theorem has been noticed previously,
mainly due to the proof techniques of Sperner’s lemma [16]. The recent effort in
direct formulation of the discrete version of the fixed point theorem would be
especially useful in the complexity analysis of related problems. The recent work
in characterizing the complexity of Nash Equilibria, by Daskalakis, Goldberg,
Papadimitriou [9], Chen and Deng [3], Daskalakis and Papadimitriou [10], Chen
and Deng [4], has been based on another innovative formulation of the 2D (or
3D) discrete fixed point problem, where a fixed point is a collection of four [7]
(or eight [9]) corners of a unit square (or cube). It’s difficult to generalize such
a formulation to high dimensional spaces, since a hypercube has an exponential
number of corners, which is computationally infeasible. Instead, a simplicial def-
inition has been necessary in extending those results to a non-approximability
work obtained recently [10].

We first introduce notations and definitions with a review of previous works
of Murota, Iimura and Tamura [14], as well as Chen and Deng [2]. The simplicial
model is then introduced in section 3 and the fundamental discrete fixed point
theorem is proved in section 4. In section 5, we present the discrete Brouwer’s
fixed point theorem for simplicial direction-preserving maps, with the theorem
of Murota, Iimura and Tamura [14] derived as a simple corollary. In Section 6,
we give an explicit explanation for the definition of bad cubes in [2] and show
that, the theorem of Chen and Deng is a special case of the fundamental fixed
point theorem. Finally, we conclude in section 7.

2 Preliminaries

2.1 Notations and Definitions

Informally speaking, map F (or function f ) is hypercubic direction-preserving
on a finite set X ⊂ Z

d if for every two neighboring points in X , their directions
given by F (or f ) are not opposite. The neighborhood relation considered here
is defined by the infinity norm.

Definition 1 (Hypercubic Direction-Preserving Maps). Let X be a finite
subset of Z

d. Map F from X to R
d is said to be hypercubic direction-preserving
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on X if for every two points r1, r2 ∈ X with ||r1 − r2||∞ ≤ 1, we have (Fi(r1)−
r1
i ) (Fi(r2) − r2

i ) ≥ 0, for all i : 1 ≤ i ≤ d.

Definition 2 (Hypercubic Direction-Preserving Functions). Let X be a
finite subset of Z

d. Function f from set X to { 0, ±e1, ±e2...±ed−1, ±ed } is said
to be hypercubic direction-preserving if for every two points r1, r2 ∈ X such that
||r1 − r2||∞ ≤ 1, we have ||f(r1) − f(r2)||∞ ≤ 1.

Point r ∈ X is called a fixed point of F (or f ) if F(r) = r (or f(r) = 0).

2.2 The Fixed Point Theorem of Murota, Iimura and Tamura

Murota, Iimura and Tamura proved in [14] that every hypercubic direction-pre-
serving map from an integrally convex set X to X must have a fixed point. Here
we use X to denote the convex hull of finite set X ⊂ Z

d.

Definition 3 (Integrally Convex Sets). Finite set X ⊂ Z
d is integrally con-

vex if for all x ∈ X, x ∈ X ∩ N(x) where N(x) = { r ∈ Z
d | ||r − x ||∞ < 1 }.

Theorem 1 ([14]). Let X be an integrally convex set in Z
d, then every hyper-

cubic direction-preserving map F from X to X has a fixed point in X.

2.3 The Fixed Point Theorem of Chen and Deng

Given a hypercubic direction-preserving function f on a lattice set Ca,b ⊂ Z
d,

Chen and Deng proved in [2] that if the number of bad (d − 1)-cubes on the
boundary of Ca,b is odd, then f must have a fixed point in Ca,b.

Definition 4. Lattice set Ca,b ⊂ Z
d is defined as Ca,b = { r ∈ Z

d | ∀ 1 ≤ i ≤
d, a ≤ ri ≤ b }. For every r ∈ Z

d and S ⊂ { 1, 2 ... d } with |S | = d − t, the
t-cube Ct ⊂ Z

d which is centered at r and perpendicular to S is defined as Ct =
{ p ∈ Z

d
∣
∣ ∀ 1 ≤ i ≤ d, if i ∈ S, then pi = ri. Otherwise, pi = ri or ri + 1 }.

