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Abstract. Modeling the structural ensemble of intrinsically disordered proteins (IDPs),
which lack fixed structures, is essential in understanding their cellular functions and re-
vealing their regulation mechanisms in signaling pathways of related diseases (e.g., can-
cers and neurodegenerative disorders). Though the ensemble concept has been widely
believed to be the most accurate way to depict 3D structures of IDPs, few of the tra-
ditional ensemble-based approaches effectively address the degeneracy problem which
occurs when multiple solutions are consistent with experimental data and is the main
challenge in the IDP ensemble construction task. In this paper, based on a predefined
conformational library, we formalize the structure ensemble construction problem into a
least squares framework, which provides the optimal solution when the data constraints
outnumber unknown variables. To deal with the degeneracy problem, we further pro-
pose a regularized regression approach based on the elastic net technique with the as-
sumption that the weights to be estimated for individual structures in the ensemble are
sparse. We have validated our methods through a reference ensemble approach as well
as by testing the real biological data of three proteins, including alpha-synuclein, the
translocation domain of Colocin N and the K18 domain of Tau protein.

1 Introduction
Unlike traditional ordered proteins, which generally take a well-defined 3D structure to
perform their functions, intrinsically disordered proteins (IDPs) lack ordered or fixed
3D structures [20, 8, 9]. However, IDPs usually play important roles in essential biolog-
ical processes and are generally associated with many diseases, such as cancers [20] and
neurodegenerative disorders [22]. Therefore, modeling the atomic structural details of
IDPs is critical for understanding their cellular functions and revealing their regulation
mechanisms in signaling pathways of related diseases.

Ensemble modeling has been believed to be the most accurate way to describe the
3D structures of IDPs [6, 12, 13]. In general, a structure ensemble consists of two parts:
a set of 3D structures and the corresponding weights that describe the likelihoods of
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individual conformations. When experimental data (e.g., chemical shifts, nuclear Over-
hauser effect (NOE) distances and residual dipolar couplings) are available, the 3D
structures and their weights are often constructed to optimally match these experimen-
tal observations. In the literature, numerous approaches have been proposed to construct
3D structure ensembles of IDPs from experimental data [21, 25, 24, 17, 12]. These ap-
proaches can be roughly divided into two categories [13]. The first one is called the
ensemble-restrained molecular dynamics (MD) simulation, which explicitly incorpo-
rates available data restraints in the potential function and enforces the whole ensemble
to satisfy these experimental constraints during the simulation [1]. In principle, these
ensemble-restrained approaches require a large number of constraints to drive accurate
MD simulation. On the other hand, in practice, such a large number of constraints are
rarely available from experimental data for an IDP. As discussed in [17], such ensemble
construction approaches usually fail when there is an insufficient number of constraints
available for supporting the restrained MD simulation. The second group of ensemble
construction approaches [6, 25, 12, 5] applies a different strategy. They first generate an
initial structure pool (which is also called the predefined conformational library) using
MD simulation, and then select a subset of these structures to represent conformational
space. After that, the corresponding weights of individual selected structures are com-
puted to match experimental observations. In this strategy, when constructing the IDP
ensemble, stochastic sampling algorithms, such as Monte Carlo, simulated annealing
and evolutionary algorithms, are often applied to stochastically assign random weights
to the selected structures in order to achieve the best possible solutions [13]. Unfortu-
nately, these stochastic approaches cannot provide any theoretical guarantee to find the
global optimal solutions within limited simulation time.

One main challenge in the IDP ensemble construction task lies in addressing the
degeneracy problem [12, 35]: due to the large degrees of freedom in this problem, there
can exist multiple ensemble solutions to satisfy experimental data. This problem re-
mains a challenge even after the initial conformational library has been defined. The
degeneracy problem in IDP ensemble construction has been well discussed in [12]
and [13].

