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High-fidelity quantum gates for trapped ions under micromotion
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Two- or three-dimensional Paul traps can confine a large number of ions forming a Wigner crystal, which
would provide an ideal architecture for scalable quantum computation except for the micromotion, an issue that
is commonly believed to be the obstacle for any high-fidelity quantum gate. Here we show that the obstacle of
micromotion can be overcome with current technology, even though the magnitude of the micromotion is way
outside the Lamb-Dicke region. Through exact solution of the quantum Mathieu equations, we demonstrate the
principle of the gate design under micromotion using two ions in a quadrupole Paul trap as an example. The
proposed micromotion quantum gates can be extended to the many-ion case and may pave a new way for scalable
trapped-ion quantum computation.
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I. INTRODUCTION

Trapped ions constitute one of the most promising systems
for realization of quantum computation. Almost all of the
quantum information processing experiments so far have
actually been done in linear Paul traps, where the ions
form a one-dimensional (1D) crystal along the trap axis
[1]. In this configuration, the external rf Paul trap can be
well approximated by a static trapping potential, and the
micromotion along the trap axis can be neglected, which is
believed to be critical for design of high-fidelity quantum
gates. However, in terms of scalability, the linear configuration
is not the optimal one for realization of large-scale quantum
computation: first, the number of ions in a linear trap is limited
[2,3]; second and more importantly, the linear configuration
is not convenient for realization of fault-tolerant quantum
computation. The effective qubit coupling in a large ion chain
is dominated by the dipole interaction [4], which is only good
for short-range quantum gates because of its fast decay with
distance. In a linear chain with short-range quantum gates, the
error threshold for fault tolerance is very tough and extremely
hard to meet experimentally [5,6].

From a scalability point of view for quantum computation,
two- or three-dimensional Paul traps would be much better than
a linear chain, where one can hold a large number of qubits
with a high error threshold for fault tolerance, in the range of
a percent level, even with just the nearest-neighbor quantum
gates [6]. Thousands to millions of ions have been successfully
trapped to form two- or three-dimensional Wigner crystals in
a Paul trap [7]. However, there is a critical problem to using
this system for quantum computation, i.e., the micromotion
issue. In this high-dimensional configuration, the micromotion
cannot be compensated, and the magnitude of the micromotion
for each ion can be significantly beyond the optical wavelength
(i.e., outside of the Lamb-Dicke regime). As the micromotion
is from the driving force of the Paul trap, it cannot be
laser cooled. The messy and large-magnitude micromotion
well beyond the Lamb-Dicke condition is believed to be a
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critical hurdle for the design of any quantum gate operation
in this architecture. One alternative approach is to construct
multizone linear traps and transport ions between different
zones [8].

In this paper, we show that the micromotion problem for
the design of high-fidelity quantum gates can be overcome
with current technology. When the ions form a crystal in a
time-dependent Paul trap, they will be described by a set of
Mathieu equations. We solve exactly the quantum Mathieu
equations with an inhomogeneous driving term and find that
the micromotion is dominated by a well-defined classical
trajectory with no quantum fluctuation. This large classical
motion is significantly outside of the Lamb-Dicke regime;
however, it does not lead to infidelity of quantum gates if
it is appropriately taken into account in the gate design.
The quantum part of the Mathieu equation is described by
the secular mode with micromotion correction to its mode
function. This part of the motion still satisfies the Lamb-Dicke
condition at the Doppler temperature, which is routine for
experiments. We use two ions in a quadrupole trap, which has
a lot of micromotion, as an example to show the principle
of the gate design and give the explicit gate scheme in
both the slow and the fast gate regions using multisegment
laser pulses [9,10], with the intrinsic gate infidelity arbitrarily
approaching zero under large micromotion. We discuss the
general procedure of the gate design under micromotion,
which can work for any number of ions, with an important
implication for large-scale quantum computation.