Definition 5 (Bad Cubes). A 0-cube C0 ⊂ Z
d is bad relative to function f if

f(C 0) = {e1 }. For 1 ≤ t ≤ d − 1, a t-cube Ct ⊂ Z
d is bad relative to f if :

1. f(Ct) = { e1, e2... et+1 };
2. the number of bad (t − 1)-cubes in Ct is odd.

Theorem 2 ([2]). Let f be a hypercubic direction-preserving function on Ca,b ⊂
Z

d, if NB, i.e. the number of bad (d − 1)-cubes on the boundary of Ca,b is odd,
then f must have a fixed point r in Ca,b such that f(r) = 0.

Although the theorem itself is succinct, the definition of bad cubes seems a little
mysterious and lacks a satisfactory explanation. In section 6, we will use the
fundamental discrete fixed point theorem for the simplicial model to resolve this
puzzle.
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3 Simplicial Direction-Preserving Maps and Functions

In this section, we introduce simplicial direction-preserving maps and functions
based on simplicial structures. Let X be a finite set in R

d. Here we only con-
sider nondegenerate cases where X ⊂ R

d is a convex d-polytope. For standard
definitions concerning polytopes, readers are referred to [17] for details.

Definition 6. A simplicial decomposition S of C ⊂ R
d is a collection of sim-

plices satisfying: 1). C = ∪ S∈SS; 2). For any S ∈ S, if S′ is a face of S, then
S′ ∈ S; 3). For every two simplices S1, S2 ∈ S, if S1 ∩ S2 	= ∅, then S1 ∩ S2 is
a face of both S1 and S2.

Definition 7. Let X be a finite set in R
d. A simplicial decomposition S of set

X is a simplicial decomposition of X such that for every S ∈ S, VS ⊂ X, where
VS is the vertex set of simplex S.

Given a simplicial decomposition S of X, we use FS to denote the set of
(d−1)-simplices on the boundary of X, and BX to denote the set of points on the
boundary of X : FS = { (d − 1)-simplex S ∈ S | S ⊂ F and F is a facet of X },
and BX = { r ∈ X | r ∈ F and F is a facet of X }.

Definition 8 (Simplicial Direction-Preserving Maps). A simplicial direc-
tion-preserving map is a triple M = (F , X, S). Here X is a finite set in R

d and
S is a simplicial decomposition of X. Map F from X to R

d satisfies for every
two points r1, r2 ∈ X, if there exists a simplex S ∈ S such that r1, r2 ∈ VS , then
(Fi(r1) − r1

i ) (Fi(r2) − r2
i ) ≥ 0, for all i : 1 ≤ i ≤ d.

Definition 9 (Simplicial Direction-Preserving Functions). A triple G =
(f, X, S) is said to be a simplicial direction-preserving function if X is a finite
set in R

d, S is a simplicial decomposition of X, and function f from set X to
{ 0, ±e1, ... ± ed } satisfies for every two points r1, r2 ∈ X, if there exists S ∈ S
such that r1, r2 ∈ VS, then ||f(r1) − f(r2)||∞ ≤ 1.

In other words, for every two neighboring points in X , their directions given by
map F (or function f) can’t be opposite. The only difference with the hypercu-
bic model is that the neighborhood relation is now defined by simplices in the
simplicial decomposition S instead of unit d-cubes in Z

d.

4 The Fundamental Discrete Fixed Point Theorem

In this section, we present the fundamental discrete fixed point theorem which
is both simple and powerful. Any simplicial direction-preserving function which
satisfies the boundary condition of the theorem must have a fixed point.

Definition 10 (Bad Simplices). Let G = (f, X, S ) be a simplicial direction-
preserving function, where X ⊂ Z

d. A t-simplex S ∈ S where 0 ≤ t ≤ d is said
to be bad (relative to function G) if f(VS) = { e1, e2, ... et+1 }, where VS is the
vertex set of S. We use NG to denote the number of bad (d−1)-simplices in FS .
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Lemma 1. For any simplicial direction-preserving function G = (f, X, S ), if
there exists no fixed point in X, then NG is even.

Proof. Firstly, one can show that for every (d − 1)-simplex S ∈ S, if S ∈ FS ,
then there exists exactly one d-simplex in S containing S. Otherwise, there are
exactly two such simplices. Using this property, the parity of NG is same as the
one of the following summation:

∑

d-simplex Sd ∈ S

∣
∣
∣

{

bad (d − 1)-simplices in Sd
}

∣
∣
∣.