In this paper, we propose two effective methods to accurately construct the struc-
ture ensembles of IDPs. Our approaches follow the strategy of constructing a prede-
fined conformational library, but use more elegant algorithms to compute the optimal
weights of the selected structures to satisfy experimental constraints. In particular, when
the constraints derived from experimental data outnumber the unknown variables (i.e.,
the weights of individual structures that need to be estimated), we use a least squares
method to compute the optimal solution. Note that a similar least squares method has
been proposed to characterize RNA ensembles in a recent study [14]. However, [14]
did not handle the situation in which the unknown variables outnumber the constraints
derived from experimental data. In the second case (i.e., the number of experimental
constraints is smaller than the number of the selected structures), the problem becomes
ill-posed and underdetermined, which is the main cause of the degeneracy problem.
To address this problem, we assume that the weights to be estimated are sparse, that is,
most of them are with zero values. With this reasonable assumption, we propose a regu-
larized regression approach based on the elastic net technique [39] to derive the optimal



weights that best interpret experimental data. In this paper, we mainly use chemical
shifts as experimental data to drive the ensemble construction process. Chemical shifts
provide strong indicators about local chemical environment in a protein structure, and
have been widely used for protein structure modeling [4, 31]. Notably, our methods can
be easily extended to incorporate other nuclear magnetic resonance (NMR) data, such
as NOEs and RDCs.

Unlike other existing ensemble construction approaches, which stochastically com-
pute the approximate weights of the structures in the predefined conformational library,
our least squares method can find the global optimal solution in closed-form. When
only a small number of experimental restraints are available, our elastic net based re-
gression approach provides a new framework with reasonable sparsity assumption for
addressing the degeneracy problem in the IDP ensemble construction process. To our
knowledge, our work provides the first framework to estimate the best solution by ap-
plying the least squares method and the elastic net regression approach respectively,
depending on whether the experimental data are sufficient or not. We have validated
the performance of our algorithms using a reference ensemble approach [23], in which
simulated data are used to verify the ensemble construction results. In addition, we have
tested our methods on real biological data of three proteins, including alpha-synuclein,
the translocation domain of Colicin N and the K18 domain of Tau protein. The test re-
sults have demonstrated that our methods can be effectively used to construct accurate
structure ensembles of IDPs using chemical shift data.

2 Methods
2.1 Overview

Constructing the initial structure pool
    using molecular dynamics (MD) 
                      simulation

Calculating the corresponding
weights of the selected structures
1. The least squares method or 
2. The elastic net regression

Selecting representative structures
    from the initial structure pool

 Obtaining backbone chemical shifts
          of the selected stuctures

Fig. 1. Our pipeline of IDP
ensemble construction.

Our goal is to construct an ensemble of representative
structures for a given IDP, and to derive the accurate
weights associated with individual conformations in this
ensemble. As shown in Fig. 1, our pipeline for construct-
ing an IDP structure ensemble consists of four steps.
In Step 1, we use MD simulation to generate the life-
time trajectories of the target IDP, which yields a large
number of different conformations. We call this ini-
tial set of different structures the initial structure pool.
In Step 2, we select a subset of conformations from
the initial structure pool by applying a clustering algo-
rithm [19] to group structurally-similar conformations,
and picking the conformation with the lowest average
root-mean-square deviation (RMSD) to all other confor-
mations within the same cluster to represent each clus-
ter. In Step 3, we predict the backbone chemical shifts
of the selected structures using software SHIFTX2 [18].
In Step 4, we compute the weights of the selected struc-
tures such that the ensemble average best fits the chem-
ical shift data. In particular, this step is divided into two
scenarios. When the number of constraints derived from chemical shift data is equal
to or larger than the number of unknown variables that need to be estimated (which



is equivalent to the number of the selected structures from the initial pool), we com-
pute the weights of all representative structures using a least squares method to mini-
mize the discrepancy between experimentally-measured and computationally-predicted
chemical shifts. When the unknown variables outnumber the constraints derived from
experimental observations, the problem becomes ill-posed and underdetermined such
that there are an infinite number of solutions. In this case, we add a combination of L1-
and L2-norm penalties to the objective function, and apply an elastic net technique to
solve the regression problem.

