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Abstract—Controlling a dynamic network is interesting and
important in practical applications, which is to drive the network
from any initial state to any desired state. Much research has
been conducted in revealing the controllability and seeking the
underlying correlations of the network. However, no existing
works have considered the time needed to control the network,
which we refer to as control latency. In this paper, we initiate
the study of control latency of dynamic networks. First of all,
we formulate the minimum control latency (MCL) problem
for designing the controlling pattern with minimum number
of controllers. We show that the MCL problem is NP-hard by
reducing the multiprocessor scheduling problem to it. Then, we
propose a greedy algorithm for designing a controlling pattern
that can control the network within two times the minimum
control latency. Moreover, when the control latency is bounded
by a given value, we propose another constant approximation
algorithm to design a controlling pattern which uses at most three
times the minimum number of controllers. We conduct extensive
simulations on both synthetic and real networks to corroborate
our theoretic analysis.

Index Terms—Structural controllability, Minimum control la-
tency, Controlling pattern design

I. INTRODUCTION

Dynamic networks exist in a wide-range of application sce-

narios involving systems such as natural, social and industrial

systems [13], [16], [24], where the network state may be

updated through the system’s own influence. For example, a

social network can be modeled as a dynamic system [15], [16]

where the state of each person (i.e. the sentiment towards a

particular topic) is influenced by its neighbors and updated

from time to time. The public traffic network [1], [10] is

another example where the load of each road is affected by the

other nearby roads and needs to be updated dynamically. In

recent years, how to control dynamic networks has attracted

researchers’ attention due to its important academic and prac-

tical significance; essentially, the problem is how to drive the

network from any initial state to any desired state by imposing

some appropriate controllers [8], [11], [25].

Most real networks are driven by nonlinear processes, but

it happens that the controllability of nonlinear networks is

similar to that of linear networks in many aspects [11], [21].

Therefore, we adopt the linear time-invariant model [19], [20],

[23] to describe dynamic networks in this paper:

−−−−−→
x(t+ 1) = A ·

−−→
x(t) +B ·

−−→
u(t) (1)

where
−−→
x(t) ∈ RN are the state values of the N nodes in the

network at time t,
−−→
u(t) ∈ RM are the input signals of the M

controllers, A ∈ RN×N is the transmission matrix that reveals

the influence relation in the network, and B ∈ RN×M is the

controlling matrix which shows the controlling pattern. It is

proved in [5] that the network is controllable if and only if

the matrix

C = (B,AB,A2B, . . . , AN−1B)

has full rank. In practical networks, it is difficult to obtain the

exact value of the influence, and so we focus on structural

controllability where we are only aware of the non-zero and

zero entries of the transmission matrix [9], [11].

There are many outstanding results on the structural con-

trollability of dynamic networks [9], [11], [14], [18]. The

property of structural controllability is reduced to the property

of a graph based on the matrices (A,B) [9]. A maximum

matching based algorithm is proposed in [11] to compute the

minimum number of controllers. The dynamic process defined

on the edges of a network is studied in [14], and it is different

from simple nodal dynamics. The nature of the underlying

correlations that affect the minimum number of controllers

is also studied in [18]. However, to our best knowledge,

no existing works have considered the control latency (i.e.

the minimum time needed to control the network), which

is important in many practical applications. For example, a

controversial topic is spreading in a social network and one

would like to know how to incite all people to have a sentiment

about it, positive or negative, as quickly as possible.

In this paper, we propose the minimum control latency

(MCL) problem, which is to design a controlling pattern that

can drive the network from an initial state to a desired state in

a sufficiently short time. The main challenge of the problem

is to minimize the control latency with the minimum number

of controllers. Without this constraint, we can impose N

controllers to control each node separately, but it is costly and

hard to implement in practice. Moreover, some applications

may need the control latency to be bounded by a given value,

such as the public traffic network which should be driven to

a less crowded state as quickly as possible. We also study the

problem of designing a suitable controlling pattern under some

bounded control latency.

The main contributions of this paper are:

1) We formulate the minimum control latency (MCL) prob-

lem and prove that it is NP-hard.

2) A greedy algorithm is proposed which controls the net-

work within two times the latency of the optimal solution.

3) When the control latency is bounded, an approximation

algorithm is introduced which uses at most three times the
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number of controllers of the optimal solution to control

the network.

4) We have conducted extensive simulations to evaluate our

algorithms on both synthetic networks and real networks,

and the results clearly show the efficiency of our algo-

rithms.

The remainder of the paper is organized as follows. We give

the system model and problem formulation in the next section.

Section III highlights the related works and introduces some

important graph structures in structural controllability. The

control properties are shown in IV and we derive the control

latency of the graph structures. We show the NP-hardness of

the MCL problem in Section V and give a constant approx-

imation algorithm. Moreover, we propose another constant

approximation algorithm to control the network under bounded

latency in Section VI. Simulation results are presented in

Section VII, and we conclude the paper in Section VIII.