As G is direction-preserving and has no fixed point, the number of bad (d − 1)-
simplices in Sd is either 0 or 2. Therefore, the summation above must be even.

We now get the fundamental theorem as a simple corollary of Lemma 1.

Theorem 3 (The Fundamental Discrete Fixed Point Theorem). Let
G = (f, X, S) be a simplicial direction-preserving function. If NG, i.e. the num-
ber of bad (d − 1)-simplices on the boundary is odd, then G must have a fixed
point r ∈ X such that f(r) = 0.

5 The Discrete Brouwer’s Fixed Point Theorem

In this section, the fundamental discrete fixed point theorem will be employed
to prove a fixed point theorem concerning simplicial direction-preserving maps.
It can be recognized as a discrete version of Brouwer’s fixed point theorem. It
states that for any simplicial direction-preserving map from some finite set to
its convex hull, there must exist a fixed point in the definition domain.

We will also derive the theorem of Murota, Iimura and Tamura as a simple
corollary. Actually, the one derived here is much stronger than theirs.

5.1 Preliminaries

We use ek to denote the kth unit vector of Z
d where ek

k = 1 and ek
i = 0 for all

i : 1 ≤ i 	= k ≤ d.

Definition 11. For every (d − 1)-simplex S ∈ FS , we let eS be the unit vector
which is outgoing and perpendicular to S. For all r ∈ X and rS ∈ S, we have
eS · (r − rS) ≤ 0.

S ∈ FS is visible from point r /∈ X if eS · (r − rS) > 0 for some rS ∈ S.

Construction 1 (Extension of Simplicial Decomposition). Let X ⊂ R
d

be a finite set and S be a simplicial decomposition of X. For every point r /∈ X,
we can add new simplices into S and build a simplicial decomposition S′ of set
X ′ = X ∪ {r} as follows. For every (d − 1)-simplex S ∈ FS visible from r, we
add d-simplex conv(S, r) and all its faces into S. One can check that S′ is a
simplicial decomposition of X ′, and S ⊂ S′.
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Given a simplicial direction-preserving map M = (F , X, S), we can convert it
into a direction-preserving function G = (f, X, S) as follows.

Construction 2. Given a simplicial direction-preserving map M = (F , X, S),
we can build a simplicial direction-preserving function G = (f, X, S) as follows.
For every r ∈ X, if F(r) = r, then f(r) = 0. Otherwise, let i : 1 ≤ i ≤ d be the
smallest integer such that Fi(r) − ri 	= 0, then f(r) = sign(Fi(r) − ri)ei.

5.2 The Key Lemma

Lemma 2. Let M = (F , X, S ) be a simplicial direction-preserving map where
F is from X to X, and G = (f, X, S ) be the function constructed above, then
either f has a fixed point in BX or NG is odd.

Proof (Proof Sketch). Let n = max r∈X,1≤i≤d |ri |, then we can scale down X
to be X ′ ⊂ (−1, 1)d where X ′ = { r/(n + 1), r ∈ X }. We also get a simplicial
decomposition S′ of X ′ from S using the one-to-one correspondence between X
and X ′, and a map F ′ from X ′ to X ′ where F ′(r) = F((n + 1)r)

/

n + 1.
Let G′ be the function constructed from map M ′ = (F ′, X ′, S′), then it is

easy to check that NG = NG′ . Therefore, we only need to prove the lemma for
maps M = (F , X, S) with X ⊂ (−1, 1)d. From now on, we always assume that
X ⊂ (−1, 1)d.

If f has a fixed point in set BX , then the lemma is proven. Otherwise, we
extend (by applying Construction 1 for d times) G = (f, X, S) to be a new
function G∗ = (f∗, X∗, S∗) such that X ⊂ X∗, X∗ = [−1, 1]d and S ⊂ S∗.
After proving that G∗ is simplicial direction-preserving, we show the following
two properties of G and G∗ :

Property 1. NG∗ is odd;

Property 2. NG ≡ NG∗ (mod 2),

and the lemma is proven.
Details of the proof can be found in the full version [1].

5.3 The Discrete Brouwer’s Fixed Point Theorem

From Construction 2, every fixed point of function f is also a fixed point of map
F . By Theorem 3 and Lemma 2, we get the following theorem immediately.

Theorem 4 (The Discrete Brouwer’s Fixed Point Theorem). For every
simplicial direction-preserving map M = (F , X, S) such that F maps X to X,
there must exist a fixed point in X.