2.2 Constructing the Initial Structure Pool

We construct the initial structure pool of an IDP using the molecular dynamics (MD)
simulation package NAMD2.8 [27]. In particular, we perform a 10ns MD simulation at
the temperature 300K using the CHARMM27 force field [3] and the Generalized Born
Implicit Solvent model [34]. We use either available structures from the Protein Data
Bank (PDB) [2] or random structures generated by Xplor-NIH [30, 29] as the starting
templates. The trajectory coordinates are saved per picosecond during the simulation,
and in total 10,000 final structures are output as the initial structure pool, which is
similar to procedure used in [12]. Here, we assume that the structures generated by the
MD simulation can represent the diverse conformational space of the IDP. In principle,
other softwares, such as Flexible-Meccano [26] and TraDES [10, 11], can also be used
to increase the efficiency of conformational sampling.

2.3 Selecting Representative Structures from the Initial Pool

Considering the difficulty to directly process a large number of conformations in the
initial pool, we select a subset of representative structures using the following clustering
scheme: (1) Pick a structure Si from the initial pool, and create a cluster Gi which only
contains Si at the beginning. (2) Calculate the RMSD of backbone atoms between Si
and every other structure Sj in the pool. If their RMSD is less than a cutoff (e.g., 2.1
Å, which was also used in [12]), move Sj from the structure pool to cluster Gi. (3)
When all structures in the initial pool have been compared with Si, remove Si from the
initial pool. The above process is repeated until all structures in the initial pool have
been clustered. After that, for each cluster, the structure with the lowest average RMSD
to all other structures in the same cluster is chosen as a representative conformation.

2.4 Obtaining the Chemical Shifts of Backbone Atoms

In our approach, we use the chemical shifts of backbone atoms, such as HN, N, CA and
HA, to drive the construction of an IDP ensemble. The experimental values of chem-
ical shifts are obtained from the Biological Magnetic Resonance Bank (BMRB) [7],
while the predicted chemical shifts of the selected conformations are produced by
SHIFTX2 [18] based on available structural information.

2.5 Calculating the Corresponding Weights of the Selected Structures

After selecting the representative conformations from the initial structure pool, we need
to determine their corresponding weights. Depending on whether the number of con-
straints is less than the number of the representative structures in the ensemble, we
use two different strategies to compute the optimal weights for the experimental data.
Below we will describe the details of these two strategies.



The Least Squares Method When the number of unknown weights that need to be es-
timated is equal to or less than the number of constraints derived from chemical shifts,
we apply a least squares approach to solve the regression problem. We first introduce
notation before describing the details of this algorithm. Let Sj represent the jth con-
formation in the set of the selected structures. Let aij denote the predicted backbone
chemical shift of the ith residue in structure Sj , and let bi denote the experimental
chemical shift of the corresponding backbone atom in the ith residue in the protein,
which is derived from the BMRB [7] (here, for simplicity, we assume each residue has
only one backbone atom with available chemical shift). The difference between pre-
dicted and experimental backbone chemical shifts of the ith residue, denoted by εi, can
be defined as εi =

∣∣∣∑n
j=1 aijwj − bi

∣∣∣, where wj represents the weight of structure Sj
and n stands for the total number of representative structures. Then the overall differ-
ence between predicted chemical shifts and experimental observations over all residues
is defined as ε =

∑m
i=1 ε

2
i , where m stands for the number of residues whose back-

bone chemical shifts are available from experimental data. Then, our goal is to find the
optimal weights for all representative structures that minimize ε.

We use A to denote a matrix that contains all backbone chemical shifts aij predicted
from SHIFTX2, b to denote a vector that includes all experimental chemical shifts bi,
and w to denote a vector that includes the weights of all representative structures, i.e.,
A = (aij)m×n, b = (b1, b2, ..., bm)T, and w = (w1, w2, ..., wn)

T. Then the difference
between predicted and experimental chemical shifts can be expressed as:

ε = ‖Aw − b‖2 .

In addition, we need to consider the following two constraints:

0 ≤ wj ≤ 1,∀1 ≤ j ≤ n; and
n∑
j=1

wj = 1.