II. PRELIMINARIES

A. System Model

We consider a dynamic directed network G(A) which

consists of N nodes V = {v1, v2, . . . , vN}. Denote the column

vector
−−→
x(t) ∈ RN as the values (states) of the nodes at time

t and A ∈ RN×N as the transmission matrix that reveals the

influence values between the nodes. If there is a directed edge

from node vj to node vi, the influence value aij 6= 0. It is

clear that A is the transpose of the network’s adjacent matrix

if all influence values equal 1.

In this paper, we focus on controlling the dynamic net-

work by imposing M input signals (the controllers) C =
{c1, c2, . . . , cM} on the network, and we call G(A,B) the

controlled network, where B ∈ RN×M is the controlling

matrix that reveals the connection pattern of the input signals

going into the network. Suppose that time is divided into slots

of equal length, ∆t (time units), and the input signal can

change at the beginning of each slot. We assume the network

G(A,B) exhibits a good fit to a linear time-invariant model

of the form as in [11], [19], [23] in a discrete-time way, and

it is formulated as:

−−−−−→
x(t+ 1) = A ·

−−→
x(t) +B ·

−−→
u(t)

where column vector u(t) ∈ RM is the time-variant input

signal at time t.
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Fig. 1. An example of the controlled network

As depicted in Fig. 1, there are 5 nodes in the network

{v1, v2, v3, v4, v5} and the matrix A can be expressed as:

A =













0 0 0 0 0
a21 0 0 0 0
0 a32 0 0 0
0 a42 a43 0 0
0 0 0 a54 0













where a21, a32, a42, a43, a54 6= 0 and they represent the

influence strength between two nodes. Two controllers c1, c2
are imposed to control the network with two directed edges

(dotted edges in the figure) and the controlling matrix B can

be expressed as:

B =













b11 0
0 0
0 b32
0 0
0 0













where b11, b32 6= 0 represent the controlling strength.

B. Structural Controllability

We call a pair of transmission matrix A and controlling

matrix B controllable if the controlled network can be driven

from any initial state −→x0 to a desired state −→xd in finite time by

imposing time-dependent input signals. It is proved in [5] that

(A,B) is controllable if and only if the N ×NM matrix

C = (B,AB,A2B, . . . , AN−1B)

has full rank, i.e. rank(C) = N . (This is called Kalman’s

controllability rank condition [8].)

However, it is difficult to obtain the exact influence values

in practical dynamic networks and the rank condition cannot

be computed correctly when the matrices A,B are not fixed.

Thus, structural controllability is more interesting which does

not need the specific values of A and B.

Definition 2.1: Two pairs of matrices (A,B), (A′, B′) have

the same structure if for every zero entry of matrices (A,B),
the corresponding entry of (A′, B′) is zero and for every zero

entry of matrices (A′, B′), the corresponding entry of (A,B)
is also zero.

For example, the following matrices (A,B) and (A′, B′)
have the same structure.

A =





0 0 1
0 0 0
0 1 0



 B =





2 0
1 3
0 1





A′ =





0 0 3
0 0 0
0 2 0



 B′ =





1 0
1 2
0 3





Structural controllability is proposed in [9] and it is useful

in exploring the controllability of practical dynamic networks

since the structure of the networks can be easily analyzed and

the matrices are composed of zero and non-zero elements.

Definition 2.2: A pair of matrices (A,B) is structurally

controllable if and only if ∀ǫ > 0, there exists a controllable
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pair (A′, B′) of the same structure as (A,B) such that

||A′ −A|| < ǫ and ||B′ −B|| < ǫ.

Structural controllability helps overcome the incomplete

knowledge of the influence values between nodes. Obviously,

a controllable pair of matrices (A,B) is also structurally

controllable, but the reverse may not be true. It is shown

in [9], [22] that a structurally controllable system can be

controllable for almost all combinations of elements, except

for the pathological situations where the matrices A,B satisfy

certain accidental constraints. In this paper, we focus on the

structural controllability of dynamic networks.

C. Problem Formulation

Since no existing works considered the time needed to

control the network, we define control latency as follows:

Definition 2.3: Considering a controlled network with ma-

trices (A,B) satisfying Eqn. (1), for any initial state −→x0 ∈ RN

and any desired state −→xd ∈ RN , control latency T is the

number of time slots needed to drive the network state from
−→x0 to −→xd with time-dependent input signals −→u ∈ RM .

In this paper, we minimize the control latency with the

constraint that only the minimum number of controllers could

be used, for two reasons. First, without the constraint, we

can impose N controllers on each node separately. However,

it is costly to control all nodes in real networks. Second, a

maximum matching based method is proposed in [11] to find

the minimum number of controllers, but different patterns exist

in controlling the network (i.e. B has many combinations).

Thus, we formulate the Minimum Control Latency (MCL)

problem as:

Problem 1: For any dynamic network G(A), find the

controlling matrix B that minimizes the control latency when

the number of controllers is also minimized.

III. RELATED WORKS

According to control theory, a linear dynamic network is

controllable if the network can be driven from any initial state

to any desired state with some appropriate input signals [5],

[8], [12]. Structural controllability is more significant since

the exact influence values cannot be obtained in some real

networks. Several graph structures are proposed in [9] to

transform structural controllability into graph based properties.