II. TWO IONS IN A QUADRUPOLE TRAP

To illustrate the general feature of micromotion in Paul
traps and the principle of the gate design under micromotion,
we consider a three-dimensional (3D) anisotropic quadrupole
trap with a time-dependent potential �(x, y, z) = [U0 +
V0 cos(�T t)]( x2+y2−2z2

d2
0

) ≡ α(t)(x2 + y2 − 2z2) from an elec-

tric field oscillating at the rf �T , where U0,V0 are voltages
for the dc and ac components and d0 characterizes the size
of the trap. We choose a positive U0 to reduce the effective
trap strength along the z direction so that the two ions align
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along the z axis. Since the motions in different directions do
not couple to each other under quadratic expansion, we focus
our attention on the z direction. The total potential energy of
two ions (each with charge e and mass m) is

V (z1, z2) = −2eα(t)
(
z2

1 + z2
2

) + e2

4πε0 |z1 − z2| . (1)

We define the center-of-mass (c.m.) coordinate uc.m. = (z1 +
z2)/2 and the relative coordinate ur = z1 − z2. Without loss
of generality, we assume ur > 0 and its average ūr = u0.
We assume the magnitude of the ion motion is significantly
less than the ion separation, which is always true for the
ions in a crystal phase. The Coulomb interaction can then
be expanded around the average distance ūr up to the
second order of |ur − u0|. Under this expansion, the total
Hamiltonian H = p2

c.m./4m + p2
r /m + V (z1, z2) is quadratic

(although time dependent) in terms of the coordinate operators
uc.m.,ur and the corresponding momentum operators pc.m. =
p1 + p2, pr = (p1 − p2)/2. The Heisenberg equations under
this Hamiltonian H yield the following quantum Mathieu
equations for the coordinate operators uc.m. and ur :

d2uc.m.

dξ 2
+ [ac.m. − 2qc.m. cos (2ξ )]uc.m. = 0, (2)

d2ur

dξ 2
+ [ar − 2qr cos(2ξ )]ur = f0, (3)

where the dimensionless parameters ac.m. = −16eU0/

(md2
0�2

T ), ar = ac.m. + 4e2/(πε0mu3
0�

2
T ), qc.m. = qr =

8eV0/(md2
0�2

T ), and the dimensionless time ξ = �T t/2. The
driving term f0 = 6e2/(πε0mu2

0�
2
T ). The quantum operators

uc.m. and ur satisfy the same form of the Mathieu equations
(except for the driving term f0) as the classical variables. As
these equations are linear, we can use the solutions known
for the classical Mathieu equation to construct a quantum
solution that takes into account the quantum fluctuation.

It is well known that the solution to the classical Math-
ieu equation d2

dξ 2 v + [a − 2q cos(2ξ )]v = 0 is a combination
of Mathieu sine S(a, q, ξ ) and Mathieu cosine C(a, q, ξ )
functions, which reduce to the conventional sine and cosine
functions when micromotion is neglected [11]. The solution
to a homogeneous quantum Mathieu equation d2

dξ 2 û + [a −
2q cos(2ξ )]û = 0 can be described using the reference os-
cillator technique [12]. From the classical solution v and
the quantum operator û, one can introduce the following
annihilation operator of a reference oscillator (remember that
ξ = �T t/2 is the dimensionless time):

â(t) =
√

m

2�ω
i[v(t) ˙̂u(t) − v̇(t)û(t)], (4)

where ω is a normalization constant typically taken as
the secular motion frequency of the corresponding Mathieu
equation. In addition, we impose the initial condition for v(t)
with v(t)|t=0 = 1 and v̇(t)|t=0 = iω. The position operator
û(t) and its conjugate momentum p̂(t) ≡ m ˙̂u(t) satisfy the
commutator [û(t),p̂(t)] = i�. From the above definition, one
can easily check that d

dt
â(t) ∝ v d2

dξ 2 û − û d2

dξ 2 v = 0, so â(t) ≡
â is a constant of motion. Furthermore, â and â† satisfy the

standard commutator

[â,â†] = (m/2�ω)(i�/m)[v(t)v̇∗(t) − v∗(t)v̇(t)]|t=0 = 1.

When micromotion is neglected, v(t) = eiωt , and â reduces
to the annihilation operator of a harmonic oscillator. In
the presence of micromotion, v(t) = C(a, q, ξ ) + iS(a, q, ξ ).
The solution to the position operator û takes the form

û(t) = u0[v∗(t)â + v(t)â†], (5)

where u0 ≡ √
�/2mω is the oscillator length.