Overall, the regression problem can be described as:

min
w

ε = ‖Aw − b‖2 (1)

s.t. 0 ≤ wj ≤ 1,∀1 ≤ j ≤ n; (2)
n∑
j=1

wj = 1. (3)

When m ≥ n, the above form is a typical data fitting problem with an overdeter-
mined linear system. Thus we can solve this problem using a least squares approach
that guarantees to find the optimal weights that minimize ε. In principle, the restricted
quadratic programming [15] can be used to solve the above least squares problem.
The Elastic Net Method The least squares method described previously can be used to
efficiently solve the regression problem in overdetermined form. However, when the un-
known weights associated with representative conformations outnumber the constraints
derived from experimental data, the regression model described in Section “The Least



Squares Method” becomes underdetermined and cannot be solved by the least squares
method. In this case, we need to resort to other techniques to effectively solve the prob-
lem. Here, we assume that only a small number of structures are truly present in the
ensemble, i.e., the weights are sparse. According to this sparsity assumption, we in-
troduce an elastic net method (i.e., adding a combination of L1- and L2-norm penalty
terms) to solve the regression problem which can address the deficiency caused by the
insufficient number of experimental constraints, and thus handle the degeneracy prob-
lem well. In the new formalization of our regression problem, we relax the constraint
in Equation (3), as we mainly focus on the relative weighting factors among structures
in the ensemble. We can renormalize the calculated weights and obtain the updated
weights of individual structures in the ensemble later. Overall, we aim to solve the fol-
lowing optimization problem:

min
w

ε = ‖Aw − b‖2 + λPα(w) (4)

s.t. 0 ≤ wj ≤ 1,∀1 ≤ j ≤ n, (5)

where Pα(w) = 1−α
2 ‖w‖

2
2 + α ‖w‖1 =

∑n
j=1(

1−α
2 wj + α|wj |), while λ and α are

regularization parameters. To enforce the sparsity on the solution, we set specific values
of α and λ. Alternatively, we can use a cross-validation procedure [16, 32] to determine
their values.
2.6 Implementation
We implement the above two methods in MATLAB. For the least square algorithm, we
call the function lsqlin in MATLAB to calculate the optimal weights. For the elastic net
based method, we first call the corresponding elastic net function cvglmnet [16, 32] in
MATLAB to solve the regression problem through a cross-validation procedure. After
that, we normalize all calculated weights and use these updated weights as our final
solution.

3 Results
3.1 Validation through A Reference Ensemble Approach

We first evaluated the performance of our algorithms using the reference ensemble
method [23]. More specifically, this method first constructs a set of “true” conforma-
tions and their corresponding weights, which are called the reference ensemble. Then
“experimental” data are synthesized based on “true” information of this reference en-
semble. The algorithm being evaluated takes these synthetic “experimental” data as
input and computes a structure ensemble. By comparing the computed ensemble with
the reference one, we can properly assess performance of the proposed algorithm.

Here, we validated our least squares method using alpha-synuclein protein, a 140-
residue IDP that had been previously studied in [33, 28, 36], and the elastic net method
using the K18 domain of Tau protein. We illustrated the validation of these two ap-
proaches individually.

For alpha-synuclein, we first constructed a reference ensemble and synthesized their
“experimental” data. Then, we used these data to back-compute the optimal weights
with the least squares method. Finally, we compared the performance of our method
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Fig. 2. The validation results of the least squares method through the reference ensem-
ble method. In each scenario, we compared the performance of our method with that
of the Monte Carlo approach, MC stands for the Monte Carlo sampling method and LS
stands for our least squares approach. In Panels (a) and (c), the weights of individual
conformations in the reference ensemble followed the Gaussian distribution, while in
Panels (b) and (d), the weights followed the uniform distribution. Both Ω

(
wC ,wT

)
and the RMSD of HN chemical shift were calculated for each case. Each test was con-
ducted 50 times with different random seeds.
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Fig. 3. Results on using different chemical shift data in our validation test. Here, Gaus-
sian noise with standard deviation 0.02ppm was used to synthesize the chemical shift
data. Each test was repeated 50 times with different random seeds. A factor 0.1 was
multiplied to the chemical shifts of heavy atoms (i.e., CA and N) to combine with those
of hydrogen atoms (i.e., HN and HA).

with the Monte Carlo approach. As shown in Fig. 2, our least squares method signif-
icantly outperformed the Monte Carlo approach. More details of the validation of the
least squares method can be found in Supplementary Material [40] Section S1.