To begin with, there are two important structures in describ-

ing structural controllability. The first one is elementary path,

which is a sequence of directed edges {(v1 → v2), (v2 →
v3), . . . , (vk−1 → vk)} where nodes {v1, v2, . . . , vk} are

distinct. The other one is elementary cycle when a directed

edge (vk → v1) exists in the above elementary path.

A special graph structure called cactus is introduced in [9]

to analyze the structural controllability, which is constructed

iteratively based on stem and bud. We introduce these three

notions briefly.

Definition 3.1: (Stem) A stem is an elementary path where

the first vertex is a controller.

Definition 3.2: (Bud) A bud is an elementary cycle in V

with a directed edge that ends in a vertex of the cycle.

�
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�

�

�

(a) stem

�

�

�

�

�

�

(b) bud

Fig. 2. Examples of a stem and a bud

For example, Fig. 2(a) is a stem with 5 nodes in V and

one controller c1. Fig. 2(b) shows a bud which consists of an

elementary cycle and one directed link (c1 → v1). Note that

the first vertex of the bud does not need to be a controller and

it could be any vertex in the node set V .

Definition 3.3: (Cactus) A cactus is constructed recursively

as a sequence {S0, S1, . . . , Sk}. A stem is a cactus and denote

it as S0. Suppose there are k buds B1, B2, . . . , Bk; then for

any 1 ≤ i ≤ k, Si = Si−1 ∪ Bi and the first vertex of Bi is

also the only vertex that belongs to Si−1.
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Fig. 3. An example of a cactus

Fig. 3 depicts an example of cactus which is composed of

a stem S0 = {c1 → v1 → v2 → v3 → v4 → v5} and three

buds.

Theorem 1: A linear dynamic network is structurally con-

trollable if and only if there exists a vertex disjoint union of

cactus that spans the graph G(A,B).
The theorem is given in [2] and it reveals the equivalence of

structural controllability and the constructed cactus. However,

we are aware of only the transmission matrix A in real

networks, with no knowledge of what the controlling matrix

B looks like, and what is the minimum number of controllers

(i.e. M ).

A breakthrough result was achieved in [11] where a polyno-

mial time algorithm was proposed to find the minimum num-

ber of controllers based on the maximum matching method.

The basic idea is to find the maximum matching in the

dynamic network and construct the cactus to span the network.

Stimulated by the work, a great deal of controllability related

research has since been conducted. For example, the dynamical

process on the edges of a network was proposed in [14]

and it revealed different controllability properties from simple
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nodal dynamics. The nodes were classified in [7] according to

the roles they took part in the control configuration. A new

control profile to classify the nodes according to the underlying

correlations of the networks was proposed in [20]. However,

to the best of our knowledge, no existing works considered the

control latency issue, which is what we try to initiate through

this paper.

IV. CONTROL LATENCY OF GRAPH STRUCTURES

In this section, we first introduce two important lemmas

about controlling the elementary paths and cycles. Then, we

derive the control latency of the related graph structures.

A. Control Properties

Lemma 4.1: One controller can control only one elementary

path.

Proof: To begin with, we prove that one controller can

control one elementary path, which shows the importance of

the stem structure. Suppose there is an elementary path {v1 →
v2 → . . .→ vn} and one controller c1 is connected to the first

vertex v1. The matrices A,B can be expressed as:

A =















0 0 . . . 0
a21 0 . . . 0
0 a32 . . . 0
...

...
...

...

0 . . . an−1,n 0















B =















b11
0
0
...

0















(2)

It is easy to compute AB = (0, b11 · a21, 0, · · · , 0}
T and

AkB = (0, · · · , 0, b11 ·
∏k

i=1
ak+1,k, 0, · · · , 0)

T where the

(k + 1)-th element is non-zero. Thus the matrix C =
(A,AB, . . . , An−1B) is a diagonal matrix with full rank and

it is controllable.

For any two elementary paths {v1 → v2 → . . .→ vn1
} and

{v′1 → v′2 → . . .→ v′n2
}, we show that one controller cannot

control them simultaneously. For simplicity, we assume the

controller is connected to both v1, v
′
1 (the first vertex of the

two paths). Without loss of generality, suppose n1 > n2 and

the matrices can be expressed as:

A =

(

A1 0
0 A2

)

B =

(

B1

B2

)

where A1, A2 have a similar structure as Eqn. (2) and B1 =
{b1, 0, . . . , 0}, B2 = {b2, 0, . . . , 0} where b1, b2 6= 0. Then

C =

(

B1 A1B1 . . . . . . An1−1

1 B1 0 . . . 0

B2 A2 B2 . . . An2−1

2 B2 0 . . . 0 . . . 0

)

and it does not have full rank. Actually, no matter what the

controlling matrix B ∈ Rn×1 looks like, AkB =
−→
0 when

k ≥ n. Thus the last n2 columns of C are all zeros and it is

not structurally controllable. Hence, the lemma holds.

Corollary 1: k elementary paths can be controlled by k

controllers, where each controller is connected to the first

vertex of each path.

The corollary can be verified similarly by checking the

matrix C’s rank and we omit the details.

Lemma 4.2: One controller can control many elementary

cycles (along with one elementary path).