The above solution gives a complete description of the
center-of-mass motion with the operator

uc.m.(t) = u0c.m.[v
∗
c.m.(t)âc.m. + vc.m.(t)â

†
c.m.], (6)

where u0c.m. ≡ √
�/4mωc.m. and ωc.m. is the secular frequency

of the center-of-mass mode. The relative motion ur satisfies
the inhomogeneous quantum Mathieu equation (3). To solve
it, we let ur = u′

r + ūr , where u′
r is an operator that inherits

the commutators for ur and satisfies the homogenous quantum
Mathieu equation and ūr is a classical variable correspond-
ing to a special solution of the Mathieu equation, d2ūr

dξ 2 +
[ar − 2qr cos(2ξ )]ūr = f0. The special solution ūr can be
found through the series expansion ūr = f0

∑+∞
n=0 cn cos(2nξ ),

where the expansion coefficients cn satisfy the recursion rela-
tions arc0 − qrc1 = 1 and cn = Dn(cn−1 + cn+1 + c0δn,1) for
n � 1 with Dn ≡ −qr/(4n2 − ar ). When ar � 1 and qr � 1,
which is typically true under real experimental configurations,
cn rapidly decays to zero, with |cn+1/cn| ≈ qr/4(n + 1)2, and
we can keep only the first few terms in the expansion and
obtain an analytical expression for ūr (see the Appendix). The
complete solution of ur is therefore given by

ur (t) = u0r[v
∗
r (t)âr + vr (t)â†

r ] + ūr (t), (7)

where u0r ≡ √
�/mωr and ωr is the secular frequency of the

relative mode.

III. HIGH-FIDELITY GATE DESIGN

Now we show how to design high-fidelity quantum gates
under micromotion. To perform the controlled-phase-flip
(CPF) gate [13], we apply laser-induced spin-dependent force
on the ions, with the interaction Hamiltonian described by [10]

H =
2∑

j=1

��j cos(
kzzj + δt + φj )σ z
j , (8)

where 
kz is the wave-vector difference of the two Raman
beams along the z direction, δ is the two-photon Raman
detuning, �j (real) is the Raman Rabi frequency for ion j , and
φj is the corresponding initial phase. In terms of the normal
modes, the position operator zj = uc.m. − (−1)jur/2, where
uc.m., ur are given by Eqs. (6) and (7). We introduce three
Lamb-Dicke parameters, ηc.m. ≡ 
kzu

c.m.
0 for the c.m. mode,

ηr ≡ 
kzu
r
0/2 for the relative mode, and ηmm ≡ 
kzūr/2 for

pure micromotion. Under typical experimental configurations,
ηc.m. ∼ ηr � 1. The parameter ηmm is a classical variable that
oscillates rapidly with time by multiples of the micromotion
frequency �T . In Fig. 1(a), we show a typical trajectory of
ηmm(t). The magnitude of variation of ηmm is considerably
larger than 1. In Fig. 1(b), we also plot the function vc.m.(t),
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FIG. 1. (Color online) (a) The time-dependent parameter ηmm(t)
and (b) the real and imaginary parts of function vc.m.(t). The blue
(dark gray) curve with starting value near 1 is the real part, and the
red (light gray) curve starting from 0 is the imaginary part. They
have even and odd parities as a function of time and look similar to
cosine and sine functions. Units of time is the trap frequency Tz =
2π/ωc.m.. The parameters used are ion mass m = 9u (u is the atomic
mass unit), rf trap frequency �T = 2π × 240 MHz, and characteristic
electrode size d0 = 200 μm; the ac and dc voltages V0 and U0 are
300 and 21 V, respectively. The resulting secular trap frequencies
are ωc.m. = 2π × 0.965 MHz , ωr = 2π × 3.62 MHz along the z axis
and ωx = ωy = 2π × 20.8 MHz along the x and y axes.

which is dominated by the oscillation at the secular motion
frequency ωc.m. with a small correction from the micromotion.
The magnitude of vc.m.(t) is bounded by a constant slightly
larger than 1. The function vr (t) has very similar behavior,
except that ωc.m. is replaced by ωr . From this consideration
of parameters, we can expand the term cos(
kzzj + μt + φj )
with small parameters ηc.m.,ηr , but ηmm is a big term which
needs to be treated exactly. After the expansion, to leading
order in ηc.m. and ηr , the Hamiltonian H takes the form

H ≈ −[
χ1(t)σ z

1 + χ2(t)σ z
2

]
f̂c.m. −

[
χ1(t)σ z

1 − χ2(t)σ z
2

]
f̂r ,

(9)

where we have defined

f̂μ ≡ ημ[v∗
μ
(t)âμ + vμ(t)â†

μ],
(10)