In addition, to investigate the robustness of our method upon the types of experi-
mental data, we tested different combinations of input chemical shift data. As shown in
Fig. 3, we tested the following four combinations of chemical shift data: (1) HN chem-
ical shifts only; (2) HN and HA chemical shifts; (3) HN, HA and CA chemical shifts;
and (4) HN, HA, CA and N chemical shifts. As Fig. 2 had shown that the distribu-
tion of the synthesized weights did not affect the results, here we set wT to follow the
Gaussian distribution and set standard deviation as 0.02 for noise in synthetized data.
As shown in Fig. 3, incorporating more chemical shift data yielded better results, i.e.,
smaller Ω

(
wC ,wT

)
values between computed and “true” weights as well as RMSD

values between back-computed and experimental data. This trend was expected, as con-
sidering more data restraints usually alleviated the difficulty of constructing an IDP en-
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Fig. 4. The validation results of the elastic net method through the reference ensemble
method. We compared the performance of our method with that of the Monte Carlo
approach, MC stands for the Monte Carlo sampling method and EN stands for our
elastic net approach. Both Ω

(
wC ,wT

)
and the RMSD of HN chemical shift were

calculated. The test was conducted 50 times with different random seeds.

semble with the larger degrees of freedom and led to better modeling results. Though
the accuracy seemed to only increase slightly when we added CA chemical shifts, we
found that the interquartile range in the box plots became less, which implies the results
became more stable.

Next, we validated the elastic net method with the similar strategy. As shown in
Fig. 4, we found that the elastic net method significantly outperformed the Monte Carlo
approach in this sparsity condition. In addition, compared to the previous non-sparsity
situation (Fig.2), a larger improvement over the Monte Carlo approach was observed
for the elastic net method. More details of our validation of the elastic net method can
be found in Supplementary Material [40] Section S2.
3.2 Tests on Real Data
In this section, we tested our ensemble construction methods on real data of three IDPs,
including alpha-synuclein, the translocation domain of Colicin N and the K18 domain
of Tau protein, which contain 140, 90 and 130 residues, respectively. For the first two
proteins (i.e., alpha-synuclein and Colicin N), in which the number of constraints de-
rived from chemical shift data is larger than the number of representative structures,
we applied the least squares algorithm to compute the optimal weights. While for the
K18 domain of Tau protein, we used the elastic net method. For alpha-synuclein and
the translocation domain of Colicin N, we ran a 10ns MD simulation and obtained a
structure pool of 10,000 structures for each IDP. For the K18 domain of Tau protein,
we ran a 30ns MD simulation and had a structure pool of 10,000 structures. After that,
we clustered each structural pool using the procedure described in Section 2.3 with
the clustering cutoff 2.1 Å. In total, we obtained 133, 233 and 882 conformations in
the initial pool for alpha-synuclein, the translocation domain of Colicin N and the K18
domain of Tau protein, respectively.

The experimental chemical shift data were obtained from the Biological Magnetic
Resonance Bank (BMRB) [7] and used as input data to our ensemble construction. In
particular, we used HN, HA, CA and N chemical shifts for alpha-synuclein, and HN,
CA and N chemical shifts for the translocation domain of Colicin N and the K18 domain
of Tau protein (chemical shifts of HA for these two proteins are not available from the
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Fig. 5. Correlation between back-computed and experimental chemical shifts for alpha-
synuclein, the translocation domain of Colicin N and K18 domain of Tau protein. Panels
(a) to (d) are for alpha-synuclein, Panels (e) to (g) are for the translocation domain
of Colicin N, and Panels (h) to (j) are for K18 domain of Tau protein. The x label
stands for (ensemble-averaged) back-computed chemical shifts, while y label represents
experimental chemical shifts. The symbol r represents the Pearson correlation.

BMRB database). When chemical shifts of both hydrogen and heavy atoms (e.g., CA
and N) were combined, we set 0.1 as the weighting factor for the chemical shifts of
heavy atoms.