Proof: First, we show that one controller can control one

elementary cycle, which is the constructed bud. Supposing

there is an elementary cycle {v1 → v2 → . . . → vn → v1}
and one controller c1 is connected to vk, then

A =















0 0 . . . a1n
a21 0 . . . 0
0 a32 . . . 0
...

...
...

...

0 . . . an−1,n 0















B =

















0
...

bk1
...

0

















(3)

It is easy to compute AB = (0, 0, · · · , bk1 · ak+1,k, · · · 0)
T

where the (k + 1)-th column is non-zero. Similarly, A2B =
{(0, 0, · · · , bk1 · ak+1,k · ak+2,k+1, · · · 0)

T and the (k + 2)-th
column is non-zero. Through such recursive computing, AiB

has only one non-zero entry at the ((k + i − 1)%n + 1)-th
column and the matrix C = (B,AB,A2B, . . . , An−1B) has

full rank, which implies that it is structurally controllable.

Supposing a stem and several elementary cycles are con-

trolled by a single controller (denote the matrices as (A1, B1)),
we show that it is also structurally controllable when a directed

edge is added from the controller to a new elementary cycle.

Denote the matrices as:

A =

(

A1 0
0 A2

)

B =

(

B1

B2

)

(4)

where A2 has the same structure as in Eqn. (3) and B2 =
(b2, 0, . . . , 0)

T means the controller is connected to the first

vertex of the cycle. As shown above, (A2, B2) is structurally

controllable. We use another principle to prove the lemma. As

shown in [17], a pair of matrices (A,B) is controllable if and

only if ∀−→x , α, −→x A = α−→x implies −→x B 6= 0, where −→x 6=
−→
0

is a vector of complex entries and α is a complex number.

Since (A1, B1) is structurally controllable, there exists a

controllable pair (A′1, B
′
1) of the same structure as (A1, B1)

and we can modify the entries of A2 such that A′1 and A2

have no common eigenvalue. Supposing (A,B) in Eqn. (4) is

not controllable, there exist −→x1,
−→x2 that are not both equal to

−→
0 and a complex number α such that:

(−→x1
−→x2)

(

A′1 0
0 A2

)

= α(−→x1
−→x2)

and

(−→x1
−→x2)

(

B′1
B2

)

=
−→
0

That is, −→x1A
′
1 = α−→x1, −→x2A2 = α−→x2, and −→x1B

′
1 +

−→x2B2 =
−→
0 .

Since A′1 and A2 have no common eigenvalue, −→x1 =
−→
0

or −→x2 =
−→
0 (otherwise, α is their common eigenvalue, a

contradiction).

If −→x1 =
−→
0 and −→x2 6=

−→
0 , −→x2A2 = α−→x2 but −→x2B2 =

−→
0 ,

which implies (A2, B2) is not controllable and it is a contra-

diction. If −→x1 6=
−→
0 and −→x2 =

−→
0 , (A′1, B

′
1) is not controllable,

which is also a contradiction. Thus the matrices (A,B) in Eqn.

(4) are structurally controllable.
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Combining these two aspects, one controller can control

many elementary cycles along with one elementary path.

From Lemma 4.1 and Lemma 4.2, the cactus can be

controlled by a single controller and the minimum number

of controllers is thus the number of vertex disjoint cactus.

B. Control Latency

Since no existing works have considered the needed number

of time slots in driving any initial state to a desired state,

we pioneer to analyze the control latency of the constructed

structures.

Lemma 4.3: The control latency of a stem {c1 → v1 →
v2 → . . .→ vn} is n time slots.

Proof: Suppose the controller c1 drives the initial state
−→x0 ∈ Rn to a desired state −→xd ∈ Rn in T time slots; thus:

−−→
x(1) = A ·

−−→
x(0) +B · u(1)

−−→
x(2) = A ·

−−→
x(1) +B · u(2)

...

−→xd =
−−→
x(T ) = A ·

−−−−−−→
x(T − 1) +B · u(T )

Combine these equations to get

−→xd −AT−→x0 = Bu(1) +ABu(2) + . . .+AT−1Bu(T )

From the analysis of Lemma 4.1, AkB has only one non-zero

entry at the (k + 1)-th row and when k ≥ n, AkB =
−→
0 .

Since −→xd ∈ Rn, the needed time T ≥ n and the input signal

u(k) can be constructed correspondingly (uk is constructed as

dividing the k-th row of −→xd −AT−→x0 by the non-zero entry of

Ak−1B). Therefore, the control latency is equal to the number

of nodes in the elementary path n.

Lemma 4.3 has an intuitive explanation: as the controller is

connected to the first vertex of the elementary path, the input

signal cannot reach the last vertex of the path in less than n

time slots. Thus at least n time slots are needed to control the

path. This approach is also applicable to the elementary cycle.

Corollary 2: The control latency of an elementary cycle is

equal to the number of nodes in the cycle.

Since a cactus consists of a stem and many elementary

cycles, we derive the control latency of a cactus when only

one input signal is imposed.

Theorem 2: The control latency of a cactus is equal to the

number of nodes controlled by the single controller.