χj (t) ≡ ��j sin[δt + φj − (−1)j ηmm(t)],

where the subscript μ = c.m. or r and j = 1, 2. In Eq. (9),
we have dropped the term cos(δt + φj ± ηmm), which induces
a single-bit phase shift but is irrelevant for the CPF gate.
The evolution operator at the gate time τ generated by the
Hamiltonian H can be expressed as

U (τ ) = Dc.m.(αc.m.)Dr (αr ) exp
[
i(γr − γc.m.)σ

z
1 σ z

2

]
, (11)

where the displacement operator Dμ(αμ) ≡ exp(αμâ†
μ −

α∗
μâμ) (μ = c.m. or r). Let jμ = 1 for μ = c.m. and jμ = −1

for μ = r. The displacement αμ and the accumulated phase γμ

have the following expression:

αμ = iημ

∫ τ

0

[
χ1(t)σ z

1 + jμχ2(t)σ z
2

]
uμ(t) dt,

(12)

γμ = i(ημ)2
∫ τ

0
dt1

∫ t1

0
dt2S[χ1χ2]Im[uμ(t1)u∗

μ(t2)],

where S[χ1χ2] ≡ χ1(t1)χ2(t2) + χ1(t2)χ2(t1).
To realize the CPF gate, we require αμ = 0 and γr − γc.m. =

π/4. The integrals αμ can be evaluated semianalytically
(see the Appendix) or purely numerically. We normally take
�1 = �2 ≡ �. Note that even in this case χ1(t1) �= χ2(t2),

with the micromotion term ηmm(t). This is different from the
case of a static trap. From Eq. (12), we see that αμ = 0 for
a fixed μ gives two complex and thus four real constraints.
With excitation of N motional modes, the total number of
(real) constraints to realize the CPF gate is therefore 4N + 1
(the condition γr − γc.m. = π/4 gives one constraint). To
satisfy these constraints, we divide the Rabi frequency �(t)
(0 � t � τ ) into m equal-time segments and take a constant
�β(β = 1,2, . . . ,m) for the βth segment [9,10]. This kind
of modulation can be conveniently done through an acoustic
optical modulator in experiments [14]. The Rabi frequencies
are our control parameters. For the two-ion case, under fixed
detuning δ and gate time τ , in general, we can find a solution
for the CPF gate with m = 9 segments. For some specific
detuning δ very close to a secular mode frequency, off-resonant
excitations become negligible, and a solution is possible under
one segment of the pulse by tuning of the gate time τ , which
corresponds to the case of the Mølmer-Sørensen gate [15]
generalized to include the micromotion correction.

To characterize the quality of the gate, we use the fidelity
F ≡ trμ[ρμ|〈�0|U †

CPFU (τ )|�0〉|2], defined as the overlap of
the evolution operator U (τ ) with the perfect one UCPF ≡
eiπσ z

1 σ z
2 /4 under the initial state |�0〉 for the ion spins and the

thermal state ρμ for the phonon modes. In our calculation,
without loss of generality, we take |�0〉 = (|0〉 + |1〉) ⊗ (|0〉 +
|1〉)/2 and assume the Doppler temperature TD (kBTD/h ≈
10 MHz for Be+ ion) for all the phonon modes. For any
given detuning δ and gate time τ , we optimize the control
parameters �β(β = 1,2, . . . ,m) to get the maximum fidelity
F . In Fig. 2, we show the gate fidelity as a function of gate time
for δ = 0.95ωc.m. (close to a secular frequency) by applying
a single-segment laser pulse of a constant Rabi frequency
�. In Fig. 2, the dashed line corresponds to the result in a
static harmonic trap with the same secular frequencies but
no micromotion. If we take into account the micromotion
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FIG. 2. (Color online) (a) The fidelity of a two-ion conditional
phase-flip gate as a function of gate time τ , where the unit of time
is the period of the center-of-mass motion along the z direction
Tz = 2π/ωc.m.. The detuning was chosen to be μ = 0.95ωc.m.z. The
blue solid line indicates the optimal results with micromotion taken
into account; the red dashed line is the result for a genuine static
harmonic trap without micromotion, and the gray dotted line is
obtained by applying the optimal solution for a static harmonic trap
to the case with micromotion, which results in poor performance.
(b) The infidelity (one-fidelity) near the optimal evolution time,
essentially a close-up of (a) near τ = 20Tz. The green dots in (b)
show the time points that are an integral multiple of the micromotion
period. The other parameters used are temperature of both motional
degrees of freedom kBT = 10�ωc.m. and effective laser wave vector