To evaluate the performance of our methods, we mainly focused on the RMSD
and Pearson correlation between back-computed and experimental chemical shifts of
the tested proteins. The back-computed chemical shifts were calculated based on the
ensemble-averaged values, which were shown in Fig. 5. We found that the back-computed
chemical shifts of heavy atoms based on the constructed IDP ensembles agreed well
with experimental values, with Pearson correlation above 0.89. On the other hand, the
results on the back-computed chemical shifts of HN and HA (especially HN atoms)became
worse. As stated in [38], this phenomenon is probably because the chemical shifts of
hydrogen can be predicted much less reliably than the heavy atoms using SHIFTX2.
Theoretically, the hydrogen chemical shifts are often affected more significantly by the
electric field effect, ring currents, and other local shielding phenomena, which raises
the difficulty for their accurate prediction using the current chemical shift prediction
programs (e.g., SHIFTX2) [38, 18].



(a) (b)

Fig. 6. The structure overlay of the 10 most probable structures (i.e., with the largest
weights) in the ensemble of Tau protein computed by our elastic net based method.
Panel (a) shows the view of these structures aligned using residues 20-44, and Panel (b)
shows the view of zooming into the fragment of residues 20-44.
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Fig. 7. The contact maps for the top 10 structures in the ensemble of K18 domain of
Tau protein calculated by our elastic net method. From (a) to (j), the weights of the
corresponding structures are in decreasing order.

In this section, we focused on the IDP structure ensemble constructed by our elas-
tic net method for the K18 domain of Tau Protein, and analyzed the structural details
of long-range interactions between different residues. Overall, the structure ensemble
of this protein constructed by our method contains only 58 structures with non-zero
weights (i.e., whose weights is larger than the threshold 10−7), as compared to the
882 structures selected from the initial pool. For the constructed ensemble, the RMSD
and correlation between back-computed and experimental chemical shifts of CA were
0.953 Å and 0.989, respectively indicating that our elastic net algorithm computed a
reasonably good structure ensemble for Tau protein that agreed with experimental data.
In particular, we picked the 10 most probable structures (i.e., with the largest weights)
from the ensemble and looked into the details of these conformations. Fig. 6 shows the
overlay of these 10 structures, where the fragments between residues 20-44 were used



in structure alignment. The region in residues 20-44 has been believed to participate
interactions between two different regions divided by a turn motif “PGGG” [12]. The
visualization confirmed this finding, though our results are less obvious compared to
those in [12].

Next, we examined the contact maps of the top 10 structures with the largest weights
which were produced based on the distance cutoff 25 Å between CA atoms. Though
some contact maps may look similar, these structures are actually quite different. As
shown in Fig. 7, for most structures, the regions near residues 33-38 and 64-69 exhibited
long-range interactions with the N-terminal residues that are at least 5 residues away
along the sequence.

These observations were consistent with the previous studies in [24]. These two
regions (i.e., residues 33-38 and 64-69) form the paired helical filament (PHF), and are
supposed to play core functions in the transition state of the Tau aggregation process
from normal/unfolded form to pathological states [37]. Thus, the structures modeled by
our computational method can provide useful molecular basis for further investigating
the functional roles of Tau protein in the related diseases.

4 Conclusions
Constructing structure ensembles for IDPs is a challenging but important task for un-
derstanding their cellular functions. In this paper, we proposed two novel approaches
based on least squares and elastic net techniques to construct the structure ensemble
of an IDP from chemical shift data. Validation via the reference ensemble approach
and tests on real data has demonstrated the superiority of our methods over traditional
stochastic sampling based approaches. Our least squares method can find the global
optimal solution, and the constructed ensemble can depict the structures of IDPs more
accurately. Furthermore, our elastic net based method can successfully address the de-
generacy problem, which is the current main challenge of the IDP ensemble construc-
tion task.

There are several possible extensions to our IDP structure ensemble. In the cur-
rent version of our ensemble construction pipeline, we assume that the life trajectories
generated by the MD simulation can represent the whole conformational space. In the
future, we will improve the current procedure of constructing the initial structure pool,
such that it can be better integrated with the computation of optimal weights. In ad-
dition, for future work, we will incorporate more information to guide our ensemble
construction, such as additional experimental data and available prior knowledge about
IDP structures.
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