Proof: Supposing the cactus has a controller and n nodes,

it is obvious that the pair of matrices (A,B) is structurally

controllable from Theorem 1 where A ∈ Rn×n and B ∈
Rn×1. Suppose that the controller can drive the network from

initial state −→x0 ∈ Rn to a desired state −→xd ∈ Rn in T time

slots. Similar to Lemma 4.3, let
−→
∆x = −→xd −AT−→x0 and

−→
∆x = Bu(1) +ABu(2) + . . .+AT−1Bu(T )

= (B,AB, . . . , AT−1B)











u(1)
u(2)

...

u(T )











When T < n, the rank of matrix CT = (B,AB, . . . , AT−1B)

is less than n, and there exists
−→
∆x ∈ RN such that

u(1), u(2), . . . , u(T ) do not have a feasible solution. When

T = n, Cn = (B,AB, . . . , An−1B) has full rank n since

(A,B) is structurally controllable, and thus:

(u(1), u(2), . . . , u(T ))T = C−1
n ·

−→
∆x

where C−1
n is the inverse matrix of Cn. Therefore, the control

latency is n, which concludes the theorem.

V. MINIMUM CONTROL LATENCY DESIGN

In this section, we prove that the MCL problem is NP-hard,

and then we propose a constant approximation algorithm to

control the network.

A. NP-Hardness

We show that the multiprocessor scheduling problem is

reducible to the MCL problem in polynomial time. The

multiprocessor scheduling problem: given a set of jobs J =
{j1, j2, . . . , jn} where each job ji has length li (a positive

integer) and a number of processors m, what is the minimum

possible time required to schedule all jobs on these processors?

This problem has been proved to be NP-hard [4].

Theorem 3: The MCL problem is NP-Hard.

Proof: For an instance of the multiprocessor scheduling

problem, where there are m processors and the job set is

J = {j1, j2, . . . , jn} of which each job ji has length li,

we construct a corresponding directed graph in polynomial

time. As illustrated in Fig. 4, construct m edges as (v11 →
v12), (v21 → v22), . . . , (vm1 → vm2), and construct n directed

cycles C1, C2, . . . , Cn, where the length of each cycle Ci is

li.

��� ��� ��� ��� ��� ���

�� �� ���� ����

Fig. 4. An example of constructing a controlled network for a given instance
of the multiprocessor scheduling problem

From Lemma 4.1, m controllers are needed to control m

elementary paths and each controller is directly connected to

the first vertex of the edge (vi1 → vi2). From Lemma 4.2, each

controller can be connected to more than one cycle for the

controllability, and thus they comprise a cactus. As shown in

Theorem 2, the control latency for such a cactus is the number

of controlled nodes and we need a suitable way to connect

these cycles. We show that a controlling pattern minimizing

the control latency exists if and only if a feasible solution of

the multiprocessor scheduling problem exists.

Suppose an optimal solution of the multiprocessor schedul-

ing problem exists and the maximum time to schedule these
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jobs is T . If job ji is scheduled to processor k, connect cycle

Ci to the k-th controller. Then it is easy to check that the

control latency of the network is T + 2. If there is anoth-

er controlling pattern with smaller control latency, a better

schedule can be constructed: if cycle Ci is connected to the

k-th controller, schedule job ji to processor k and this should

have a shorter scheduling time, which is a contradiction. Thus,

the constructed controlling pattern has the smallest control

latency. On the other side, an optimal solution of the MCL

problem corresponds to an optimal schedule of these jobs.

Therefore, the multiprocessor scheduling problem is reducible

to the MCL problem, which concludes the theorem.

B. Constant Approximation Algorithm

We first present the maximum matching based algorithm

that finds the elementary paths and elementary cycles.

Algorithm 1 Elementary Paths and Cycles Construction

1: Invoke undirected graph construction to get graph G′;

2: Apply the Hopcroft-Karp algorithm [6] on G′ to compute

the maximum matching M∗ of G′;

3: Mark all nodes in G(A) as black;

4: while ∃ black node vi ∈ G(A) such that v+i is in the

maximum matching M∗ do

5: Find edges (v+i , v
−
i+1

), (v+i+1
, v−i+2

), . . . , (v+j , v
−
j+1

) ∈

M∗ until v+j+1
is not in M∗ or v∗j+1 = v+i ;

6: Choose edges in G(A) as vi → vi+1 → . . .→ vj+1;

7: Mark nodes {vi, vi+1, . . . , vj , vj+1} white;

8: end while

9: for each black node vi ∈ G(A) do

10: Regard vi as an elementary path;

11: end for

Undirected Graph Construction

1: Construct an undirected graph G′ based on G(A)
2: For every vertex v ∈ G(A), construct v+, v− in G′;

3: For every directed edge (vi → vj) ∈ G(A), construct an

undirected edge (v+i , v
−
j ) in G′;

To apply the maximum matching algorithm for a bipartite

graph [6], we construct an undirected graph G′ = (V + ∪
V −, E′) based on the directed network G(A) = (V,E).
For each node vi ∈ V , construct two nodes v+i , v

−
i where

v+i means an edge starting at node vi while v−i represents

an edge ending at it. Denote V + = {v+1 , v
+

2 , . . . , v
+

N} and

V − = {v−1 , v
−
2 , . . . , v

−
N}. For each edge vi → vj ∈ E, add

edge (v+i , v
−
j ) to E′. After the undirected graph construction,

we apply the Hopcroft-Karp algorithm [6] to G′ to compute

the maximum matching M∗ since G′ is a bipartite graph.