Now we prove the fixed point theorem of Murota, Iimura and Tamura [14] as a
direct corollary of Theorem 4.

Lemma 3 (Property of Integrally Convex Sets [14]). For every integrally
convex set X, there exists a simplicial decomposition S of X, which satisfies for
every x ∈ X, letting Sx ∈ S be the smallest simplex containing x, then all of its
vertices belong to N(x) = { r ∈ Z

d | ||r − x ||∞ < 1 }.
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Let F be a hypercubic direction-preserving map from integrally convex set X ⊂
Z

d to X , and S be a simplicial decomposition of X which satisfies the condition
in Lemma 3, then one can check that M = (F , X, S) is a simplicial direction-
preserving map from X to X. By Theorem 4, we know that there is a fixed point
of F in X .

Moreover, the argument above shows that the theorem of Murota, Iimura
and Tamura can be greatly strengthened. Actually, map F is not necessary to
be hypercubic direction-preserving. Being simplicial direction-preserving relative
to some simplicial decomposition of X is sufficient to ensure the existence of a
fixed point in X .

6 An Explanation for the Definition of Bad Cubes

Chen and Deng [2] defined the badness of (d − 1)-cubes relative to hypercubic
direction-preserving functions in d-dimensional space, and showed that for any
hypercubic direction-preserving function f on Ca,b ⊂ Z

d, if the number of bad
(d − 1)-cubes on the boundary is odd, then f must have a fixed point in Ca,b.
While the theorem itself is succinct, the definition of bad cubes seems a little
mysterious and lacks a satisfactory explanation. In this section, we will use the
simplicial model developed in section 3 and 4 to resolve this puzzle.

First, we add extra points into the lattice set Ca,b ⊂ Z
d and construct a

simplicial decomposition for the new set Da,b, where Ca,b = Da,b. Then, we
extend the hypercubic direction-preserving function f on Ca,b to be a simplicial
direction-preserving function on Da,b. Finally, we prove that the parity of NB

is same as NG, where NB is the number of bad (d − 1)-cubes and NG is the
number of bad (d − 1)-simplices on the boundary. In this way, we show that
Chen and Deng’s theorem [2] is a special case of the fundamental discrete fixed
point theorem.

6.1 Preliminaries

Definition 12. A convex subdivision P of a finite set X ⊂ R
d is a collection of

convex d-polytopes such that: 1). X = ∪ P∈PP , and for every polytope P ∈ P,
all of its vertices are drawn from X; 2). For every two polytopes P1, P2 ∈ P, if
P1 ∩ P2 	= ∅, then P1 ∩ P2 is a face of both P1 and P2.

Definition 13. Let P be a convex t-polytope in R
d and VP be its vertex set. The

center point cP of polytope P is defined as cP =
∑

r∈VP
(r/|VP |). Obviously, we

have cP ∈ P and cP /∈ VP .

For example, let C ⊂ Z
d be a t-cube centered at r ∈ Z

d and perpendicular to
T , then the center point c of C satisfies that ck = rk for every k ∈ T , and
ck = rk + 1/2 for every k /∈ T .

Let P be a convex subdivision of set X in R
d. We now add extra points r ∈ X

into X and construct a simplicial decomposition S′ for the new set X ′. Details
of the construction are described by the algorithm in Figure 1.
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1: S ′ = { {r} | r ∈ X } and X ′ = X

2: for any t from 1 to d do
3: for any F that is a t-face of some d-polytope in P do
4: add the center point cF of F into X ′

5: for any (t − 1)-simplex S ∈ S ′ and S ⊂ F do
6: add every face of t-simplex conv(S, cF ) into S ′

Fig. 1. The Construction of S ′ and X ′

Every lattice set Ca,b ⊂ R
d has a natural convex subdivision P where P =

{C | d-cube C ⊂ Ca,b }. Using Figure 1, we get a simplicial decomposition S of

Da,b =
{

r ∈ R
d

∣
∣
∣ ∀ 1 ≤ i ≤ d, a ≤ ri ≤ b and ∃ r′ ∈ Z

d, r = r′/2
}

.