kz = 8 μm−1, so ηc.m. ≈ 0.12 and ηr ≈ 0.09.
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FIG. 3. (Color online) (a) The waveform of the optimal seg-
mented pulse calculated for the gate with duration τ = 1.31Tz. The
thick blue (thin red) line corresponds to the case with (without)
micromotion. (b) The maximal Rabi frequency �̃ ≡ maxt |�(t)| as
a function of the gate time τ . The upper blue (lower red) curve
corresponds to the case with (without) micromotion.

contribution but do not change the gate design, the result
is described by the dash-dotted line, with a low fidelity
of only about 50%. When we optimize the gate design
(optimize �β) including the micromotion correction, the gate
fidelity is represented by the solid line, which approaches the
optimal fidelity achievable in a static trap. The gate infidelity
δF ≡ 1 − F approaches 2 × 10−3 at the optimal gate time
τ = 20.005Tz, where Tz ≡ 2π/ωc.m..

By applying nine segments of laser pulses with optimized
�β(β = 1,2, . . . ,9), the gate fidelity F can attain unity at
arbitrary detuning δ for the two-ion case. As an example,
in Fig. 3(a), we show the optimized solution of �β (thick
blue line) at an arbitrarily chosen detuning δ = 1.4ωc.m.. For
comparison, the thin red line represents the solution of �β in a
static harmonic trap with otherwise the same parameters. The
maximum magnitude of |�β | significantly increases in the case
of micromotion. This is understandable as fast oscillations of
the micromotion tend to lower the effective Rabi frequencies,
as confirmed by experiments performed in the presence of
micromotion [16,17]. In Fig. 3(b), we show the maximum
magnitude of |�β | as a function of the gate time τ . Compared
with the solution in a static harmonic trap, the maximum |�β |
in general needs to increase by about an order of magnitude
under micromotion.

IV. CONCLUSION

In conclusion, we have demonstrated that arbitrarily high
fidelity quantum gates can be achieved under significant
micromotion. The explicit demonstration in this paper uses
the example of two ions in a quadrupole trap, which has a
micromotion magnitude significantly beyond the Lamb-Dicke
limit. Apparently, the idea here is applicable to the many-ion
case in higher dimensions [18]. For a system of N ions in
any dimension, as long as the ions crystallize, each ion has
an average equilibrium position. We can then expand the
Coulomb potential around these equilibrium positions. Under
the rf Paul trap and the Coulomb interaction, the motion of the
ions can then be described by a set of coupled time-dependent
Mathieu equations [19]. Using the technique in this paper,
we can solve the motional dynamics and optimize the gate
design that explicitly takes into account all the micromotion
contributions. The gate design technique under micromotion
proposed in this paper solves a major obstacle for high-fidelity

quantum computation in real rf traps beyond the 1D limitation
and opens a way for scalable quantum computation based on
large two- or three-dimensional trap-ion crystals in Paul traps.
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APPENDIX

In this appendix, we show in detail how to solve the driven
Mathieu equation and give an approximate treatment of the
motional integrals.

1. Solution of the driven mathieu equation

We show in detail how to solve the Mathieu equation with
a constant drive term.

d2u

dξ 2
+ [a − 2q cos(2ξ )]u = f0.

Let us assume that u(ξ ) = f0
∑∞

n=0 cn cos(2nξ ) and insert it
into the equation. After re-organization, we get

ac0 − qc1 +
∞∑

n=1

[(a − 4n2)cn − q(cn−1 + cn+1) − qc0δn,1]

× cos(2nt) = 1.

Defining Dn ≡ (a − 4n2)/q, we have the following set of
linear equations:

ac0 − qc1 = 1, cn − 1

Dn

(cn−1 + cn+1 + c0δn,1) = 0.

In matrix form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a −q 0 · · · 0

− 2
D1

1 − 1
D1

0 − 1
D2

1 − 1
D2

... − 1
D3

1 − 1
D3

. . .
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

c0

c1

c2

...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1

0

0
...