Then we find the elementary paths and cycles based on the

matching M∗ as in Lines 3-11. Fig. 5 shows an example

where 6 nodes exist in the graph G(A) as Fig. 5(a) and

the undirected bipartite graph G′ is constructed as Fig. 5(b).

The Hopcroft-Karp algorithm finds the maximum matching

as M∗ = {(v+1 , v
−
2 ), (v

+

2 , v
−
3 ), (v

+

4 , v
−
5 ), (v

+

5 , v
−
6 ), (v

+

6 , v
−
4 )};

then we find an elementary path in G(A) as {v1 → v2 → v3}

and an elementary cycle {v4 → v5 → v6 → v4} as in Lines

3-8.

�� �� ��

��

��

��

(a) G(A)

��
��

��
��

��
��

��
�

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

(b) G′

Fig. 5. An example of Alg. 1

Lemma 5.1: Alg. 1 finds the elementary paths and cycles in

Line 6 and Line 10.

Proof: First of all, all nodes in G(A) are marked black

and Alg. 1 finds a black node vi ∈ G(A) such that v+i is in the

matching M∗. Then it finds picked edges in M∗ in the order

(v+i , v
−
i+1

), (v+i+1
, v−i+2

), . . . , (v+j , v
−
j+1

) ∈ M∗ until v+j+1
is

not in M∗ or v∗j+1 = v+i . It is obvious that when v−j+1
∈M∗,

the constructed edges in G(A) as in Line 6 form an elementary

path, while it is an elementary cycle if vj+1 coincides with vi.

After the construction, the picked edges are marked white and

this process proceeds until all nodes vi ∈ G(A) are marked

white or no such node is in M∗. Then, the left black nodes that

are not chosen in the paths or cycles compose an elementary

path by itself in Line 10. Thus, Alg. 1 finds all elementary

paths and cycles in Line 6 and Line 10.

After constructing the elementary paths and cycles, we

present the approximation algorithm to control the network

with minimum number of controllers. Denote these elemen-

tary paths as {P1, P2, . . . , Pm}, the elementary cycles as

{C1, C2, · · · , Cn}, and let |Pi| (or |Ci|) be the length of path

Pi (or cycle Ci).

Algorithm 2 Greedy Controlling Pattern Design

1: Impose m controllers {c1, c2, . . . , cm} and each controller

ci is connected to the first vertex of path Pi;

2: Order the elementary cycles by decreasing order of length

as {C ′1, C
′
2, . . . , C

′
n};

3: Let CL(i) := |Pi|+ 1, ∀i ∈ [1,m];
4: for Each cycle C ′i do

5: Find k ∈ [1,M ] such that CL(k) = minmj=1 CL(j);
6: Connect controller ck to any vertex of cycle C ′i;

7: Update CL(k) = CL(k) + |C ′i|;
8: end for

In Alg. 2, we impose m controllers on the networks and

each controller is connected to an elementary path. Then

CL(i) is used to denote the control latency of controlling

the i-th set (each set has only one elementary path initially).

After ordering the elementary cycles by decreasing length, add

the elementary cycle to the set with smallest control latency

by connecting the controller to any vertex of the cycle. We

show that our controlling pattern uses the minimum number
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of controllers and the control latency is only two times the

optimal value.

Theorem 4: Alg. 2 imposes the minimum number of con-

trollers on the network and the control latency is two times

the optimal value.

Proof: From Lemma 4.1, at least m controllers are needed

to control the network. From the construction of elementary

paths and cycles, the number of such paths is equal to the

number of unmatched nodes in set V +, and thus the number

of controllers we use is minimum.

Let pmax = maxmi=1 |Pi| and pmin = minmi=1 |Pi| be the

maximum and minimum length of the elementary paths. Let

cmax = maxni=1 |Ci| be the maximum length of the elemen-

tary cycles and CL(δ) = 1

m (
∑m

i=1
(|Pi|+1)+

∑n
i=1
|Ci|) be

the average control latency. The lower bound of the control

latency (optimal value) suits:

OPT ≥ max{pmax + 1, pmin + 1 + cmax, CL(δ)} (5)

Denote the maximum latency of Alg. 2 as T . Supposing the

maximum latency happens in the k-th set with CL(k) and the

last cycle added to the set is C ′i, we claim that:

T ≤ max{
1

m
[
m
∑

j=1

(|Pj |+ 1) +
i−1
∑

j=1

|C ′j |], pmax + 1}+ |C ′i|

The first part is because CL(k) is the minimum one among

the m sets after cycles C ′1, C
′
2, . . . , C

′
i−1 are added (before

cycle C ′i is added to the k-th set). Therefore, CL(k) ≤
max{ 1

m [
∑m

j=1
(|Pj |+ 1) +

∑i−1

j=1
|C ′j |], pmax + 1}. Then,

T ≤ max{
1

m
[

m
∑

j=1

(|Pj |+ 1) +

i−1
∑

j=1

|C ′j |], pmax + 1}+ |C ′i|

≤ max{CL(δ), pmax + 1}+ cmax

≤ 2OPT

thus the theorem is completed.