6.2 Extension of Hypercubic Direction-Preserving Functions

Let f be a hypercubic direction-preserving function on Ca,b, we now extend it
onto set Da,b as follows. For every r ∈ Da,b − Ca,b, assume it is the center point
of t-cube C ⊂ Ca,b. If 0 ∈ f(C), then f(r) = 0. Otherwise, let 1 ≤ t ≤ d be
the largest integer such that f(C) ∩ {±et} 	= ∅, then f(r) = et if et ∈ f(C) and
f(r) = −et if −et ∈ f(C). One can prove the following two properties.

Property 1. Let f be a hypercubic direction-preserving function on Ca,b ⊂ Z
d,

then G = (f, Da,b, S) is a simplicial direction-preserving function.

Property 2. If the extended function G = (f, Da,b, S) has a fixed point in Da,b,
then the original function must have a fixed point in Ca,b.

6.3 The Nature of Bad Cubes

We are ready to give an explicit explanation for the definition of bad cubes.

Lemma 4. Let f be a hypercubic direction-preserving function on Ca,b ⊂ Z
d

and G = (f, Da,b, S) be the extend function. For every t-cube Ct in Ca,b where
0 ≤ t ≤ d− 1, it is bad relative to f iff the cardinality of the following set is odd:

SCt =
{

t-simplex S ∈ S is bad relative to G
∣
∣
∣ S ⊂ Ct

}

.

Proof. We use induction on t. The base case for t = 0 is trivial.
For t > 0, we assume the lemma is true for case t − 1. Let c be the center

point of Ct, then the way we build simplicial decomposition S implies that
{

t-simplex St ⊂ Ct
}

=
{

conv(St−1, c), St−1 ∈ S is on the boundary of Ct
}

where St−1 is used to denote (t − 1)-simplices in S.
Firstly, we prove that, if t-cube Ct ⊂ Z

d is not bad, then |SCt | is even. If
0 ∈ f(Ct), then f(c) = 0. As each t-simplex in Ct has c as one of its vertices,
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SCt = ∅ and we are done. Similarly, we can prove if f(Ct) ∩ {±ek} 	= ∅ where
k > t + 1, then SCt = ∅. If ek /∈ f(Ct) where 1 ≤ k ≤ t + 1, then for every
t-simplex S ⊂ Ct, ek /∈ f(VS), and thus, SCt = ∅. Otherwise, we have f(Ct) =
{ e1, ..., et+1 }, and thus f(c) = et+1. Because Ct is not bad, the number of bad
(t − 1)-cubes on the boundary of Ct is even. Using the induction hypothesis on
t − 1, a (t − 1)-cube is bad iff the number of bad (t − 1)-simplices in it is odd.
As a result, the number of bad (t − 1)-simplices on the boundary of Ct is even.
Using the equation in the first paragraph, we know |SCt | is even too.

On the other hand, we prove if Ct is bad, then |SCt | is odd. Since f(Ct) =
{ e1, ..., et+1 }, we have f(c) = et+1. As the number of bad (t − 1)-cubes on the
boundary of Ct is odd, the number of bad (t − 1)-simplices on the boundary of
Ct is also odd, according to the induction hypothesis on case t − 1. Using the
equation in the first paragraph again, we know |SCt | is odd.

We now get Lemma 5 as a direct corollary of Lemma 4.

Lemma 5. The parity of NB ( the number of bad (d− 1)-cubes on the boundary
of Ca,b ) is same as the one of NG ( the number of bad (d − 1)-simplices on the
boundary of Da,b ).

With Property 1, 2 and Lemma 5 above, Chen and Deng’s theorem can be
immediately derived from the fundamental discrete fixed point theorem.

7 Concluding Remarks

In this paper, we generalize the concept of direction-preserving maps and char-
acterize a new class of discrete maps over simplicial structures. The fundamental
discrete fixed point theorem is then proposed, which is based on the counting
of bad (d − 1)-simplices on the boundary. The power of this theorem is demon-
strated in two ways. First, it is applied to prove the discrete Brouwer’s fixed
point theorem which is much more general than the one of Murota, Iimura and
Tamura. Second, we resolve the puzzle of bad cubes, and show that the bound-
ary condition of Chen and Deng’s theorem is exactly equivalent to the one of
the fundamental theorem.

Our work would immediately imply the corresponding discrete concept of
degree. It would be an especially interesting problem to study the case when the
fixed point is defined in the recent model of a set of points. An immediate follow-
up research direction is to understand other concepts and theorems related to
degree. A clear understanding would definitely advance the state of art of the
numerical computation of related problems, such as the case of discrete fixed
points versus approximate fixed points [2].
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