⎞
⎟⎟⎟⎟⎠ .

(A1)

The factor 1/Dn decreases very fast as n increases, and we
can truncate the expansion of u(ξ ) at a small n. Numerically,
we observe that, typically, keeping up to c2 already gives
enough accuracy. We can thus get a very accurate analytical
expression:

c0 ≈ 64 + a(a − 20) − q2

(32 − 3a)q2 + a(a − 4)(a − 16)
,

c1 ≈ 2(a − 16)q

(32 − 3a)q2 + a(a − 4)(a − 16)
,

c2 ≈ 2q2

(32 − 3a)q2 + a(a − 4)(a − 16)
.
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For the example in the main text, ar = −0.0388 and
qr = 0.283, we have c0 = 1132.8 and ur (ξ ) = f0c0[1 −
0.14 cos(2ξ ) + 0.0025 cos(4ξ ) + . . . ].

The micromotion-corrected equilibrium position is f0c0

and should be identified with u0, around which we expand
the Coulomb potential in the first place. Thus we should
determine them self-consistently. Taking the relative motion
in the paper as an example, since both a| ≡ −16eU0

md2
0 �2

T

+ 4e2

πε0mu3
o�

2
T

and f0 ≡ 6e2

πε0mu2
0�

2
T

are functions of u0, then the self-consistent
equation

u0 = f0c0 ≈ f0
64 + ar (ar − 20) − q2

r

(32 − 3ar )q2
r + ar (ar − 4)(ar − 16)

gives the correct u0. With the iterative method it typically
takes only a few iterations to converge to the correct value
when starting from a proper initial value of u0.

2. Two-stage time integral

Here we offer an approximate treatment of motional
integrals. We notice that the secular frequency ω and the
micromotion frequency � are well separated, i.e., ω � �.
This means quantities with the characteristic frequency ω or
less stay constant within one period of micromotion. So we
can perform the time integral in two steps: we first integrate
over one period of the micromotion, obtaining a slowly
varying integrand, which we then integrate again. By doing
this we will show that the dominant effect of micromotion
is to modulate the effective Rabi frequency. Notice that the
integrals

∫ τ

0 χ (t)u(t) dt can be reduced to the form (ignoring
micromotion frequencies n� ± ω with n � 2)

I =
∫ τ

0
dt sin{a0(t) + a1(t) cos[�t1 + φ(t)]}

×{b0(t) + b1(t) cos[�t + ϕ(t)]},
where a0(t), a1(t), b0(t), b1(t), φ(t), and ϕ(t) are all real slowly
varying functions within one period of micromotion 2π

�
. The

above integral can be further broken into two parts, I1 and I2,
where

I1 ≈
∫ τ

0
dt

�

2π

∫ t+2π/�

t

dt1 sin[a0(t) + a1(t) cos(�t1 + φ)]b0(t)

=
∫ τ

0
dt

1

2π

∫ π

−π

dt ′ sin[a0(t) + a1(t) cos(t ′)]b0(t)

= Im

[∫ τ

0
dt exp[i a0(t)]

1

2π

∫ π

−π

dt ′ exp[i a1 cos(t ′)]b0(t)

]

×Im

[∫ τ

0
dt exp[i a0(t)]J0(a1)b0(t)

]

=
∫ τ

0
dt sin[a0(t)]b0(t)J0(a1(t))

and

I2 =
∫ τ

0
dt sin[a0(t) + a1(t) cos(�t + φ)]b1(t) cos[�t + ϕ(t)]

≈
∫ τ

0
dt

�

2π

∫ t+2π/�

t

dt1 sin[a0(t) + a1(t) cos(�t1 + φ)]

× b1(t) cos (�t1 + ϕ)

=
∫ τ

0
dt cos[a0(t)] cos(ϕ − φ)J1(a1(t))

where J0 and J1 denote the Bessel functions. In both cases, the
micromotion gives rise to slowly varying modulation factors,
and cos(ϕ − φ)J1(a1(t)). Moreover in I2 the phase of the
original integrand is also shifted, sin[a0(t)] → cos[a0(t)]. For
the actual experimental system, the term I2 contributes much
less than I1 to the target integral I because it has a much smaller
coefficient for the micromotion component than that of the
secular component in v(t). So, in leading order, micromotion
reduces the laser Rabi frequency seen by the ion by a factor
on the order of J0(a1(t)).
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