Supposing there are N nodes and L edges in the graph

G(A), Alg. 1 uses O(N +L) time to construct the undirected

graph and the time complexity of Alg. 2 is O(L logL+ L2).
Due to the page limits, we omit the details. Therefore, the

time complexity of our algorithm is O(L(N + L)).

VI. CONTROLLING PATTERN DESIGN WITH BOUNDED

LATENCY

In many practical situations, such as information propaga-

tion in a social network and transportation in a traffic network,

the control latency needs to be capped under a fixed value; we

show the method to design controlling pattern such that the

network can be controlled with bounded latency.

Suppose the control latency of the network should be

bounded by T ∗. We invoke Alg. 1 to find the elemen-

tary paths and cycles. Similarly, suppose the elementary

paths are {P1, P2, . . . , Pm} and the elementary cycles are

{C1, C2, · · · , Cn}, and let |Pi| (or |Ci|) be the length of path

Pi (or cycle Ci). In Alg. 3, we first tackle long cycles and paths

that cannot be controlled in T ∗ time slots by splitting them

Algorithm 3 Controlling Pattern with Bounded Latency

1: Invoke Alg. 1 to find the elementary paths and cycles;

2: for Cycle Ci with length |Ci| > T ∗ do

3: Split the cycles into δi = ⌈
|C′

i
|

T∗
⌉ paths where the first

δi − 1 paths have length T ∗ − 1;

4: end for

5: for Path Pi with length |Pi|+ 1 > T ∗ do

6: Split the cycles into δi = ⌈
|P ′

i
|+1

T∗
⌉ paths where the first

δi − 1 paths have length T ∗ − 1;

7: end for

8: Use controllers to control the paths with length T ∗ − 1;

9: Order the cycles with length no more than T ∗ by decreas-

ing order of length as {C ′1, C
′
2, . . . , C

′
n′};

10: for Each cycle C ′i do

11: Find the minimum length of uncontrolled path as Pj ;

12: if |C ′i|+ |Pj |+ 1 ≤ T ∗ then

13: Use a controller to connect Pj and C ′i;

14: else

15: Find uncontrolled cycles of increasing order such that

|C ′i|+ |C
′
1|+ . . .+ |C ′k| ≤ T ∗;

16: Use a controller to connect these cycles;

17: end if

18: end for

19: For each uncontrolled path, connect it to a new controller;

into shorter paths. After that, we order all the shorter cycles

by decreasing order as {C ′1, C
′
2, . . . , C

′
n′}. For each cycle C ′i,

we first check if an elementary path exists such that they can

be controlled with C ′i in T ∗ time slots. Otherwise, we find the

uncontrolled cycles in increasing order of their length such

that the control latency is bounded in T ∗ time slots.

Theorem 5: Alg. 3 can control the network in T ∗ time slots

and the number of controllers used is at most three times the

optimal solution.

Proof: It is obvious that the network can be controlled

in T ∗ time slots based on the designed controlling pattern.

Suppose there are m1 elementary paths with length no greater

than T ∗ (denoted as {P11, P12, . . . , P1m1
}) and m2 paths

longer than T ∗ (denoted as {P21, P22, . . . , P2m2
}). Similarly,

suppose there are n1 elementary cycles with length no greater

than T ∗ (denote as {C11, C12, . . . , C1n1
}) and n2 cycles

longer than T ∗ (denoted as {C21, C22, . . . , C2n2
}).

The minimum number of controllers needed to control the

m1 paths and n1 cycles suits:

OPT1 ≥ max{

∑m1

i=1
(|P1i|+ 1) +

∑n1

i=1
|C1i|

T ∗
,m1}

and the minimum number of controllers to control the m2

paths and n2 cycles suits:

OPT2 ≥

∑m2

i=1
(|P2i|+ 1) +

∑n2

i=1
|C2i|

T ∗

thus, the optimal value OPT = OPT1 + OPT2. Denote the

number of controllers in Alg. 3 as N . From Lines 2-8, the
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number of controllers is

N2 =

m2
∑

i=1

⌈
|P2i|+ 1

T ∗
⌉+

n2
∑

i=1

⌈
|C2i|

T ∗
⌉ ≤ OPT2

We bound the number of controllers to control m1 paths and

n1 cycles, as follows. N12 = m1 controllers are needed to con-

trol the elementary paths and each controller may also control

one cycle satisfying |C ′i|+ |Pj |+1 ≤ T ∗ (Line 12). Supposing

there are N11 controllers to control the other cycles and the

control latency under each controller suits: T∗

2
< CL(i) ≤ T ∗

(at most one controller suits CL(i) ≤ T∗

2
, or otherwise, they

can be controlled by one controller with bounded latency not

greater than T ∗). So N11 ≤
∑n1

i=1
|C1i|

T∗/2 ≤ 2OPT1. Therefore,

N1 ≤ N11 +N12 ≤ 3OPT1

Combining all these, the controllers used in Alg. 3 have N =
N1 +N2 ≤ OPT2 + 3OPT1 ≤ 3OPT .

Supposing there are N nodes and L edges in the graph

G(A), the time complexity of our algorithm is O(L(N +L)).
Due to the page limits, we omit the details.

VII. SIMULATION

To evaluate our algorithms in controlling the dynamic

networks, we conduct simulations on both synthetic and real

networks. We choose the Erdös-Rényi (ER) model [3] to

generate random networks as examples of synthetic network,

and for real networks, we collect data from three real networks:

transportation data of USA top 500 [1], UClonline [15], and

a Facebook-like social network [16].

In the ER model, an edge between each pair of nodes

exists with an equal probability p and obviously there are
(

N
2

)

p expected edges, where N is the number of nodes in

the graph. In our simulations, we fix p = 0.01 and p = 0.005
respectively and when N increases from 200 to 1000, Table I

lists the results as the means of 1000 separate runs. From the

table, our greedy algorithm has good performance compared

to the lower bound in minimizing the control latency with

minimum number of controllers. When N increases, fewer

controllers are needed and the control latency increases. It

is because when more edges are added to the graph, it is

more likely to find long elementary paths or cycles. When

N = 1000, p = 0.01, only one controller is needed, which

implies only one elementary path or cycle exists after Alg. 1.

When the probability that an edge exists is larger (p = 0.01),

there are more edges in the network and the number of

controllers is smaller (than p = 0.005), which incurs larger

control latency.

In order to evaluate the controlling algorithm under bounded

latency (Alg. 3), we fix N = 500, p = 0.01. Fig. 6 shows

the comparison between our algorithm and the lower bound

when the bound of the control latency increases from 10 to

200. As depicted, when the bound is smaller, more controllers

are needed, which corroborates our analysis. Moreover, our

algorithm is only slightly worse than the optimal solution.

We also evaluate our algorithms on real networks of which

the transportation network [1] records the flight network in

TABLE I
CONTROL LATENCY COMPARISON FOR THE ER MODEL

N Control Latency

(Alg. 2)

Control Latency

(Lower Bound)

Number of

Controllers

200
p = 0.005 9.56 9.56 91.48

p = 0.01 18.36 18.36 42.03

400
p = 0.005 21.13 21.13 87.14

p = 0.01 108.49 108.49 9.83

600
p = 0.005 56.09 56.09 45.67

p = 0.01 387.22 383.33 2.26

800
p = 0.005 144.99 144.99 20.09

p = 0.01 785.34 785.42 1.06

1000
p = 0.005 276.46 276.26 9.26
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Fig. 6. The number of controllers when the control latency increases from
10 to 200.

TABLE II
CONTROL LATENCY COMPARISON FOR REAL NETWORKS

Network Control Latency
(Alg. 2)

Control Latency
(Lower Bound)

Number of
Controllers

Transportation [1] 16 16 125

UClonline [15] 21 21 641

Facebook-like [16] 45 45 392

USA (500 nodes and 5960 edges), UClonline [15] is an online

message network of students at UC, Irvine (1899 nodes and

20296 edges), and the Facebook-like [16] is an online social

network similar to Facebook (899 nodes and 7089 edges). We

compare the control latency of these three networks in Table

II. It turns out that our algorithm can achieve the minimum

control latency with minimum number of controllers for them.

In order to evaluate Alg. 3 under different control latency

circumstances, we first bound the control latency from 2 to

16 for the transportation networks, and Fig. 7 shows that our

algorithm is slightly worse than the lower bound. Moreover,

the number of controllers decreases as the control latency

increases, which also corroborates our analysis. When the

control latency increases from 2 to 20 in the Facebook-like

network, Fig. 8 shows the same phenomena. (In the UClonline

network, we get similar results which we omit here.)

Through the simulation results, we can see that Alg. 2 has

good performance on both synthetic and real networks, the

control latency of which is comparable to the lower bound.

When the control latency is bounded by a given value, the

number of controllers used in Alg. 3 is also nearly optimal.
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Fig. 7. The comparison between Alg. 3 and the lower bound for the
transportation network [1].
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Fig. 8. The comparison between Alg. 3 and the lower bound for the Facebook-
like network [16].

VIII. CONCLUSION

Controlling dynamic networks is important in practical ap-

plications. Many previous works have considered the problem

of minmizing the number of controllers and the underlying

correlation of controllability, but not much effort has been de-

voted to the issue of control latency. In this paper, we propose

the minimum control latency (MCL) problem of designing a

controlling pattern to control a dynamic network in a short

time with the minimum number of controllers. We prove that

the MCL problem is NP-hard. Then we propose a polynomial

time approximation algorithm to design a controlling pattern

on the basis of two special graph structures: elementary

path and elementary cycle. This algorithm can control the

network in a short time which is no longer than two times

that of the optimal solution. In order to guarantee bounded

control latency needed in many practical applications, we also

present a constant approximation algorithm for designing the

controlling pattern, which uses no more than three times the

optimal number of controllers. Extensive simulations have

been conducted on both synthetic and real networks, which

clearly show that our algorithms have good performance with

respect to the lower bounds.

In the future, we will focus on revealing the influence

values in the network through distributed methods, and then

designing exact controlling pattern to control the network.

When the number of controllers is limited, the network may

not be controllable, and how to drive the state to arrive at an

approximate desired state in finite time is also an interesting

problem.
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